An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem
Abstract
:1. Introduction
1.1. Motivation
1.2. Literature Review
1.3. Research Gap
1.4. Problem Statement
1.5. Major Contributions of this Study and Paper Organization
- A novel ASNS algorithm with an effective exploitation strategy is introduced.
- A novel ASNS algorithm-inspired scheme for handling the ORPD problem is offered and scrutinized on three typical IEEE test grids of different sizes.
- A test is executed to authenticate the statistical efficacy of the suggested ASNS-inspired scheme.
- The suggested ASNS algorithm presents a robust and straightforward solution for the ORPD problem under two-goal functions of minimizing grid losses and voltage deviations.
- The simulation results disclose the dominance of the suggested ASNS algorithm over many solvers that were recently reported in the literature.
2. ORPD Formulation
2.1. Problem Objectives
2.1.1. Total Grid Losses
2.1.2. Voltage Profile Improvement
2.1.3. Voltage Stability Improvement
2.2. Problem Constraints
2.2.1. The Inequality Constraints
2.2.2. The Equality Constraints
3. Proposed ASNS for Solving the ORPD Problem
3.1. Basic SNS Algorithm
3.1.1. Imitation
3.1.2. Dialogue
3.1.3. Disputation
3.1.4. Creativity
3.1.5. Rules Related to the Network
3.1.6. Rules for Publishing
3.2. ASNS with an Effective Exploitation Strategy
3.3. Proposed ASNS with EES for Solving the ORPD Problem
4. Simulation Results
- Case 1: Minimization of the TGLs described in Equation (2).
- Case 2: Minimization of the TVD described in Equation (3).
- Case 3: Minimization of the VSI described in Equation (6).
4.1. Results of the First Grid
4.2. Results of the Second Grid
4.3. Results of the Third Grid (Large-Scale Case Study)
4.4. SNS versus Proposed ASNS: Statistical Comparisons
4.5. Discussion Analysis
- The proposed ASNS always achieves a lower difference percentage compared to the SNS. At 100% convergence, it has 8.36% while the SNS has 14.87%.
- The proposed ASNS always achieves a higher success rate compared to the SNS.
- At 90% and 100% convergence, the proposed ASNS provides approximately 2.5 times the success rate compared to the SNS. At 70% and 80% convergence, the ASNS provides approximately double the success rate of the SNS.
4.6. Parameter Tuning of SNS and ASNS Algorithms
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ABC | Artificial bee colony |
ABO | Accelerated bio-inspired optimizer |
AEO | Artificial ecosystem optimizer |
ALO | Ant lion optimizer |
APT-FPSO | Adaptive particularly tunable fuzzy particle swarm optimization |
ASNS | Augmented social network search |
BBO | Biogeography based optimizer |
BFA | Bacteria foraging-based algorithm |
BSA | Backtracking search algorithm |
CAC-DE | Continuous ant colony-based differential evolution |
CLPSO | Comprehensive learning particle swarm optimization |
CMAES | Covariance matrix adopted evolutionary strategy |
CTFWO | Chaotic turbulent flow of water-based optimization |
DE | Differential evolution |
EES | Effective exploitation strategy |
EFA | Enhanced firefly algorithm |
ERWCA | Evaporation rate water cycle algorithm |
FLP | Fuzzy-based procedure |
GA | Genetic algorithm |
GB-WCA | Gaussian bare-bones water cycle algorithm |
GSA | Gravitational search algorithm |
HBO | Heap-based optimizer |
HFA | Hybrid firefly algorithm |
ICA | Imperialist competitive algorithm |
ILAO | improved lightning attachment procedure optimizer |
IMPA | Improved version of the marine predator algorithm |
IMPA | Improved marine predators’ algorithm |
IPG-PSO | Improved pseudo-gradient particle swarm optimization |
MFA | Moth-flame optimization |
MODE | Multi-objective differential evolution |
MPA | Marine predators’ algorithm |
NRA | Newton-Raphson algorithm |
OGSA | Oppositional GSA |
OPF | Optimal power flow |
ORPD | Optimal reactive power dispatch |
p.u. | Per unit |
PSO | Particle swarm optimization |
PSO-TVAC | PSO with time-varying acceleration coefficients |
PSO-ICA | Particle swarm optimization-imperialism competitive algorithm |
QEA | Quantum-inspired evolutionary algorithm |
QODE | Quasi-oppositional differential evolution |
QOTLBO | Quasi-oppositional teaching-learning based optimization |
RGA | Real coded genetic algorithm |
SBDE | Self-balanced differential evolution |
SCA | Sine-cosine Algorithm |
SHADE | Successful history-based adaptive Differential Evolution algorithm |
SMA | Slime-mould algorithm |
SNS | Social network search |
SOA | Seeker optimization algorithm |
SQP | Sequential quadratic programming |
TGLs | Total grid losses |
TVD | Total voltage deviation |
VSI | Voltage stability index |
WCA | Water cycle algorithm |
WOA | Whale optimization algorithm |
Symbols | |
N | Number of objectives |
F | Vector of n objectives |
Xu and Xv | Dependent and independent variables, respectively |
Gij | Conductance of every link connecting buses i and j |
θ, V and Nb | Phase angle, voltage, and number of buses, respectively |
View | The reference voltage of buses which is taken as 1 p.u. |
Lj | L-index for each bus j |
δi and δj | Phase angles of the voltage at buses i and j, respectively |
YLL and YLG | Sub-matrices of Y-Bus matrix |
VG1, VG2, …, VGNG | Generator voltages |
Ta1, Ta2, …, TaNT | Transformer tap settings |
Qr1, Qr2, …, QrNr | Reactive power (VAr) supplied by switched capacitors and reactors |
NG, Nr and NT | Number of generators, number of the VAr sources, and number of on-load tap transformers, respectively |
VL1, …, VLNPQ | Load bus voltage magnitudes |
QG1, QG2, …, QGNG | VAr outputs of the generators |
SF1, …, SFNL | Transmission line loadings |
SFL and NL | Power flows in line L and the number of transmission lines, respectively |
PL, QL and Bij | Active and reactive power demand, and mutual susceptance between bus i and j, respectively |
Ui and Uj | Vectors of the user’s view of i and j, respectively |
r1 and r2 | Random vectors which are, respectively, inside the ranges [0, 1] and [−1, 1]. |
Uk | Randomly selected event vector |
Umean | Mean vector within a group or commenters of views of friends |
Ngroup | Number of users in the group |
The current idea of the user i about each variable d | |
Ubest | Best viewpoint among the users that get the lowest fitness for every iteration |
LBd and UBd | Lower and upper limits of the variable d, accordingly |
MaxIter | Maximum number of iterations |
N | Number of users |
Appendix A
Items and Studied Systems | IEEE 30-Bus System | IEEE 57-Bus System | IEEE 118-Bus System | |
---|---|---|---|---|
N | 50 | 100 | 100 | |
MaxIter | 300 | 300 | 600 | |
Generator voltages (p.u.) | LB | 0.9000 | 0.9000 | 0.9400 |
UB | 1.1000 | 1.1000 | 1.0600 | |
Tap-changing transformers (p.u.) | LB | 0.9000 | 0.9000 | 0.9000 |
UB | 1.1000 | 1.1000 | 1.1000 | |
Shunt Capacitors (MVAr) | LB | 0 | 0 | 0 |
