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Abstract: Recently, deep learning has exhibited outstanding performance in various fields.
Even though artificial intelligence achieves excellent performance, the amount of energy required
for computations has increased with its development. Hence, the need for a new energy-efficient com-
puter architecture has emerged, which further leads us to the neuromorphic computer.
Although neuromorphic computing exhibits several advantages, such as low-power parallelism,
it exhibits lower accuracy than deep learning. Therefore, the major challenge is to improve the accu-
racy while maintaining the neuromorphic computing-specific energy efficiency. In this paper, we
propose a novel method of the inference process that considers the probability that after complet-
ing the learning process, a neuron can react to multiple target labels. Our proposed method can
achieve improved accuracy while maintaining the hardware-friendly, low-power-parallel processing
characteristics of a neuromorphic processor. Furthermore, this method converts the spike counts
occurring in the learning process into probabilities. The inference process is conducted to implement
the interaction between neurons by considering all the spikes that occur. The inferring circuit is
expected to show a significant reduction in hardware cost and can afford an algorithm exhibiting
a competitive computing performance.

Keywords: leaky integrate fire neuron; spiking neural network; spike-timing-dependent plasticity

MSC: 68Q07

1. Introduction

Deep learning using artificial neural networks (ANNs) is showing outstanding perfor-
mance in various fields, such as image recognition, classification, object recognition, speech
recognition, and medical diagnosis [1,2]. Given its excellent performance in relation to
the considerable development in artificial intelligence, the computational energy require-
ment for deep learning has increased proportionally. Therefore, research into the overhead
lightening of deep learning is becoming active. However, deep learning has inherent
limitations because it requires an enormous amount of computation. Moreover, its high
energy consumption adversely affects the use of artificial intelligence. For instance, it is
impossible to utilize deep learning operations locally on devices with minimal battery
capacities. Therefore, many researchers are opting to use communication to take the results
from cloud servers. This method is not only unstable in function but also causes a lot
of waste in terms of energy. The small cost and small area chipsets are essential so that
artificial intelligence can be operated locally.

To tackle the issue, researchers have been seeking a new computer architecture to
efficiently perform the tasks. The human brain can be a good motivation for a new
architecture since it offers an excellent example of a high-performance processor. The
core characteristic of the human brain is event-driven architecture. Unlike general digital
devices, there is no clock. Since the operation is processed only when an event occurs, the
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energy loss can be extremely reduced. This outstanding energy efficiency and parallelism
of the human brain show great potential as a new computer architecture. Neuromorphic
processor is one of the leading candidates for solving these problems. Nowadays, this
processor has been extensively studied as a low-power, high-efficiency processor. It imitates
the low-power, small-volume, high-efficiency characteristics of the human brain to develop
a dedicated hardware chipset for artificial intelligence different from the Von Neumann
structure [3]. Moreover, a neuromorphic processor that adopts the parallelism and energy
efficiency of the human brain can deal with the aforementioned disadvantages of deep
learning in the Von Neumann structure. Therefore, numerous studies are actively conducted
to design a neuromorphic processor that consumes extremely low power and hardware
overhead by mimicking the biological brain.

This paper focuses on spiking neural networks (SNNs), which imitate the interaction
and learning mechanisms of the human brain’s neuronal spikes. While SNNs offer high
parallelism and low power consumption, their accuracy is often lower than other types
of neural networks. In response, this paper proposes algorithms that increase SNN accuracy
with less hardware overhead. Additionally, the paper presents a method for designing
SNN algorithms as hardware circuits [4,5]. To improve accuracy, the paper introduces
a normalizing method used in deep learning that has been proven effective but which is
typically expensive to implement as a circuit. To reduce cost, the paper proposes an ap-
proximate skipping method that can be implemented as a hardware circuit. This method
performs complex operations while achieving high efficiency, reducing power consump-
tion and area while increasing accuracy. In this study, we have focused on improving
the accuracy of neuromorphic systems while maintaining energy efficiency. To demonstrate
the practical significance of our work, we conducted a comprehensive literature review
and analyzed the importance of accuracy and energy efficiency in various domains, in-
cluding power systems, renewable energy, and biomedical engineering. Energy efficiency
is crucial in the field of power systems for reducing greenhouse gas emissions and meet-
ing energy demand. Yang et al. [6] reported that the use of intelligent algorithms and
machine learning techniques can improve the energy efficiency of power systems. Our
proposed method can contribute to this effort by reducing the energy consumption of neu-
romorphic systems, which can be used in various applications, such as fault detection and
classification. Furthermore, recent advances in neuromorphic computing have highlighted
the need for developing brain-inspired systems that can go beyond the traditional Von
Neumann architecture. One critical component of these systems is the ability to emulate
biological synapses. In this regard, John et al. [7] demonstrated the development of artifi-
cial synapses based on ionic–electronic hybrid oxide-based transistors on both rigid and
flexible substrates. The flexible transistors reported in the study achieved a high field-effect
mobility of approximately 9 cm2 V−1 s−1, while maintaining good mechanical performance.
The study also successfully established comprehensive learning abilities/synaptic rules,
such as paired-pulse facilitation, excitatory and inhibitory postsynaptic currents, spike-
time-dependent plasticity, consolidation, superlinear amplification, and dynamic logic.
These functionalities enable concurrent processing and memory with spatiotemporal cor-
relation. These results represent a significant breakthrough in developing fully solution-
processable approaches to fabricate artificial synapses for next-generation transparent
neural circuits. By incorporating such novel synapses in our proposed neuromorphic
system, we can achieve high accuracy while maintaining energy efficiency, making it ideal
for various real-world applications, such as those discussed in previous works [6–8].
In summary, our proposed method has practical significance for real-world applications
in various domains, such as power systems, renewable energy, and biomedical engineering.
By improving the accuracy of neuromorphic systems while maintaining energy efficiency,
our method can contribute to the development of more efficient and reliable systems
in these domains.