UB | −30.0000 | 10.0000, 5.9000, and 6.3000 | 30.0000 |
QMAX | QMIN | Case 1-SNS | Case 1-ASNS | Case 2-SNS | Case 2-ASNS | Case 3-SNS | Case 3-ASNS | |
---|---|---|---|---|---|---|---|---|
QG 1 | 200 | −20 | −11.0933 | −10.0538 | −20 | −19.9097 | −11.6589 | −17.1944 |
QG 2 | 100 | −20 | 15.7518 | 15.5574 | −6.8016 | −7.4537 | 15.6506 | −13.3928 |
QG 5 | 80 | −15 | 24.4079 | 24.0469 | 37.5118 | 37.6167 | 15.8655 | 44.3173 |
QG 8 | 60 | −15 | 29.0434 | 28.8129 | 38.7653 | 42.4471 | 56.6655 | 58.8949 |
QG 11 | 50 | −10 | −2.9666 | −0.9345 | 1.45 | 0.4212 | 1.9563 | 6.465 |
QG 13 | 60 | −15 | −7.156 | −13.3821 | −2.8688 | −4.786 | 0.4302 | 1.2194 |
QMAX | QMIN | Case 1-SNS | Case 1-ASNS | Case 2-SNS | Case 2-ASNS | Case 3-SNS | Case 3-ASNS | |
---|---|---|---|---|---|---|---|---|
QG 1 | 200 | −140 | 25.5118 | 24.9556 | −4.5304 | −6.9715 | 110.6362 | 18.4536 |
QG 2 | 50 | −17 | 49.4901 | 50 | 43.1114 | 44.316 | 19.51 | 37.5813 |
QG 3 | 60 | −10 | 45.8101 | 47.6413 | 57.4301 | 59.8936 | 9.9011 | 19.4484 |
QG 6 | 25 | −8 | −5.5959 | 0.2218 | 14.8235 | 18.9114 | −2.8447 | 18.2721 |
QG 8 | 200 | −140 | 69.586 | 66.5433 | 16.1191 | 8.1599 | 48.3652 | 68.1371 |
QG 9 | 9 | −3 | 7.1224 | 8.8809 | 9 | 9 | 4.8712 | 1.0238 |
QG 12 | 155 | −150 | 75.7926 | 71.2139 | 149.7989 | 154.1204 | 100.0011 | 136.6506 |
QMAX | QMIN | Case 1-SNS | Case 1-ASNS | Case 2-SNS | Case 2-ASNS | Case 3-SNS | Case 3-ASNS | |
---|---|---|---|---|---|---|---|---|
QG 1 | 15 | −5 | 14.5662 | 14.5171 | 14.6358 | 14.7846 | 5.0759 | 7.8489 |
QG 4 | 300 | −300 | 24.0705 | −5.7346 | −158.184 | −42.621 | −136.723 | −45.0406 |
QG 6 | 50 | −13 | 25.8123 | 20.798 | 4.1469 | 24.9696 | 22.6758 | −7.127 |
QG 8 | 300 | −300 | −25.5407 | 5.4553 | 179.2201 | 122.6642 | 178.53 | 94.9364 |
QG 10 | 200 | −147 | −100.486 | −101.849 | −89.6337 | −102.598 | −26.3501 | −21.9034 |
QG 12 | 120 | −35 | 53.7451 | 47.5395 | 99.0349 | 108.5367 | 76.6854 | 22.4387 |
QG 15 | 30 | −10 | 11.6375 | 17.6951 | −4.5287 | −9.7037 | −0.1446 | −4.803 |
QG 18 | 50 | −16 | 38.4646 | 20.1267 | −13.2123 | −10.1985 | 35.1172 | 11.0603 |
QG 19 | 24 | −8 | 13.4858 | 17.414 | −5.3478 | −1.8856 | 4.004 | −7.1696 |
QG 24 | 300 | −300 | −8.0755 | 6.6627 | 24.6526 | 7.9436 | −19.9092 | 43.1933 |
QG 25 | 140 | −47 | 79.5415 | 50.3089 | −19.0465 | 80.2624 | −24.6135 | −32.0925 |
QG 26 | 1000 | −1000 | −93.8935 | −64.4136 | −71.0957 | −129.847 | 33.0448 | −69.801 |
QG 27 | 300 | −300 | 24.8739 | 20.9573 | 12.6348 | 71.796 | 70.9331 | 101.5602 |
QG 31 | 300 | −300 | 30.6733 | 22.3169 | 91.0509 | 60.4686 | 27.5755 | 14.6481 |
QG 32 | 42 | −14 | 9.9814 | 17.4136 | 9.809 | 21.75 | −10.8293 | 7.3427 |
QG 34 | 24 | −8 | 13.5709 | −6.4994 | −1.1196 | 5.37 | 4.1177 | 14.9506 |
QG 36 | 24 | −8 | 7.427 | 2.3472 | −3.3417 | −5.6468 | −6.9791 | 7.5597 |
QG 40 | 300 | −300 | 34.2823 | 33.0815 | 68.7116 | 93.961 | −91.0034 | 50.7242 |
QG 42 | 300 | −300 | 19.9429 | 20.2193 | 46.3348 | 33.4737 | 183.3751 | 50.9194 |
QG 46 | 100 | −100 | 2.58 | −11.4573 | 5.3837 | 11.5149 | 41.3022 | 35.5478 |
QG 49 | 210 | −85 | 49.9421 | 51.7827 | 139.1609 | 76.4511 | 209.4643 | 207.6757 |
QG 54 | 300 | −300 | 42.6336 | 34.5675 | 49.4748 | 53.0367 | 7.9369 | −5.374 |
QG 55 | 23 | −8 | 16.2703 | 11.3564 | −6.2283 | 20.4349 | 15.1702 | 10.8474 |
QG 56 | 15 | −8 | 1.1199 | 4.943 | −6.5023 | −5.3435 | −6.4955 | 5.9728 |
QG 59 | 180 | −60 | 91.1813 | 108.4431 | 139.8281 | 96.177 | 13.9116 | 28.593 |
QG 61 | 300 | −100 | −2.492 | −18.1329 | −18.0023 | −93.7582 | −14.4094 | −97.3926 |
QG 62 | 20 | −20 | −3.1049 | 7.5193 | −6.57 | −4.0851 | −13.9373 | −8.5001 |
QG 65 | 200 | −67 | 16.9089 | 3.2103 | −8.3426 | −66.4617 | 16.5881 | 86.23 |
QG 66 | 200 | −67 | −61.7869 | −65.5083 | −34.4029 | −65.5431 | −59.0314 | 49.8348 |
QG 69 | 300 | −300 | −134.618 | −110.43 | −98.2275 | −181.783 | 161.5133 | 186.1353 |
QG 70 | 32 | −10 | 10.3158 | 19.4645 | 1.7462 | 31.0587 | 27.373 | 25.3555 |
QG 72 | 100 | −100 | −6.4364 | −13.4015 | 2.4662 | 1.6687 | −18.189 | −22.4441 |
QG 73 | 100 | −100 | −3.1452 | −5.3301 | 26.1035 | 12.8339 | −21.4349 | −35.1946 |
QG 74 | 9 | −6 | 7.992 | 6.6092 | 6.3794 | 3.7695 | 6.2625 | −3.1613 |
QG 76 | 23 | −8 | 22.8668 | 22.0407 | 16.8353 | 20.2507 | 19.5854 | 22.912 |
QG 77 | 70 | −20 | 56.9625 | 60.605 | 36.5389 | 46.2464 | 46.2572 | 46.2732 |
QG 80 | 280 | −165 | 39.3082 | 3.2877 | 240.1401 | 230.5782 | −123.555 | −136.336 |
QG 85 | 23 | −8 | 19.3618 | 18.9086 | 18.0338 | 22.8371 | 14.0021 | 16.052 |
QG 87 | 1000 | −100 | −0.5023 | 0.025 | 12.7369 | 10.2115 | 8.7072 | 5.9641 |
QG 89 | 300 | −210 | 0.1398 | 24.1265 | −123.079 | −116.085 | −28.4652 | −11.6247 |
QG 90 | 300 | −300 | 51.6318 | 37.6659 | 210.6461 | 199.8874 | 72.1733 | 45.8006 |
QG 91 | 100 | −100 | −3.3313 | −1.1698 | −51.9619 | −60.1563 | 4.301 | 27.8025 |
QG 92 | 9 | −3 | 0.821 | 5.5476 | −2.7115 | −2.5073 | −0.4118 | −2.8518 |
QG 99 | 100 | −100 | −3.6525 | −6.4569 | 34.6788 | 38.4328 | 17.4873 | −16.9542 |
QG 100 | 155 | −50 | 33.2354 | 59.9011 | −40.3621 | −49.2498 | 63.7574 | 19.4836 |
QG 103 | 40 | −15 | 15.7092 | 2.3865 | 10.6147 | 24.2089 | 1.3529 | 39.2042 |
QG 104 | 23 | −8 | 19.9708 | 8.3988 | 9.961 | 15.3062 | 17.6745 | 4.8378 |
QG 105 | 23 | −8 | 18.0353 | 8.845 | 12.829 | −6.6591 | 3.9311 | 20.6032 |
QG 107 | 200 | −200 | −1.2282 | −10.9052 | 55.4818 | 50.2043 | 16.5422 | 27.9711 |
QG 110 | 23 | −8 | 19.8166 | 10.8218 | 0.0812 | 1.6577 | 16.7011 | 16.1153 |
QG 111 | 1000 | −100 | −1.189 | −2.5185 | −9.6835 | −19.4414 | 6.8634 | −19.2893 |
QG 112 | 1000 | −100 | 13.0845 | 12.7739 | 34.4648 | 43.5942 | 18.6459 | 40.1109 |
QG 113 | 200 | −100 | −7.4075 | −12.5293 | 62.0482 | −99.4147 | −59.7926 | 18.0029 |
QG 116 | 1000 | −1000 | 27.7889 | 10.5345 | −275.617 | 4.7293 | −66.9456 | −155.514 |
References
- Chen, X.; Li, K.; Xu, B.; Yang, Z. Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem. Knowl.-Based Syst. 2020, 208, 106463. [Google Scholar] [CrossRef]
- Acharya, S.; Ganesan, S.; Kumar, D.V.; Subramanian, S. A multi-objective multi-verse optimization algorithm for dynamic load dispatch problems. Knowl.-Based Syst. 2021, 231, 107411. [Google Scholar] [CrossRef]
- Naderi, E.; Narimani, H.; Pourakbari-Kasmaei, M.; Cerna, F.V.; Marzband, M.; Lehtonen, M. State-of-the-Art of Optimal Active and Reactive Power Flow: A Comprehensive Review from Various Standpoints. Processes 2021, 9, 1319. [Google Scholar] [CrossRef]
- Bentouati, B.; Khelifi, A.; Shaheen, A.M.; El-Sehiemy, R.A. An enhanced moth-swarm algorithm for efficient energy management based multi dimensions OPF problem. J. Ambient Intell. Humaniz. Comput. 2020, 12, 1–21. [Google Scholar] [CrossRef]
- Muhammad, Y.; Khan, R.; Raja, M.A.Z.; Ullah, F.; Chaudhary, N.I.; He, Y. Solution of optimal reactive power dispatch with FACTS devices: A survey. Energy Rep. 2020, 6, 2211–2229. [Google Scholar] [CrossRef]