Section 2 of this paper explains the background theory of neuromorphic computing.
Section 3 proposes a method that applies probabilistic classification to the inference process.
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We explained the efficient design by implementing an appropriate formula for the hardware
circuit. Section 4 demonstrates the experimental results and the analysis. We compared
the accuracy, the area of the circuit, energy, delay, energy per accuracy, and improved
effectiveness.

2. Related Work and Motivation

The SNN architecture used in this article was proposed by Diehl et al. [9].
Figure 1 shows the overall network architecture. The network was designed to employ
the unsupervised spike-timing-dependent plasticity (STDP) learning rule [10] to train
the MNIST dataset and classify handwritten digits. The SNN model employs a multi-layer
architecture that includes input, excitatory, and inhibitory layers. The input layer comprises
784 neurons, and each neuron corresponds to one pixel of an image. Note that an MNIST
image consists of 28 × 28 = 784 pixels.

Excitatory Layer

Input

Lateral Inhibtion

Inhibitory Layer

Weights learned using STDP

Figure 1. Spiking neural network training phases.

For presenting the digits from the MNIST dataset to the network for training, the in-
put pixels are converted to a Poisson-distributed spike train with a rate proportional to
the pixel intensity. The excitatory and inhibitory layers include the same number of neurons.
A one-to-one neural connection is established between the excitatory and inhibitory lay-
ers [11]. Alternately, a neural connection is ensured between each neuron in the in-
hibitory layer and all neurons in the excitatory layer except for those connected through
the excitatory layer. This network connectivity offers a winner-take-all (WTA) mech-
anism by implementing lateral inhibitions that compete in the excitatory layer [9,12].
Figure 2 shows that the network includes three phases: the training phase, neuron labeling
phase, and inference phase. (1) Training phase: Neurons insert spike trains as input and
learn data using the STDP learning rule described previously. (2) Neuron labeling phase:
This phase assigns the label to each neuron based on the highest response for label classes.
The spike counts generated at this phase are called neuron labeling spike counts. (3) In-
ference phase: This phase measures the classification accuracy of the network. The sum
of the classes assigned in the neuron labeling phase of firing neurons becomes the final
inference. This is the only step where labels are used. This hardware-friendly, energy-
efficient, parallel processing SNN architecture can be implemented as a neuromorphic
processor; however, it possesses the disadvantage of low accuracy [9]. The lack of accu-
racy in these neuromorphic circuits is challenging. Therefore, in this paper, we propose
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a method to achieve enhanced accuracy while maintaining the aforementioned advantages
of the neuromorphic process.

1) training phase 2) Neuron labeling 3)Inference

Infer input

Firing

Figure 2. Spiking neural network’s training phases.

The baseline SNN in Diehl et al. [9] includes 400 excitatory and inhibitory neurons,
and the network is subsequently trained and tested with 60,000 training datasets and
10,000 test datasets, respectively. Figure 3 presents the label for which neurons responded
most actively at the neuron labeling phase after training. Therefore, it shows the label to
which each neuron exhibits the most active responsiveness. In this study, ten iterations
of the training process were performed, and an average number of incorrectly classified
cases were obtained. Error patterns of the classification of one specific digit as another
were examined. For instance, images of digit 4 are classified as digit 9, and vice versa.
This pattern is referred to as swapped classification.