- Rezaie, H.; Kazemi-Rahbar, M.H.; Vahidi, B.; Rastegar, H. Solution of combined economic and emission dispatch problem using a novel chaotic improved harmony search algorithm. J. Comput. Des. Eng. 2019, 6, 447–467. [Google Scholar] [CrossRef]
- Roy, P.K.; Ghoshal, S.P.; Thakur, S.S. Biogeography based optimization for multi-constraint optimal power flow with emission and non-smooth cost function. Expert Syst. Appl. 2010, 37, 8221–8228. [Google Scholar] [CrossRef]
- Hassan, M.H.; Kamel, S.; Abualigah, L.; Eid, A. Development and application of slime mould algorithm for optimal economic emission dispatch. Expert Syst. Appl. 2021, 182, 115205. [Google Scholar] [CrossRef]
- Bhadoria, A.; Marwaha, S. Moth flame optimizer-based solution approach for unit commitment and generation scheduling problem of electric power system. J. Comput. Des. Eng. 2020, 7, 668–683. [Google Scholar] [CrossRef]
- Shaheen, A.; Ginidi, A.; El-Sehiemy, R.; Elsayed, A.; Elattar, E.; Dorrah, H.T. Developed Gorilla Troops Technique for Optimal Power Flow Problem in Electrical Power Systems. Mathematics 2022, 10, 1636. [Google Scholar] [CrossRef]
- Lujano-Rojas, J.M.; Zubi, G.; Dufo-Lopez, R.; Bernal-Agustin, J.L.; Atencio-Guerra, J.L.; Catalao, J.P.S. Embedding quasi-static time series within a genetic algorithm for stochastic optimization: The case of reactive power compensation on distribution systems. J. Comput. Des. Eng. 2020, 7, 177–194. [Google Scholar] [CrossRef]
- Deeb, N.I.; Shahidehpour, S.M. An Efficient Technique for Reactive Power Dispatch Using a Revised Linear Programming Approach. Electr. Power Syst. Res. 1988, 15, 121–134. [Google Scholar] [CrossRef]
- Venkatesh, S.V.; Liu, W.H.E.; Papalexopoulos, A.D. A Least Squares Solution for Optimal Power Flow Sensitivity Calculation. IEEE Trans. Power Syst. 1992, 7, 1394–1401. [Google Scholar] [CrossRef]
- Quintana, V.H.; Santos-Nieto, M. Reactive-power dispatch by successive quadratic programming. IEEE Trans. Energy Convers. 1989, 4, 425–435. [Google Scholar] [CrossRef]
- Granville, S. Opiimal reactive dispatch through interior point methods. IEEE Trans. Power Syst. 1994, 9, 136–146. [Google Scholar] [CrossRef]
- El-Sehiemy, R.A.; El Ela, A.A.A.; Shaheen, A. A multi-objective fuzzy-based procedure for reactive power-based preventive emergency strategy. Int. J. Eng. Res. Afr. 2015, 13, 91–102. [Google Scholar] [CrossRef]
- Vlachogiannis, J.G.; Lee, K.Y. Quantum-inspired evolutionary algorithm for real and reactive power dispatch. IEEE Trans. Power Syst. 2008, 23, 1627–1636. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, H.; Kawata, K.; Fukuyama, Y.; Takayama, S.; Nakanishi, Y. A Particle swarm optimization for reactive power and voltage control considering voltage security assessment. IEEE Trans. Power Syst. 2000, 15, 1232–1239. [Google Scholar] [CrossRef] [Green Version]
- Esmin, A.A.A.; Lambert-Torres, G.; Zambroni de Souza, A.C. A hybrid particle swarm optimization applied to loss power minimization. IEEE Trans. Power Syst. 2005, 20, 859–866. [Google Scholar] [CrossRef]
- Tripathy, M.; Mishra, S. Bacteria foraging-based solution to optimize both real power loss and voltage stability limit. IEEE Trans. Power Syst. 2007, 22, 240–248. [Google Scholar] [CrossRef]
- Subbaraj, P.; Rajnarayanan, P.N. Optimal reactive power dispatch using self-adaptive real coded genetic algorithm. Electr. Power Syst. Res. 2009, 79, 374–381. [Google Scholar] [CrossRef]
- Mahadevan, K.; Kannan, P.S. Comprehensive learning particle swarm optimization for reactive power dispatch. Appl. Soft Comput. 2010, 10, 641–652. [Google Scholar] [CrossRef]
- Sivasubramani, S.; Swarup, K.S. Multi-objective harmony search algorithm for optimal power flow problem. Int. J. Electr. Power Energy Syst. 2011, 33, 745–752. [Google Scholar] [CrossRef]
- Duman, S.; Sönmez, Y.; Güvenç, U.; Yörükeren, N. Optimal reactive power dispatch using a gravitational search algorithm. IET Gener. Transm. Distrib. 2012, 6, 563–576. [Google Scholar] [CrossRef]
- Singh, H.; Srivastava, L. Modified Differential Evolution algorithm for multi-objective VAR management. Int. J. Electr. Power Energy Syst. 2014, 55, 731–740. [Google Scholar] [CrossRef]
- Mehdinejad, M.; Mohammadi-Ivatloo, B.; Dadashzadeh-Bonab, R.; Zare, K. Solution of optimal reactive power dispatch of power systems using hybrid particle swarm optimization and imperialist competitive algorithms. Int. J. Electr. Power Energy Syst. 2016, 83, 104–116. [Google Scholar] [CrossRef]
- Rajan, A.; Malakar, T. Exchange market algorithm based optimum reactive power dispatch. Appl. Soft Comput. 2016, 43, 320–336. [Google Scholar] [CrossRef]
- Mouassa, S.; Bouktir, T.; Salhi, A. Ant lion optimizer for solving optimal reactive power dispatch problem in power systems. Eng. Sci. Technol. an Int. J. 2017, 20, 885–895. [Google Scholar] [CrossRef]
- Li, Z.; Cao, Y.; Van Dai, L.; Yang, X.; Nguyen, T.T. Finding solutions for optimal reactive power dispatch problem by a novel improved antlion optimization algorithm. Energies 2019, 12, 2968. [Google Scholar] [CrossRef] [Green Version]
- Heidari, A.A.; Ali Abbaspour, R.; Rezaee Jordehi, A. Gaussian bare-bones water cycle algorithm for optimal reactive power dispatch in electrical power systems. Appl. Soft Comput. J. 2017, 57, 657–671. [Google Scholar] [CrossRef]
- Mouassa, S.; Bouktir, T. Multi-objective ant lion optimization algorithm to solve large-scale multi-objective optimal reactive power dispatch problem. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 2019, 38, 304–324. [Google Scholar] [CrossRef]
- Shareef, S.M.; Srinivasa Rao, R. Optimal reactive power dispatch under unbalanced conditions using hybrid swarm intelligence. Comput. Electr. Eng. 2018, 69, 183–193. [Google Scholar] [CrossRef]
- Lenin, K. Minimization of real power loss by enhanced teaching learning based optimization algorithm Corresponding Author. Int. J. Robot. Autom. 2020, 9, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ebeed, M.; Ali, A.; Mosaad, M.I.; Kamel, S. An improved lightning attachment procedure optimizer for optimal reactive power dispatch with uncertainty in renewable energy resources. IEEE Access 2020, 8, 168721–168731. [Google Scholar] [CrossRef]
- El-Sehiemy, R.A. A novel single/multi-objective frameworks for techno-economic operation in power systems using tunicate swarm optimization technique. J. Ambient Intell. Humaniz. Comput. 2022, 13, 1073–1091. [Google Scholar] [CrossRef]
- Mouassa, S.; Jurado, F.; Bouktir, T.; Raja, M.A.Z. Novel design of artificial ecosystem optimizer for large-scale optimal reactive power dispatch problem with application to Algerian electricity grid. Neural Comput. Appl. 2021, 33, 7467–7490. [Google Scholar] [CrossRef]