Figure 3. Label, for which each neuron reacts most actively.
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Figure 4 demonstrates some of the most frequently swapped classification error cases. From
Figure 4, we can observe that 1790 swapped classification errors are registered out of 10,000 tests,
and almost half (854 errors) of them are concentrated on 4 out in 45 cases. The swapped classi-
fication errors between digits 4 and 9 occurred most frequently. Specifically, 305 (3.05%)
swapped classification errors are detected between 4 and 9 among 10,000 tests. From
Figure 4, 204 images of digit 4 are misclassified as 9, and 101 images of digit 9 are incor-
rectly classified as 4. Significant swapped classification errors do not occur except for cases
of 4⇔ 9, 7⇔ 9, 3⇔ 5, and 3⇔ 8. In these error patterns, each neuron responding to test
response spikes tends to exhibit a relatively high spike count of a specific label and another
label, which considerably influences the error. In short, neurons that respond to these
ambiguous error patterns exhibit a high rate of response to various labels in the neuron
labeling phase. Therefore, neurons that are ambiguously trained intervene in ambiguity
patterns with high probability. If these neurons cannot decide between the ambiguous
spike counts, they should put the decision on hold until the next unambiguous trained
neurons can deal with the decision. However, the decision-holding mechanism does not
function in the current method because the similar high active count labels fail to contribute
to the decision. Due to this problem, it becomes difficult to ignore the ambiguity in neurons
in the neuron labeling phase. To tackle this issue, we proposed here a method estimating
the probabilities of all labels for the trained neurons.
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Figure 4. Top four swapped misclassification cases.

3. Proposed Approach

A neuron can respond to all ambiguous patterns. If only the largest spike count
label is assigned, the training of that label with a similar high level of counts is discarded
without contributing to the results. Therefore, in this section, we propose a probabilistic
classification method that allows all spikes to contribute to learning. In addition, we
propose a circuit design that implements the proposed method in a hardware-friendly
manner using an approximation technique. Our method exhibits excellent performance
across various indicators such as energy efficiency, area, delay and accuracy.

3.1. Probabilistic Classification

We present a novel probabilistic classification method that takes into account all
spikes during learning. The approach leverages probability theory to model the probability
of neurons responding to different labels, both during the neuron labeling phase and
inference phase after training.
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During inference, we generate a test example and measure the spike counts sj of all
neurons j. Let T be the total number of spikes generated by all neurons for this test example.
We calculate the probability of each neuron responding to each label in the neuron labeling
phase using the following formula:

pj
i =

sj
i

∑t sj
t , (1)

where pj
i is the probability of neuron j responding to label i. This equation computes

the probability that a neuron will respond to a given label based on the spike counts of all
labels. Thus, each neuron has probability values that reflect the likelihood of it responding
to any label. We interpret Equation (1) as containing all the probabilities of a single neuron
responding to any label. Here, T is the sum of all test response spike counts generated
during inference, and sj is the test response spike count generated by neuron j during
inference. To deduce the final result, we aggregate the probability of all labels, denoted
by N, that spiked during testing according to

y = max
i

N

∑
j=0

(pi
j × (

sj

T
)). (2)

This equation works like a weighted voting ensemble in machine learning techniques,
where a single neuron makes a decision on all labels and reflects the sum of them in the result.

In the inference phase, each neuron has a proportional influence on the number of spikes
in the final result. We accumulate the probability of each label in proportion to the frequency
of spike counts occurring in testing. Finally, we select the label with the highest spike probability.
Our method achieves improved accuracy compared to other techniques.

Figure 5 presents an improved error in the proposed method, demonstrating its
effectiveness in reducing errors for most patterns. Notably, it exhibits a considerable
improvement for label 9, which had the highest error rate in the conventional method.
However, we observed performance degradation for label 5, which is distinct from the other
digits in the dataset in terms of its shape and orientation. This may suggest that the pro-
posed method is less suitable for certain patterns that deviate significantly from the charac-
teristics of the training data. Furthermore, the proposed method has certain limitations and
assumptions that may affect its performance on certain patterns, such as the use of unsu-
pervised STDP learning and the assumption of independent probabilities for each label.
Future research could explore methods to overcome these limitations and improve the over-
all performance of the proposed method.