- Korashy, A.; Kamel, S.; Houssein, E.H.; Jurado, F.; Hashim, F.A. Development and Application of Evaporation Rate Water Cycle Algorithm for Optimal Coordination of Directional Overcurrent Relays. Expert Syst. Appl. 2021, 185, 115538. [Google Scholar] [CrossRef]
- Qian, J.; Wang, P.; Pu, C.; Chen, G. Joint application of multi-object beetle antennae search algorithm and BAS-BP fuel cost forecast network on optimal active power dispatch problems. Knowl.-Based Syst. 2021, 226, 107149. [Google Scholar] [CrossRef]
- Liang, R.H.; Wang, J.C.; Chen, Y.T.; Tseng, W.T. An enhanced firefly algorithm to multi-objective optimal active/reactive power dispatch with uncertainties consideration. Int. J. Electr. Power Energy Syst. 2015, 64, 1088–1097. [Google Scholar] [CrossRef]
- Basu, M. Multi-objective optimal reactive power dispatch using multi-objective differential evolution. Int. J. Electr. Power Energy Syst. 2016, 82, 213–224. [Google Scholar] [CrossRef]
- Robbins, B.A.; Domínguez-García, A.D. Optimal Reactive Power Dispatch for Voltage Regulation in Unbalanced Distribution Systems. IEEE Trans. Power Syst. 2016, 31, 2903–2913. [Google Scholar] [CrossRef]
- Basu, M. Quasi-oppositional differential evolution for optimal reactive power dispatch. Int. J. Electr. Power Energy Syst. 2016, 78, 29–40. [Google Scholar] [CrossRef]
- Nasouri Gilvaei, M.; Jafari, H.; Jabbari Ghadi, M.; Li, L. A novel hybrid optimization approach for reactive power dispatch problem considering voltage stability index. Eng. Appl. Artif. Intell. 2020, 96, 103963. [Google Scholar] [CrossRef]
- Ettappan, M.; Vimala, V.; Ramesh, S.; Kesavan, V.T. Optimal reactive power dispatch for real power loss minimization and voltage stability enhancement using Artificial Bee Colony Algorithm. Microprocess. Microsyst. 2020, 76, 103085. [Google Scholar] [CrossRef]
- Biswas, P.P.; Suganthan, P.N.; Mallipeddi, R.; Amaratunga, G.A.J. Optimal reactive power dispatch with uncertainties in load demand and renewable energy sources adopting scenario-based approach. Appl. Soft Comput. 2019, 75, 616–632. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, T.; Yang, B.; Cheng, L. Accelerating bio-inspired optimizer with transfer reinforcement learning for reactive power optimization. Knowl.-Based Syst. 2017, 116, 26–38. [Google Scholar] [CrossRef]
- Saddique, M.S.; Bhatti, A.R.; Haroon, S.S.; Sattar, M.K.; Amin, S.; Sajjad, I.A.; ul Haq, S.S.; Awan, A.B.; Rasheed, N. Solution to optimal reactive power dispatch in transmission system using meta-heuristic techniques―Status and technological review. Electr. Power Syst. Res. 2020, 178, 106031. [Google Scholar] [CrossRef]
- ben oualid Medani, K.; Sayah, S.; Bekrar, A. Whale optimization algorithm based optimal reactive power dispatch: A case study of the Algerian power system. Electr. Power Syst. Res. 2018, 163, 696–705. [Google Scholar] [CrossRef]
- Suresh, V.; Kumar, S.S. Optimal reactive power dispatch for minimization of real power loss using SBDE and DE-strategy algorithm. J. Ambient Intell. Humaniz. Comput. 2020, 1–15. [Google Scholar] [CrossRef]
- Ebeed, M.; Alhejji, A.; Kamel, S.; Jurado, F. Solving the Optimal Reactive Power Dispatch Using Marine Predators Algorithm Considering the Uncertainties in Load and Wind-Solar Generation Systems. Energies 2020, 13, 4316. [Google Scholar] [CrossRef]
- Abd-El Wahab, A.M.; Kamel, S.; Hassan, M.H.; Mosaad, M.I.; AbdulFattah, T.A. Optimal Reactive Power Dispatch Using a Chaotic TurbulentFlow of Water-Based Optimization Algorithm. Mathematics 2022, 10, 346. [Google Scholar] [CrossRef]
- PG, A.K.; Devaraj, D. Hybrid CAC-DE in optimal reactive power dispatch (ORPD) for renewable energy cost reduction. Sustain. Comput. Inform. Syst. 2022, 35, 100688. [Google Scholar] [CrossRef]
- Kien, L.C.; Nguyen, T.T.; Pham, T.D.; Nguyen, T.T. Cost reduction for energy loss and capacitor investment in radial distribution networks applying novel algorithms. Neural Comput. Appl. 2021, 33, 15495–15522. [Google Scholar] [CrossRef]
- Mahfoud, R.J.; Alkayem, N.F.; Sun, Y.; Haes Alhelou, H.; Siano, P.; Parente, M. Improved hybridization of evolutionary algorithms with a sensitivity-based decision-making technique for the optimal planning of shunt capacitors in radial distribution systems. Appl. Sci. 2020, 10, 1384. [Google Scholar] [CrossRef] [Green Version]
- Jamil Mahfoud, R.; Sun, Y.; Faisal Alkayem, N.; Haes Alhelou, H.; Siano, P.; Shafie-khah, M. A novel combined evolutionary algorithm for optimal planning of distributed generators in radial distribution systems. Appl. Sci. 2019, 9, 3394. [Google Scholar] [CrossRef] [Green Version]
- Le Kien, C.; Tuyet, Y.; Thi, N.; Phan, T.M.; Nguyen, T.T. Finding Optimal Solutions for the Placement of Reactive and Active Power Generation Components in Distribution Networks Using a High-Performance Metaheuristic Algorithm. Int. Trans. Electr. Energy Syst. 2022, 2022, 3761983. [Google Scholar]
- Talatahari, S.; Bayzidi, H.; Saraee, M. Social Network Search for Global Optimization. IEEE Access 2021, 9, 92815–92863. [Google Scholar] [CrossRef]
- El-Sehiemy, R.; Elsayed, A.; Shaheen, A.; Elattar, E.; Ginidi, A. Scheduling of Generation Stations, OLTC Substation Transformers and VAR Sources for Sustainable Power System Operation Using SNS Optimizer. Sustainability 2021, 13, 11947. [Google Scholar] [CrossRef]
- Shaheen, A.M.; Elsayed, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Elattar, E. Enhanced social network search algorithm with powerful exploitation strategy for PV parameters estimation. Energy Sci. Eng. 2022, 10, 1398–1417. [Google Scholar] [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.A.; Farrag, S.M. A novel framework for power loss minimization by modified wind driven optimization algorithm. In Proceedings of the 2018 International Conference on Innovative Trends in Computer Engineering, ITCE, Aswan, Egypt, 19–21 February 2018; IEEE: Piscataway, NJ, USA, 2018; Volume 2018. [Google Scholar]
- Shaheen, A.M.; Spea, S.R.; Farrag, S.M.; Abido, M.A. A review of meta-heuristic algorithms for reactive power planning problem. Ain Shams Eng. J. 2018, 9, 215–231. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, A.M.; El-Sehiemy, R.A.; Farrag, S.M. Optimal reactive power dispatch using backtracking search algorithm. Aust. J. Electr. Electron. Eng. 2016, 13, 200–210. [Google Scholar] [CrossRef]
- Ginidi, A.R.; Elsayed, A.M.; Shaheen, A.M.; Elattar, E.E.; El-Sehiemy, R.A. A Novel Heap based Optimizer for Scheduling of Large-scale Combined Heat and Power Economic Dispatch. IEEE Access 2021, 9, 83695–83708. [Google Scholar] [CrossRef]
- Shaheen, A.M.; Elsayed, A.M.; Ginidi, A.R.; El-Sehiemy, R.A.; Elattar, E. A heap-based algorithm with deeper exploitative feature for optimal allocations of distributed generations with feeder reconfiguration in power distribution networks. Knowl.-Based Syst. 2022, 241, 108269. [Google Scholar] [CrossRef]