Figure 5. Error improved of each label.
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3.2. Classification Using Quantization

The hardware-optimized method is implemented through quantifying the spike count
and skipping the insignificant spikes. The method benefits hardware design and exhibits
minor accuracy loss. First, among all neuron labeling spike counts, the highest digit position
of 1 is found, and the bit becomes the most significant bit (MSB). The same MSB position
is applied to other labels. Thereafter, starting with the MSB, we only read the bits up to
a specific range of valid digits. Noting that N bits are valid, the count value is normalized
from 0 to 2N − 1. This circuit design has a mathematical meaning similar to Equation (1).
The precision decreases by limiting the effective range, and the number of bits required
for the operation can be reduced.

4. Experimental Results

Figure 6 shows an example of 3-bit range neuron labeling. When three different labels
are assigned, “A” spike counts are reduced from 412 to 6, “B” spike counts are reduced
from 160 to 2, and “C” spike counts are reduced from 81 to 1. There is a large deviation
in the assigned spike count for each neuron. This approximation technique minimizes
the deviation of set spike counts through normalizing all neurons to uniform range spike
counts. Spike counts that are sufficiently small for exclusion from consideration are ignored
as zeros in this process.

Assign A 0 412 61 1 0 0 1 1 1 0 0

Assign B 0 0 1 0 1 0 0 0 0 0

Assign C 0 0 0 1 0 1 0 0 0 1

160 2

81 1

Assign A 0 412 61 1 0 0 1 1 1 0 0

Assign B 0 0 1 0 1 0 0 0 0 0

Assign C 0 0 0 1 0 1 0 0 0 1

160 2

81 1

Figure 6. Normalization example of 3 label’s spike counts.

Figure 7 demonstrates typical hardware architecture. The neuron labeling circuit
diagram shows counters, one OR gate, and one leading one position detectors (LOPD)
circuit [13]. In the hardware circuit design, we implement the proposed method by perform-
ing OR gate to spike counts of all labels. Subsequently, we find the highest digit position of
1 through LOPD. Note that the LOPD circuit is used to determine the MSB with the highest
position of numbers. This circuit determines the number corresponding to the highest
position of the MSB in all labels’ assignments. As a result of the LOPD, certain shifters
shift the assignment counters to the left. After the shift, the circuit only reads the specific
part of the output from the MSB to N-bit. Only the range from the number of digits found
by LOPD to the number of significant digits is applied effectively. Figure 8 shows how to
acquire three significant digits from a 10-bit counter. Since each neuron has the same range
of count values, it prevents a specific neuron from intervening in the inference of the result.
This process prevents the neuron from being responsible for inferring when the spike count
is excessively high.
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Assign Assign Assign

Counter

Spike

Counter

Spike

Counter

Spike

LOPD

ShiftShiftShift

Figure 7. Hardware architecture.

0 0 1 0 0 1 1 1 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1

Assign 0

Assign 1

Assign 9

OR

LOPD

0 0 1 1 0 1 1 1 0 1

UnusedAssignUnused

0 0 1 0 0 1 1 1 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 1

Assign 0

Assign 1

Assign 9

OR

LOPD

0 0 1 1 0 1 1 1 0 1

UnusedAssignUnused

Figure 8. The algorithmic mechanism of the proposed structure involves approximating the unused
part and utilizing only the relevant portion for inference, if the assigned label structure is adopted.

The accuracy and energy efficiency for storing numbers in counter circuits are some
significant advantages of this process. When implementing hardware, we do not need
to calculate

sj
T as per the Bayesian theory. Multiplying the number of test response spike

counts has a mathematical meaning identical to Equation (2).
The proposed methods are adopted in a two-layer spiking network [9] designed to

classify the MNIST dataset. Within the hardware structure, general leaky integrate and fire
neurons were used and arranged in a parallel layer. Unlike hardware circuits, the neurons
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are not parallel and updated one by one in this simulation. The network’s input layer
includes 28× 28 = 784 neurons, and the output layer consists of 400 excitatory and in-
hibitory neurons, respectively. This network trains the dataset using the conventional STDP.
The excitatory layer and inhibitory layers are connected in a one-to-one manner. The in-
hibitory layer performs the WTA mechanism through lateral inhibition. Each comparison
has the same training phase and inference phase. We compare using different operations
only in the neuron labeling phase. Theoretically, each method has a different meaning.
In the inference phase, however, the same circuit can be reused and implemented. In
the neuron labeling phase, different operations are used to compare the accuracy. There-
fore, this study obtained the results using four different neural labeling methods based
on the same training network. The accuracy measurement was achieved via applying dif-
ferent inferring methods in the same trained network. Table 1 shows the average accuracy
of 20 tests using each inferring method. The accuracies of the probabilistic assignment
method, the inferring method presented in [9], and the bit neuron labeling method with
a valid range of 2 and 3 bits are compared. The probabilistic classification method with
16-digit floating point precision exhibits the highest average accuracy (85.13%). Conversely,
3 bit neuron labeling, which is divided into 8 integer-type levels with a valid range of
3 bits, presents a 0.63% lower accuracy than that of the probabilistic classification method.
Although the bit neuron labeling method displays accuracy loss, it exhibits considerable
efficiency for maintaining a 16-digit floating point number. Moreover, even if the valid
range is lowered to 2 bits, i.e., 4 integer-type levels, there is no significant loss of accuracy.
Thus, sufficient learning can be achieved by classifying neurons into four levels(most
actively responding, moderately responding, lukewarm responding, and not responding).
However, research was not conducted when the limit was set to 1 bit (2 levels).