- Zimmerman, R.D.; Murillo-Sánchez, C.E.; Thomas, R.J. Matpower [Software]. Available online: https://matpower.org (accessed on 2 January 2023).
- Electric Grid Test Cases. Available online: https://electricgrids.engr.tamu.edu/electric-grid-test-cases/ (accessed on 2 January 2023).
- Elattar, E.E.; Shaheen, A.M.; Elsayed, A.M.; El-Sehiemy, R.A. Optimal power flow with emerged technologies of voltage source converter stations in meshed power systems. IEEE Access 2020, 8, 166963–166979. [Google Scholar] [CrossRef]
- Ghasemi, M.; Taghizadeh, M.; Ghavidel, S.; Aghaei, J.; Abbasian, A. Solving optimal reactive power dispatch problem using a novel teaching-learning-based optimization algorithm. Eng. Appl. Artif. Intell. 2015, 39, 100–108. [Google Scholar] [CrossRef]
- Rajan, A.; Malakar, T. Optimal reactive power dispatch using hybrid Nelder-Mead simplex based firefly algorithm. Int. J. Electr. Power Energy Syst. 2015, 66, 9–24. [Google Scholar] [CrossRef]
- Mandal, B.; Roy, P.K. Optimal reactive power dispatch using quasi-oppositional teaching learning based optimization. Int. J. Electr. Power Energy Syst. 2013, 53, 123–134. [Google Scholar] [CrossRef]
- Mei, R.N.S.; Sulaiman, M.H.; Mustaffa, Z.; Daniyal, H. Optimal reactive power dispatch solution by loss minimization using moth-flame optimization technique. Appl. Soft Comput. 2017, 59, 210–222. [Google Scholar]
- Shaheen, A.M.; El-Sehiemy, R.A.; Ginidi, A.R.; Ghoneim, S.S.M.; Alharthi, M.M. Multi-objective jellyfish search optimizer for efficient power system operation based on multi-dimensional OPF framework. Energy 2021, 237, 121478. [Google Scholar] [CrossRef]
- Polprasert, J.; Ongsakul, W.; Dieu, V.N. Optimal reactive power dispatch using improved pseudo-gradient search particle swarm optimization. Electr. Power Compon. Syst. 2016, 44, 518–532. [Google Scholar] [CrossRef]
- Chen, G.; Liu, L.; Zhang, Z.; Huang, S. Optimal reactive power dispatch by improved GSA-based algorithm with the novel strategies to handle constraints. Appl. Soft Comput. 2017, 50, 58–70. [Google Scholar] [CrossRef]
- Devaraj, D.; Roselyn, J.P. Genetic algorithm based reactive power dispatch for voltage stability improvement. Int. J. Electr. Power Energy Syst. 2010, 32, 1151–1156. [Google Scholar] [CrossRef]
- Jeyadevi, S.; Baskar, S.; Babulal, C.K.; Willjuice Iruthayarajan, M. Solving multiobjective optimal reactive power dispatch using modified NSGA-II. Int. J. Electr. Power Energy Syst. 2011, 33, 219–228. [Google Scholar] [CrossRef]
- Shaheen, A.M.; El-Sehiemy, R.A.; Farrag, S.M. Integrated Strategies of Backtracking Search Optimizer for Solving Reactive Power Dispatch Problem. IEEE Syst. J. 2018, 12, 424–433. [Google Scholar] [CrossRef]
- Wei, Y.; Zhou, Y.; Luo, Q.; Deng, W. Optimal reactive power dispatch using an improved slime mould algorithm. Energy Rep. 2021, 7, 8742–8759. [Google Scholar] [CrossRef]
- Dai, C.; Chen, W.; Zhu, Y.; Zhang, X. Seeker optimization algorithm for optimal reactive power dispatch. IEEE Trans. Power Syst. 2009, 24, 1218–1231. [Google Scholar]
- Shaw, B.; Mukherjee, V.; Ghoshal, S.P. Solution of reactive power dispatch of power systems by an opposition-based gravitational search algorithm. Int. J. Electr. Power Energy Syst. 2014, 55, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, S.K.; Kamel, S.; Selim, A.; Ahmed, M. An Improved Heap-Based Optimizer for Optimal Reactive Power Dispatch. IEEE Access 2021, 9, 58319–58336. [Google Scholar] [CrossRef]
Case Study | Number of Branches | Number of Loads | Number of Generators | Number of Control Variables | Number of Transformers | Number of Compensators |
---|---|---|---|---|---|---|
IEEE 30-bus grid | 41 | 24 | 6 | 19 | 4 | 9 |
IEEE 57-bus grid | 80 | 50 | 7 | 25 | 15 | 3 |
IEEE 118-bus grid | 186 | 64 | 54 | 75 | 9 | 12 |
Variables | Initial Case | SNS | Proposed ASNS | ILAO * [34] | SCA * [47] | WOA * [48] | HFA * [69] |
VG 1 | 1.0500 | 1.1000 | 1.0999 | 1.1000 | 1.1000 | 1.1000 | 1.1000 |
VG 2 | 1.0400 | 1.0946 | 1.0941 | 1.0944 | 1.1000 | 1.0963 | 1.0543 |
VG 5 | 1.0100 | 1.0751 | 1.0741 | 1.0944 | 1.0869 | 1.0789 | 1.0751 |
VG 8 | 1.0100 | 1.0768 | 1.0759 | 1.0767 | 1.0870 | 1.0774 | 1.0869 |
VG 11 | 1.0500 | 1.0544 | 1.0907 | 1.1000 | 1.1000 | 1.0955 | 1.1000 |
VG 13 | 1.0500 | 1.0905 | 1.0824 | 1.1000 | 1.0800 | 1.0929 | 1.1000 |
Ta 6–9 | 1.0780 | 1.0746 | 0.9871 | 1.0300 | 1.0500 | 0.9936 | 0.9801 |
Ta 6–10 | 1.0690 | 0.9080 | 1.0185 | 0.900 | 1.0500 | 0.9867 | 0.9500 |
Ta 4–12 | 1.0320 | 1.0000 | 0.9992 | 0.9800 | 1.0500 | 1.0214 | 0.9702 |
Ta 28–27 | 1.0680 | 0.9686 | 0.9669 | 0.9600 | 1.0500 | 0.9867 | 0.9700 |
Qr 10 | 0.0000 | 16.6738 | 11.8166 | 4.9900 | 4.6310 | 3.1695 | 4.7003 |
Qr 12 | 0.0000 | 19.4818 | 24.57618 | 5.0000 | 3.0890 | 2.0477 | 4.7061 |
Qr 15 | 0.0000 | 3.9071 | 3.7694 | 5.0000 | 5.0000 | 4.2956 | 4.7007 |
Qr 17 | 0.0000 | 5.5106 | 5.4730 | 5.0000 | 4.6970 | 2.6782 | 2.3059 |
Qr 20 | 0.0000 | 4.0268 | 3.5115 | 3.8000 | 2.1290 | 4.8116 | 4.8035 |
Qr 21 | 0.0000 | 9.7636 | 10.0785 | 5.0000 | 3.1910 | 4.8163 | 4.9026 |
Qr 23 | 0.0000 | 0.9029 | 1.3975 | 3.3500 | 5.0000 | 3.5739 | 4.8040 |
Qr 24 | 0.0000 | 6.8624 | 6.6386 | 5.0000 | 4.3880 | 4.1953 | 4.8053 |
Qr 29 | 0.0000 | 2.2385 | 2.1505 | 1.4400 | 3.5750 | 2.0009 | 3.3984 |
TGLs | 5.7960 | 4.5208 | 4.5206 | 4.5217 | 4.7086 | 4.5943 | 4.5290 |
Variables | QOTLBO * [70] | CLPSO * [22] | ABC * [28] | MFA * [71] | AEO * [36] | ALO * [28] | MPA * [50] |
VG 1 | 1.1000 | 1.1000 | 1.1000 | 1.1000 | 1.1000 | 1.1000 | 1.1000 |
VG 2 | 1.0942 | 1.1000 | 1.0971 | 1.0943 | 1.0944 | 1.0953 | 1.0949 |
VG 5 | 1.0745 | 1.0795 | 1.0866 | 1.0747 | 1.0751 | 1.0767 | 1.0761 |
VG 8 | 1.0765 | 1.1000 | 1.0800 | 1.0766 | 1.077 | 1.0788 | 1.078 |
VG 11 | 1.1000 | 1.1000 | 1.0850 | 1.1000 | 1.1000 | 1.1000 | 1.0873 |
VG 13 | 1.0999 | 1.1000 | 1.1000 | 1.1000 | 1.1000 | 1.1000 | 1.1000 |
Ta 6–9 | 1.0664 | 0.9154 | 1.0700 | 1.0433 | 1.0392 | 1.0100 | 0.9807 |
Ta 6–10 | 0.9000 | 0.9000 | 0.9500 | 0.9000 | 0.9000 | 0.9900 | 1.0222 |
Ta 4–12 | 0.9949 | 0.9000 | 1.0200 | 0.9791 | 0.9729 | 1.0200 | 0.9765 |
Ta 28–27 | 0.9714 | 0.9397 | 1.1000 | 0.9647 | 0.9632 | 1.0000 | 0.9707 |
Qr 10 | 5.0000 | 4.9265 | 5.0000 | 5.0000 | 4.9948 | 4.0000 | 1.7900 |
Qr 12 | 5.0000 | 5.0000 | 0.0000 | 5.0000 | 4.9963 | 2.0000 | 4.8300 |
Qr 15 | 5.0000 | 5.0000 | 2.0000 | 4.8055 | 4.8409 | 4.0000 | 3.9700 |
Qr 17 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 4.9985 | 3.0000 | 4.9900 |
Qr 20 | 4.4500 | 5.0000 | 4.0000 | 4.0623 | 4.2895 | 2.0000 | 4.2200 |
Qr 21 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 4.0000 | 4.6100 |
Qr 23 | 2.8300 | 5.0000 | 4.0000 | 2.5193 | 2.6464 | 3.0000 | 4.6900 |
Qr 24 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 4.9998 | 5.0000 | 4.1200 |