Table 1. Hyperparameters used in the experiment.

Params

Iteration 20,000
Hidden neuron 400

Membrane potential decay rate 0.1

Leakage 0.0025
Spike threshold 0.005

Ltd learning rate 0.001
Ltp learning rate 0.16

Initial membrane potential 0

Table 2 shows the result of synthesizing the proposed circuit. This table compares the area
of the hardware chip, the delay between input and output, the energy consumption of the chip,
and energy improvement accuracy. The synthesis is conducted using Samsung’s 32 nm chip,
and the synthesis tool used is Synopsys. As a result, a remarkable performance gap between
the circuit area of determining the maximum value index and the area of the LOPD and shifter
is observed. LOPD, the core circuit of the proposed method, is suitably optimized and can
operate in a minimum area with less energy consumption [13].

Table 2. Accuracy comparison table of four methods with standard deviations and p-values.

Method Accuracy Standard Deviation p-Value

Baseline 81.92% 0.15 0.01
Probabilistic inferring 85.13% 0.18 0.01

Bit(2) inferring 84.40% 0.33 0.01
Bit(3) inferring 84.50% 0.21 0.01

For each method, we compared the circuit for the neuron labeling phase. The base-
line method needs a counter to count each neuron labeling spike, a circuit to compare
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the largest neuron, and a 3-bit flip flop to assign the final neuron label. The method
of bit neuron labeling show high efficiency in terms of energy and reduced delay since
the real-time bit neuron labeling is different from the baseline method seeking the most
significant spiking counts. Table 3 presents that the area of the proposed method is
lower than the area of the baseline method. Although there is a certain level of par-
ity in the power consumption values, the proposed method indicates enhanced energy
efficiency due to the difference in the response speed. Hence, this method achieved a con-
siderable performance improvement with respect to the circuit area and delay time because
the LOPD and shift operate as a combination circuit. Consequently, the energy consump-
tion per accuracy of the two proposed methods is approximately half that of the baseline
method. The difference in accuracy between the 2- and 3-bit valid ranges is not significant.
However, the 2-bit neuron labeling method is the most efficient method in terms of its
energy efficiency. Hence, in the MNIST dataset, the 2-bit neuron labeling method is proved
to be the most advantageous method.

Table 3. Performance summary of baseline and proposed methods.

Design Area Delay Power Energy Energy/Acc
(µm2) (ns) (µW) (%) (10−3)

Baseline 3948.48 4.47 165.2 738.444 9.0138

Bit(2)
inferring 3438.08 1.88 162.8 306.064 3.6262

Bit(3)
inferring 3787.20 2.52 163.2 411.264 4.8669

5. Conclusions

This study presented a novel probability inferring method for spiking neural networks
that is aligned with the principles of neuromorphic computing. Our results demonstrate
that this method improves classification accuracy and energy efficiency while maintain-
ing probability factors for various labels. The potential impact of this work is signifi-
cant for advancing the field of neuromorphic computing and could lead to the develop-
ment of low-computational-resource networks. Further research in this area could lead
to the development of more efficient and powerful neuromorphic computing systems.
This study presented a probability inferring model for SNN to achieve improved effi-
ciency with respect to accuracy, circuit area, delay, power and energy. To demonstrate
the performance of the spiking network while using the proposed method, a two-layer
SNN designed to classify the MNIST handwritten digits using 1584 neurons was em-
ployed. The network was trained using the unsupervised STDP learning rule. The sim-
ulation results showed that the proposed method can improve the classification accu-
racy and energy. In addition, neurons maintained the probabilities for various labels.
Therefore, since a new network trains each of these probability factors, the network can be
established with low computational resources.
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