Qr 29 | 2.5600 | 5.0000 | 4.0000 | 2.1925 | 2.2293 | 5.0000 | 3.2900 |
TGLs | 4.5594 | 4.5615 | 4.611 | 4.5340 | 4.5262 | 4.59 | 4.5335 |
Initial Case | SNS | Proposed ASNS | LAO * [34] | ILAO * [34] | IPG-PSO * [73] | Improved GSA * [74] | HFA * [69] | QOTLBO * [70] | |
---|---|---|---|---|---|---|---|---|---|
VG 1 | 1.0500 | 1.0040 | 1.0041 | 1.0286 | 0.9942 | 1.0122 | 1.0085 | 1.0035 | 1.0005 |
VG 2 | 1.0400 | 1.0000 | 0.9999 | 0.9702 | 0.9563 | 1.0083 | 1.0057 | 1.0164 | 0.9919 |
VG 5 | 1.0100 | 1.0000 | 1.0000 | 1.0683 | 1.0689 | 1.0168 | 1.0192 | 1.0195 | 1.0217 |
VG 8 | 1.0100 | 1.0023 | 1.0033 | 0.9983 | 0.9919 | 1.0102 | 1.0103 | 1.0182 | 1.0147 |
VG 11 | 1.0500 | 1.0001 | 1.0000 | 1.0134 | 1.0650 | 1.0222 | 1.0184 | 0.9823 | 0.9950 |
VG 13 | 1.0500 | 1.0000 | 1.0001 | 1.0027 | 1.0436 | 1.0075 | 1.0079 | 1.0155 | 1.0447 |
Ta 6–9 | 1.0780 | 1.0074 | 1.0038 | 1.0100 | 1.0900 | 1.0390 | 1.0340 | 0.9900 | 1.0076 |
Ta 6–10 | 1.0690 | 1.0992 | 1.0814 | 0.9700 | 0.9400 | 0.9000 | 0.9000 | 0.9000 | 0.9030 |
Ta 4–12 | 1.0320 | 1.0196 | 1.0225 | 0.9700 | 1.0400 | 0.9759 | 0.9840 | 0.9800 | 1.0472 |
Ta 28–27 | 1.0680 | 0.9946 | 0.9816 | 0.9700 | 0.9800 | 0.9686 | 0.9780 | 0.9600 | 0.9674 |
Qr 10 | 0.0000 | 5.9271 | 12.0240 | 0.0000 | 0.0200 | 5.0000 | 5.0000 | 3.2000 | 4.8700 |
Qr 12 | 0.0000 | 12.6348 | 21.6595 | 2.0400 | 3.9900 | 1.8472 | 5.0000 | 0.5000 | 3.0400 |
Qr 15 | 0.0000 | 9.9277 | 3.9063 | 4.9900 | 4.5000 | 5.0000 | 5.0000 | 4.9000 | 5.0000 |
Qr 17 | 0.0000 | 9.3855 | 5.5190 | 0.3700 | 1.0800 | 0.0026 | 0.0000 | 0.1000 | 0.0000 |
Qr 20 | 0.0000 | 12.9420 | 12.6443 | 4.6400 | 4.6700 | 5.0000 | 5.0000 | 3.8000 | 5.0000 |
Qr 21 | 0.0000 | 16.4084 | 12.5312 | 0.0100 | 0.0200 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
Qr 23 | 0.0000 | 2.3579 | 3.3287 | 3.8800 | 4.9800 | 4.9915 | 5.0000 | 5.0000 | 5.0000 |
Qr 24 | 0.0000 | 12.3446 | 11.7143 | 4.0100 | 5.0000 | 4.9378 | 5.0000 | 3.9000 | 5.0000 |
Qr 29 | 0.0000 | 6.1102 | 3.8151 | 2.5300 | 4.7900 | 2.5206 | 4.9500 | 1.5000 | 2.5600 |
TGLs | 5.7960 | 5.9001 | 5.7765 | 5.6154 | 6.2794 | 5.7429 | 5.7500 | 5.7500 | 6.4962 |
TVD | 0.8691 | 0.0846 | 0.08435 | 0.0945 | 0.0876 | 0.0892 | 0.08968 | 0.0980 | 0.0856 |
Initial Case | SNS | Proposed ASNS | |
---|---|---|---|
VG 1 | 1.0500 | 1.0990 | 1.0998 |
VG 2 | 1.0400 | 1.0933 | 1.0945 |
VG 5 | 1.0100 | 1.0671 | 1.1000 |
VG 8 | 1.0100 | 1.0869 | 1.1000 |
VG 11 | 1.0500 | 1.0998 | 1.0991 |
VG 13 | 1.0500 | 1.0997 | 1.0993 |
Ta 6–9 | 1.0780 | 0.9896 | 1.0351 |
Ta 6–10 | 1.0690 | 0.9355 | 0.9001 |
Ta 4–12 | 1.0320 | 1.0076 | 1.0315 |
Ta 28–27 | 1.0680 | 0.9545 | 0.9618 |
Qr 10 | 0.0000 | 5.5187 | 0.2385 |
Qr 12 | 0.0000 | 15.0421 | 18.0726 |
Qr 15 | 0.0000 | 0.4000 | 3.1113 |
Qr 17 | 0.0000 | 2.2772 | 8.5207 |
Qr 20 | 0.0000 | 5.4560 | 9.9379 |
Qr 21 | 0.0000 | 4.5358 | 2.0944 |
Qr 23 | 0.0000 | 7.4148 | 0.2498 |
Qr 24 | 0.0000 | 0.1587 | 0 |
Qr 29 | 0.0000 | 0.0183 | 0.0005 |
TGLs | 5.7960 | 5.9001 | 4.9165 |
TVD | 0.8691 | 2.7656 | 2.7286 |
VSI | 0.1720 | 0.1248 | 0.1243 |
Method | VSI (p.u.) |
---|---|
Proposed ASNS | 0.1243 |
SNS | 0.1248 |
ABC * [44] | 0.1280 |
GA * [75] | 0.1807 |
SQP * [76] | 0.1570 |
RGA * [76] | 0.1386 |
CMAES * [76] | 0.1382 |
Case 1 (TGLs Minimization) | Case 2 (TVD Minimization) | Case 3 (VSI Minimization) | |||||
---|---|---|---|---|---|---|---|
Initial Case | Continuous | Discrete | Continuous | Discrete | Continuous | Discrete | |
VG 1 | 1.0500 | 1.0999 | 1.0999 | 1.0041 | 1.0041 | 1.0998 | 1.0998 |
VG 2 | 1.0400 | 1.0941 | 1.0941 | 0.9999 | 0.9999 | 1.0945 | 1.0945 |
VG 5 | 1.0100 | 1.0741 | 1.0741 | 1.0000 | 1.1000 | 1.1000 | 1.1000 |
VG 8 | 1.0100 | 1.0759 | 1.0759 | 1.0033 | 1.0033 | 1.1000 | 1.1000 |
VG 11 | 1.0500 | 1.0907 | 1.0907 | 1.0000 | 1.1000 | 1.0991 | 1.0991 |
VG 13 | 1.0500 | 1.0824 | 1.0824 | 1.0001 | 1.0001 | 1.0993 | 1.0993 |
Ta 6–9 | 1.0780 | 0.9871 | 0.9800 | 1.0038 | 1.1000 | 1.0351 | 1.0400 |
Ta 6–10 | 1.0690 | 1.0185 | 1.0200 | 1.0814 | 1.0800 | 0.9001 | 0.9000 |
Ta 4–12 | 1.0320 | 0.9992 | 1.0000 | 1.0225 | 1.0300 | 1.0315 | 1.0300 |
Ta 28–27 | 1.0680 | 0.9669 | 0.9700 | 0.9816 | 0.9800 | 0.9618 | 0.9600 |
Qr 10 | 0.0000 | 11.8166 | 12.0000 | 12.0240 | 12.0000 | 0.2385 | 0.0000 |
Qr 12 | 0.0000 | 24.5761 | 25.0000 | 21.6595 | 22.0000 | 18.0726 | 18.0000 |
Qr 15 | 0.0000 | 3.7694 | 4.0000 | 3.9063 | 4.0000 | 3.1113 | 3.0000 |
Qr 17 | 0.0000 | 5.4730 | 5.0000 | 5.5190 | 6.0000 | 8.5207 | 9.0000 |
Qr 20 | 0.0000 | 3.5115 | 4.0000 | 12.6443 | 13.0000 | 9.9379 | 10.0000 |
Qr 21 | 0.0000 | 10.0785 | 10.0000 | 12.5312 | 13.0000 | 2.0944 | 2.0000 |
Qr 23 | 0.0000 | 1.3975 | 1.0000 | 3.3287 | 3.0000 | 0.2498 | 0.0000 |
Qr 24 | 0.0000 | 6.6386 | 7.0000 | 11.7143 | 12.0000 | 0.0000 | 0.0000 |
Qr 29 | 0.0000 | 2.1505 | 2.0000 | 3.8151 | 4.0000 | 0.0005 | 0.0000 |
TGLs | 5.7960 | 4.5206 | 4.5222 | 5.7765 | 5.7884 | 4.9165 | 4.9185 |
TVD | 0.8691 | 2.5863 | 2.5924 | 0.08435 | 0.1037 | 2.7286 | 2.7249 |
VSI | 0.1720 | 0.1260 | 0.1264 | 0.1511 | 0.1506 | 0.1243 | 0.1241 |
Case 1 | Case 2 | Case 3 | |||||
---|---|---|---|---|---|---|---|
Initial Case | SNS | ASNS | SNS | ASNS | SNS | ASNS | |
VG 1 | 1.0400 | 1.0600 | 1.0600 | 1.0096 | 1.0093 | 1.0600 | 1.0398 |
VG 2 | 1.0100 | 1.0506 | 1.0508 | 1.0000 | 1.0001 | 1.0359 | 1.0266 |
VG 3 | 0.9850 | 1.0448 | 1.0451 | 1.0018 | 1.0021 | 1.0100 | 1.0202 |
VG 6 | 0.9800 | 1.0385 | 1.0405 | 1.0003 | 1.0004 | 0.9967 | 1.0234 |
VG 8 | 1.0050 | 1.0600 | 1.0600 | 1.0071 | 1.0038 | 1.0196 | 1.0392 |
VG 9 | 0.9800 | 1.0282 | 1.0287 | 0.9891 | 0.9876 | 1.0010 | 1.0108 |
VG 12 | 1.0150 | 1.0363 | 1.0351 | 1.0206 | 1.0214 | 1.0278 | 1.0406 |
Ta 4–18 | 0.9700 | 0.9001 | 1.0015 | 1.0124 | 0.9222 | 0.9042 | 0.9190 |
Ta 4–18 | 0.9780 | 1.0994 | 0.9264 | 0.9749 | 1.0603 | 0.9246 | 0.9900 |
Ta 21–20 | 1.0430 | 1.0357 | 1.0129 | 0.9808 | 0.9767 | 1.1000 | 1.0978 |
Ta 24–25 | 1.0000 | 1.0895 | 1.0221 | 1.0769 | 1.0806 | 0.9129 | 0.9001 |
Ta 24–25 | 1.0000 | 0.9340 | 1.0244 | 0.9922 | 1.0543 | 0.9412 | 1.0064 |
Ta 24–26 | 1.0430 | 0.9922 | 1.0070 | 0.9984 | 1.0007 | 1.0502 | 1.0629 |
Ta 7–29 | 0.9670 | 0.9538 | 0.9476 | 0.9951 | 0.9951 | 0.9134 | 0.9119 |
Ta 34–32 | 0.9750 | 0.9598 | 0.9612 | 0.9266 | 0.9165 | 0.9014 | 0.9000 |
Ta 11–41 | 0.9550 | 0.9002 | 0.9043 | 0.9016 | 0.9000 | 0.9007 | 0.9003 |
Ta 15–45 | 0.9550 | 0.9342 | 0.9335 | 0.9133 | 0.9190 | 0.9124 | 0.9223 |
Ta 14–46 | 0.9000 | 0.9294 | 0.9206 | 0.9628 | 0.9548 | 0.9003 | 0.9023 |
Ta 10–51 | 0.9300 | 0.9318 | 0.9282 | 0.9940 | 0.9974 | 0.9033 | 0.9141 |
Ta 13–49 | 0.8950 | 0.9113 | 0.9001 | 0.9000 | 0.9001 | 0.9272 | 0.9060 |
Ta 11–43 | 0.9580 | 0.9369 | 0.9175 | 0.9311 | 0.9407 | 0.9156 | 0.9038 |
Ta 40–56 | 0.9580 | 1.0019 | 1.0041 | 1.0093 | 0.9895 | 1.0397 | 1.0974 |
Ta 39–57 | 0.9800 | 0.9887 | 0.9733 | 0.9099 | 0.9025 | 0.9773 | 1.0901 |
Ta 9–55 | 0.9400 | 0.9424 | 0.9400 | 0.9902 | 0.9891 | 0.9580 | 0.9130 |
Qr 18 | 10.0000 | 22.4644 | 12.9690 | 11.8506 | 11.4394 | 10.6182 | 25.4222 |
Qr 25 | 5.9000 | 13.2932 | 14.9441 | 18.3588 | 20.0403 | 0.0006 | 0.2065 |
Qr 53 | 6.3000 | 12.5535 | 12.4807 | 28.6528 | 29.1235 | 22.3590 | 0.1518 |
TGLs | 27.8640 | 23.9692 | 23.8441 | 28.3819 | 28.5729 | 26.1348 | 26.5536 |
TVD | 1.3586 | 2.9201 | 3.4179 | 0.6520 | 0.6405 | 2.4676 | 2.9997 |
VSI | 0.3000 | 0.2658 | 0.2604 | 0.2990 | 0.3031 | 0.2591 | 0.2542 |
Case 1 (TGLs Minimization) | ||||
Method | Min | Mean | Max | Std |
Proposed ASNS | 23.8441 | 23.9695 | 24.4367 | 0.1119 |
SNS | 23.9692 | 24.7606 | 26.1838 | 0.7348 |
BSA * [77] | 25.3980 | 24.8382 | 24.3744 | 0.2960 |
SCA * [47] | 24.0540 | 24.6940 | 25.5270 | 0.3450 |
SMA * [78] | 24.9009 | 25.5487 | 26.0263 | 0.2346 |
Improved SMA * [78] | 24.5856 | 24.7079 | 24.8927 | 0.0617 |
SOA * [79] | 24.2655 | - | - | - |
ABC * [44] | 24.1025 | - | - | - |
PSO-ICA * [26] | 25.5856 | - | - | - |
Case 2 (TVD Minimization) | ||||
Min | Mean | Max | Std | |
Proposed ASNS | 0.6405 | 0.6653 | 0.7230 | 0.0208 |
SNS | 0.6520 | 0.7018 | 0.8237 | 0.0408 |
OGSA * [80] | 0.6982 | - | - | - |
GB-WCA * [30] | 0.6501 | - | - | - |
WCA * [30] | 0.6631 | - | - | - |
Case 3 (VSI Minimization) | ||||
Min | Mean | Max | Std | |
Proposed ASNS | 0.2542 | 0.2586 | 0.2680 | 0.0029 |
SNS | 0.2591 | 0.2650 | 0.2714 | 0.0036 |
HBO * [81] | 0.6291 | - | - | - |
Improved HBO * [81] | 0.5085 | - | - | - |
Variable | SNS | ASNS | Variable | SNS | ASNS | Variable | SNS | ASNS |
---|---|---|---|---|---|---|---|---|
VG 1 | 0.9506 | 0.9424 | VG 62 | 0.9679 | 0.9720 | VG 113 | 0.9682 | 0.9708 |
VG 4 | 0.9809 | 0.9713 | VG 65 | 1.0036 | 1.0597 | VG 116 | 0.9963 | 1.0572 |
VG 6 | 0.9715 | 0.9623 | VG 66 | 0.9983 | 0.9985 | Ta 8 | 1.0466 | 1.0461 |
VG 8 | 1.0470 | 1.0478 | VG 69 | 1.0111 | 1.0045 | Ta 32 | 1.0758 | 1.0498 |
VG 10 | 1.0598 | 1.0598 | VG 70 | 0.9683 | 0.9717 | Ta 36 | 1.0589 | 1.0477 |
VG 12 | 0.9673 | 0.9592 | VG 72 | 0.9659 | 0.9679 | Ta 51 | 1.0330 | 1.0495 |
VG 15 | 0.9553 | 0.9562 | VG 73 | 0.9658 | 0.9673 | Ta 93 | 1.0057 | 1.0796 |
VG 18 | 0.9610 | 0.9578 | VG 74 | 0.9562 | 0.9593 | Ta 95 | 1.0310 | 1.0859 |
VG 19 | 0.9543 | 0.9543 | VG 76 | 0.9404 | 0.9400 | Ta 102 | 0.9728 | 1.0262 |
VG 24 | 0.9746 | 0.9899 | VG 77 | 0.9738 | 0.9730 | Ta 107 | 0.9306 | 1.0104 |
VG 25 | 1.0073 | 1.0202 | VG 80 | 0.9860 | 0.9835 | Ta 127 | 1.0020 | 1.0570 |
VG 26 | 1.0591 | 1.0600 | VG 85 | 0.9584 | 0.9726 | Qr 34 | 4.1112 | 6.0706 |
VG 27 | 0.9635 | 0.9713 | VG 87 | 0.9491 | 0.9657 | Qr 44 | 6.7088 | 1.7000 |
VG 31 | 0.9559 | 0.9589 | VG 89 | 0.9730 | 0.9913 | Qr 45 | 26.5882 | 29.9781 |
VG 32 | 0.9589 | 0.9679 | VG 90 | 0.9511 | 0.9627 | Qr 46 | 1.2823 | 20.4191 |
VG 34 | 0.9628 | 0.9547 | VG 91 | 0.9517 | 0.9658 | Qr 48 | 9.3371 | 14.3187 |
VG 36 | 0.9584 | 0.9498 | VG 92 | 0.9583 | 0.9730 | Qr 74 | 22.5637 | 29.9500 |
VG 40 | 0.9554 | 0.9496 | VG 99 | 0.9677 | 0.9691 | Qr 79 | 29.9349 | 29.9540 |
VG 42 | 0.9582 | 0.9545 | VG 100 | 0.9688 | 0.9741 | Qr 82 | 27.7066 | 28.6906 |
VG 46 | 0.9699 | 0.9721 | VG 103 | 0.9631 | 0.9583 | Qr 83 | 10.5665 | 12.9289 |
VG 49 | 0.9847 | 0.9841 | VG 104 | 0.9529 | 0.9445 | Qr 105 | 18.8040 | 29.4293 |
VG 54 | 0.9534 | 0.9491 | VG 105 | 0.9522 | 0.9451 | Qr 107 | 17.9742 | 27.4281 |
VG 55 | 0.9518 | 0.9474 | VG 107 | 0.9497 | 0.9418 | Qr 110 | 10.9274 | 20.1976 |
VG 56 | 0.9518 | 0.9480 | VG 110 | 0.9554 | 0.9468 | TGLs | 87.3385 | 85.9111 |
VG 59 | 0.9692 | 0.9679 | VG 111 | 0.9629 | 0.9533 | TVD | 4.5467 | 4.8383 |
VG 61 | 0.9710 | 0.9733 | VG 112 | 0.9489 | 0.9400 |
Method | Min | Mean | Max | Std |
---|---|---|---|---|
Proposed ASNS | 85.9111 | 87.8445 | 89.7491 | 1.0300 |
SNS | 87.3385 | 89.0330 | 90.1690 | 0.6735 |
MPA * [78] | 115.6104 | 117.2336 | 119.3328 | 1.0301 |
SMA * [78] | 116.6795 | 118.0399 | 118.8109 | 0.5734 |
Improved SMA * [78] | 114.7325 | 115.2126 | 115.6699 | 0.2520 |
OGSA * [80] | 126.9900 | - | - | - |
GB-WCA * [30] | 121.4700 | - | - | - |
WCA * [30] | 131.8300 | - | - | - |
PSO-ICA * [26] | 116.8550 | - | - | - |
Variable | SNS | ASNS | Variable | SNS | ASNS | Variable | SNS | ASNS |
---|---|---|---|---|---|---|---|---|
VG 1 | 0.9817 | 0.9813 | VG 62 | 0.9580 | 0.9542 | VG 113 | 0.9970 | 0.9575 |
VG 4 | 0.9978 | 1.0008 | VG 65 | 0.9912 | 0.9660 | VG 116 | 0.9558 | 0.9770 |
VG 6 | 0.9958 | 0.9998 | VG 66 | 0.9925 | 0.9766 | Ta 8 | 0.9180 | 0.9664 |
VG 8 | 0.9911 | 0.9999 | VG 69 | 0.9995 | 1.0002 | Ta 32 | 0.9899 | 1.0290 |
VG 10 | 0.9984 | 0.9997 | VG 70 | 0.9786 | 0.9878 | Ta 36 | 1.0241 | 0.9283 |
VG 12 | 0.9973 | 1.0000 | VG 72 | 1.0026 | 1.0017 | Ta 51 | 1.0331 | 1.0032 |
VG 15 | 0.9541 | 0.9568 | VG 73 | 1.0024 | 1.0001 | Ta 93 | 1.0512 | 0.9707 |
VG 18 | 0.9463 | 0.9508 | VG 74 | 0.9551 | 0.9606 | Ta 95 | 1.0378 | 0.9477 |
VG 19 | 0.9443 | 0.9485 | VG 76 | 0.9405 | 0.9513 | Ta 102 | 0.9966 | 0.9811 |
VG 24 | 1.0074 | 1.0030 | VG 77 | 0.9833 | 0.9938 | Ta 107 | 0.9489 | 0.9339 |
VG 25 | 1.0008 | 1.0048 | VG 80 | 1.0096 | 1.0187 | Ta 127 | 1.0156 | 1.0137 |
VG 26 | 0.9876 | 0.9878 | VG 85 | 0.9644 | 0.9740 | Qr 34 | 2.3968 | 8.3187 |
VG 27 | 0.9833 | 1.0096 | VG 87 | 0.9998 | 1.0012 | Qr 44 | 27.2772 | 23.1574 |
VG 31 | 1.0044 | 1.0019 | VG 89 | 0.9609 | 0.9661 | Qr 45 | 28.9069 | 29.6803 |
VG 32 | 0.9862 | 0.9965 | VG 90 | 1.0034 | 1.0009 | Qr 46 | 4.6377 | 28.9136 |
VG 34 | 0.9545 | 0.9591 | VG 91 | 0.9544 | 0.9503 | Qr 48 | 5.1663 | 16.6178 |
VG 36 | 0.9483 | 0.9522 | VG 92 | 0.9504 | 0.9552 | Qr 74 | 12.7093 | 9.0686 |
VG 40 | 0.9890 | 0.9990 | VG 99 | 0.9905 | 1.0002 | Qr 79 | 20.9656 | 26.9882 |
VG 42 | 1.0040 | 0.9979 | VG 100 | 0.9597 | 0.9668 | Qr 82 | 24.6778 | 29.6204 |
VG 46 | 1.0002 | 1.0131 | VG 103 | 0.9552 | 0.9665 | Qr 83 | 27.8694 | 29.0008 |
VG 49 | 1.0072 | 0.9941 | VG 104 | 0.9483 | 0.9537 | Qr 105 | 9.6319 | 0.1302 |
VG 54 | 0.9524 | 0.9533 | VG 105 | 0.9534 | 0.9548 | Qr 107 | 7.2698 | 14.0471 |
VG 55 | 0.9464 | 0.9506 | VG 107 | 0.9983 | 1.0017 | Qr 110 | 14.8929 | 26.5572 |
VG 56 | 0.9493 | 0.9507 | VG 110 | 0.9483 | 0.9659 | TGLs | 100.0307 | 99.9273 |
VG 59 | 0.9604 | 0.9552 | VG 111 | 0.9490 | 0.9589 | TVD | 3.1799 | 2.9878 |
VG 61 | 0.9611 | 0.9596 | VG 112 | 0.9560 | 0.9794 |
Variable | SNS | ASNS | Variable | SNS | ASNS | Variable | SNS | ASNS |
---|---|---|---|---|---|---|---|---|
VG 1 | 0.9402 | 0.9402 | VG 62 | 0.9506 | 0.9408 | VG 113 | 0.9477 | 0.9658 |
VG 4 | 0.9652 | 0.9806 | VG 65 | 0.9521 | 0.9802 | VG 116 | 0.9405 | 0.9453 |
VG 6 | 0.9670 | 0.9593 | VG 66 | 0.9920 | 0.9648 | Ta 8 | 0.9208 | 0.9000 |
VG 8 | 0.9572 | 0.9400 | VG 69 | 1.0571 | 1.0544 | Ta 32 | 0.9891 | 1.0238 |
VG 10 | 1.0040 | 0.9866 | VG 70 | 0.9813 | 0.9749 | Ta 36 | 0.9116 | 0.9758 |
VG 12 | 0.9637 | 0.9553 | VG 72 | 0.9408 | 0.9474 | Ta 51 | 0.9338 | 0.9004 |
VG 15 | 0.9446 | 0.9463 | VG 73 | 0.9582 | 0.9427 | Ta 93 | 0.9425 | 0.9352 |
VG 18 | 0.9516 | 0.9429 | VG 74 | 0.9673 | 0.9569 | Ta 95 | 0.9648 | 0.9470 |
VG 19 | 0.9413 | 0.9428 | VG 76 | 0.9408 | 0.9400 | Ta 102 | 0.9721 | 1.1000 |
VG 24 | 0.9461 | 0.9778 | VG 77 | 0.9611 | 0.9628 | Ta 107 | 0.9031 | 0.9202 |
VG 25 | 0.9746 | 0.9471 | VG 80 | 0.9591 | 0.9627 | Ta 127 | 0.9231 | 0.9042 |
VG 26 | 0.9726 | 0.9542 | VG 85 | 0.9403 | 0.9404 | Qr 34 | 2.2060 | 25.8409 |
VG 27 | 0.9576 | 0.9731 | VG 87 | 0.9626 | 0.9533 | Qr 44 | 29.9001 | 29.9736 |
VG 31 | 0.9427 | 0.9457 | VG 89 | 0.9551 | 0.9564 | Qr 45 | 29.6673 | 29.9865 |
VG 32 | 0.9400 | 0.9565 | VG 90 | 0.9468 | 0.9410 | Qr 46 | 3.7885 | 3.6437 |
VG 34 | 0.9516 | 1.0280 | VG 91 | 0.9476 | 0.9561 | Qr 48 | 3.3209 | 28.1680 |
VG 36 | 0.9443 | 1.0238 | VG 92 | 0.9443 | 0.9433 | Qr 74 | 18.1443 | 14.3624 |
VG 40 | 0.9400 | 1.0403 | VG 99 | 0.9679 | 0.9400 | Qr 79 | 24.6361 | 29.8855 |
VG 42 | 1.0600 | 1.0484 | VG 100 | 0.9621 | 0.9513 | Qr 82 | 23.6569 | 27.7690 |
VG 46 | 1.0600 | 1.0591 | VG 103 | 0.9496 | 0.9560 | Qr 83 | 4.1180 | 0.3922 |
VG 49 | 1.0394 | 1.0311 | VG 104 | 0.9407 | 0.9400 | Qr 105 | 19.6368 | 3.2235 |
VG 54 | 0.9482 | 0.9423 | VG 105 | 0.9403 | 0.9451 | Qr 107 | 16.2616 | 22.6529 |
VG 55 | 0.9451 | 0.9400 | VG 107 | 0.9554 | 0.9774 | Qr 110 | 0.2012 | 5.5425 |
VG 56 | 0.9466 | 0.9419 | VG 110 | 0.9430 | 0.9474 | TGLs | 107.2403 | 106.9493 |
VG 59 | 0.9401 | 0.9414 | VG 111 | 0.9568 | 0.9403 | TVD | 5.8744 | 5.7535 |
VG 61 | 0.9545 | 0.9471 | VG 112 | 0.9401 | 0.9589 | VSI | 0.0645 | 0.0620 |
SNS | Proposed ASNS | |
---|---|---|
IEEE 30-bus systems | 0.7222 | 0.6690 |
IEEE 57-bus systems | 2.1332 | 2.1979 |
IEEE 118-bus systems | 4.031 | 4.1401 |
SNS | Proposed ASNS | % Improve | SNS | Proposed ASNS | % Improve | SNS | Proposed ASNS | % Improve | |
---|---|---|---|---|---|---|---|---|---|
Min. | 4.5208 | 4.5206 | 0.0036 | 0.084611 | 0.08435 | 0.3085 | 0.0652 | 0.0637 | 2.1955 |
Mean | 4.7870 | 4.6154 | 3.5852 | 0.092111 | 0.089639 | 2.6837 | 0.0665 | 0.0658 | 1.0783 |
Max. | 5.1931 | 4.8988 | 5.6675 | 0.102589 | 0.098258 | 4.2217 | 0.2714 | 0.2679 | 1.2360 |
Standard deviation | 0.1916 | 0.1254 | 34.5600 | 0.0050 | 0.0041 | 18.7139 | 0.0036 | 0.0029 | 17.3804 |
At 100% Convergence | At 90% Convergence | At 80% Convergence | At 70% Convergence | |||||
---|---|---|---|---|---|---|---|---|
SNS | ASNS | SNS | ASNS | SNS | ASNS | SNS | ASNS | |
|Best-worst| (MW) | 0.6723 | 0.3781 | 0.6991 | 0.4451 | 0.7427 | 0.5441 | 0.7828 | 0.6340 |
|Best-worst| (%) | 14.8700 | 8.3600 | 15.4600 | 10.0400 | 16.4300 | 12.0400 | 17.3100 | 14.0800 |
Items and Values | Number of Search Individuals | ||||
---|---|---|---|---|---|
15 | 25 | 40 | 50 | ||
Maximum number of iterations | 150 | 0.0000% | 10.0000% | 16.6667% | 20.0000% |
200 | 3.3334% | 16.6667% | 16.6667% | 33.3334% | |
250 | 3.3334% | 16.6667% | 20.0000% | 56.6667% | |
300 | 6.6667% | 16.6667% | 26.6667% | 76.6667% |
Fun. No. | Name | Ranges | Dim. | Mean | Standard Deviation | Best | |||
---|---|---|---|---|---|---|---|---|---|
ASNS | SNS | ASNS | SNS | ASNS | SNS | ||||
F1 | Beale | [−4.5, 4.5] | 2 | 0 | 0 | 0.0000 | 0.0000 | 0 | 0 |
F2 | Schaffer No. 4 | [−100, 100] | 2 | 0.292579 | 0.292579 | 6.9100 × 10−17 | 6.9100 × 10−17 | 0.292579 | 0.292579 |
F3 | Salomon | [−100, 100] | 30 | 0.099873 | 0.099873 | 7.7500 × 10−14 | 1.9300 × 10−9 | 0.099873 | 0.099873 |
F4 | Leon | [−1.2, 1.2] | 2 | 0 | 1.16 × 10−26 | 0.0000 | 5.4100 × 10−26 | 0 | 1.23 × 10−32 |
F5 | Zettl | [−5, 10] | 2 | −0.00172 | −0.00224 | 1.0670 × 10−3 | 1.0970 × 10−3 | −0.00351 | −0.00377 |
F6 | Sphere | [−100, 100] | 30 | 3.0079 × 10−160 | 1.1789 × 10−147 | 9.5051 × 10−160 | 5.7805 × 10−147 | 7.1727 × 10−167 | 2.9501 × 10−152 |
F7 | Schwefel’s 2.20 | [−100, 100] | 30 | 1.40367 × 10−81 | 2.58878 × 10−75 | 2.3913 × 10−81 | 6.4732 × 10−75 | 3.98714 × 10−83 | 2.44512 × 10−77 |
F8 | Brown | [−1, 4] | 30 | 2.6755 × 10−163 | 1.4484 × 10−151 | 0.0000 | 3.9041 × 10−151 | 1.3097 × 10−167 | 4.2958 × 10−156 |
F9 | Powell Singular | [−4, 5] | 30 | 1.69066 × 10−20 | 3.93264 × 10−10 | 8.7726 × 10−20 | 2.1540 × 10−9 | 4.43765 × 10−30 | 1.82433 × 10−38 |
F10 | Perm 0,D,Beta | [−5, 5] | 5 | 0.062787588 | 0.111982376 | 0.086737 | 0.16016 | 0.002908003 | 0.001297683 |
F11 | Sum Squares | [−10, 10] | 30 | 6.4142 × 10−161 | 1.1355 × 10−149 | 2.1289 × 10−160 | 2.5163 × 10−149 | 1.4778 × 10−165 | 2.6613 × 10−152 |
F12 | Adjiman | [−1, 2] | 2 | −1.81123 | −1.80019 | 0.18895 | 0.20109 | −2.02181 | −2.0201 |
F13 | Bird | [−2pi, 2pi] | 2 | −82.1769 | −75.2806 | 20.711 | 21.134 | −106.193 | −106.656 |
F14 | Hartman 3 | [0, 1] | 3 | −3.43303 | −3.41297 | 0.27033 | 0.33938 | −3.85014 | −3.84113 |
F15 | Cross-in-tray | [−10, 10] | 2 | −2.01815 | −2.01409 | 0.046780 | 0.052864 | −2.06206 | −2.06043 |
F16 | Cross leg table | [−10, 10] | 2 | −0.00011 | −0.00011 | 1.4600 × 10−5 | 1.4900 × 10−5 | −0.00014 | −0.00015 |
F17 | Crowned cross | [−10, 10] | 2 | 0.001192 | 0.001317 | 1.6300 × 10−5 | 7.0700 × 10−4 | 0.00118 | 0.001177 |
F18 | Helical Valley | [−10, 10] | 3 | 6.69 × 10−82 | 5.79 × 10−46 | 2.5500 × 10−81 | 3.1700 × 10−45 | 6.96 × 10−91 | 1.61 × 10−64 |
F19 | Shubert | [−10, 10] | 2 | −88.996 | −77.3831 | 41.2951 | 44.065 | −177.796 | −179.212 |
F20 | Periodic | [−10, 10] | 30 | 1.044367 | 1.43648 | 0.053020 | 0.081863 | 1.001063 | 1.266691 |
F21 | Qing | [−500, 500] | 30 | 1.177906 | 5.138242 | 1.4770 | 13.791 | 0.103473 | 0.066978 |
F22 | Alpine N. 1 | [−10, 10] | 30 | 1.83 × 10−83 | 2.46 × 10−77 | 2.5400 × 10−83 | 6.8600 × 10−77 | 1.26 × 10−85 | 4.67 × 10−79 |
F23 | Xin-She Yang | [−5, 5] | 30 | 1.79 × 10−75 | 2.44 × 10−54 | 9.6700 × 10−75 | 1.3400 × 10−53 | 8.23 × 10−94 | 6.89 × 10−72 |
F24 | Wayburn Seader 3 | [−500, 500] | 2 | 19.10588 | 19.10588 | 1.4800 × 10−14 | 1.7800 × 10−14 | 19.10588 | 19.10588 |
F25 | Dixon and Price | [−10, 10] | 30 | 0.666666677 | 0.666666692 | 2.0899 × 10−8 | 4.7866 × 10−8 | 0.666666667 | 0.666666667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarhan, S.; Shaheen, A.; El-Sehiemy, R.; Gafar, M. An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem. Mathematics 2023, 11, 1236. https://doi.org/10.3390/math11051236
Sarhan S, Shaheen A, El-Sehiemy R, Gafar M. An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem. Mathematics. 2023; 11(5):1236. https://doi.org/10.3390/math11051236
Chicago/Turabian StyleSarhan, Shahenda, Abdullah Shaheen, Ragab El-Sehiemy, and Mona Gafar. 2023. "An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem" Mathematics 11, no. 5: 1236. https://doi.org/10.3390/math11051236
APA StyleSarhan, S., Shaheen, A., El-Sehiemy, R., & Gafar, M. (2023). An Augmented Social Network Search Algorithm for Optimal Reactive Power Dispatch Problem. Mathematics, 11(5), 1236. https://doi.org/10.3390/math11051236