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Abstract

:

Optimal Reactive Power Dispatch (ORPD) is one of the main challenges in power system operations. ORPD is a non-linear optimization task that aims to reduce the active power losses in the transmission grid, minimize voltage variations, and improve the system voltage stability. This paper proposes an intelligent augmented social network search (ASNS) algorithm for meeting the previous aims compared with the social network search (SNS) algorithm. The social network users’ dialogue, imitation, creativity, and disputation moods drive the core of the SNS algorithm. The proposed ASNS enhances SNS performance by boosting the search capability surrounding the best possible solution, with the goal of improving its globally searched possibilities while attempting to avoid getting locked in a locally optimal one. The performance of ASNS is evaluated compared with SNS on three IEEE standard grids, IEEE 30-, 57-, and 118-bus test systems, for enhanced results. Diverse comparisons and statistical analyses are applied to validate the performance. Results indicated that ASNS supports the diversity of populations in addition to achieving superiority in reducing power losses up to 22% and improving voltage profiles up to 90.3% for the tested power grids.
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1. Introduction


1.1. Motivation


With the recent massive increase in the cost of petroleum fuel and its direct and indirect impact on people’s daily lives, focus has shifted to optimizing active and reactive power flow in order to improve the economics and security of power system operations. Furthermore, increasing power consumption is critical for assisting the electrical power industry in planning and ensuring the appropriate operation of electrical power infrastructure [1,2]. Optimal Power Flow (OPF) is a non-convex, non-continuous, non-linear, large-scale, and constrained optimization problem through which control variables are optimized while satisfying both equality and inequality constraints.



The process of reaching parameter values that minimize the overall function is called optimization. Most search algorithms suffer from local minimum where the algorithm manages to find the minimal value within the nearby points but perhaps fails to reach the minimal value in all other possible places in the problem state space. The key point is to find global optima. Global optimization is a major issue that faces search algorithms. The key motivation of this research is to reach a global optima in the ORPD problem work space [3].



ORPD is one of the challenges of OPF and one of the most important responsibilities in the power system network operation [3,4]. The primary goal of the ORPD is to reduce real power losses and voltage variations while improving system voltage stability, considering several equality and inequality constraints, including voltages of generators, power flows through the lines, voltages of load buses, reactive power production, and transformer taps. Furthermore, ORPD aims to determine the best-operating settings of the control variables, such as transformer tap, generator voltage, and the number of compensation devices to be switched [5].




1.2. Literature Review


In recent years, a range of novel and meta-heuristic optimization techniques have been effectively presented for solving engineering problems. They are becoming increasingly prominent in several academic fields for tackling difficult optimization problems. These stochastic techniques are applied in several aspects of power system optimization. An improved chaotic harmony search optimizer has been introduced, integrating the chaotic patterns for generating random numbers with uniform distribution to solve the dispatch problem while combining environmental and economic objectives [6]. In [7], a biogeography-based optimizer (BBO) has been used for OPF issues with valve point non-linearities, but it has only been evaluated for small IEEE 9-bus and 30-bus systems. In [8], a modified version of the Slime-Mould algorithm (SMA) has been applied to solve the economic-emission dispatch problem, with updated equations from the sine–cosine technique included to increase the SMA’s performance. In addition, a moth flame algorithm has been utilized for the unit commitment problem in order to find the optimal scheduling of the generation units [9]. Furthermore, an artificial gorilla algorithm has been developed for solving the multi-dimensional optimal power flow problem [10], while a genetic algorithm combining a time series has been presented to search for the optimal allocation of reactive power compensation devices considering the impacts of distributed generators [11].



Over the past few years, many optimizers have been introduced to tackle the ORPD issues. Conventional optimization approaches such as linear programming [12], the Newton method [13], quadratic programming [14], and the interior-point method [15] were the most widely employed optimizers in the early years. In [16], a fuzzy-based procedure (FLP) approach was used to maximize the impact of preventive control activities related to reactive power to overcome any emergency circumstance that arose. FLP was used in this work to reduce violation limitations and provide an appropriate reactive power reserve for multi-operating scenarios. However, these approaches frequently have drawbacks, such as converging to the nearest optimum, incapability of dealing with non-linear and non-convex limitations, discontinuity forms of objective functions, and situations with many local minimum locations. As a result, new strategies for overcoming these limitations have to be developed.



Evolutionary computing optimizers have been used for solving the ORPD as QEA [17], PSO [18], hybrid PSO [19], BFA [20], adaptive real-coded GA [21], CLPSO [22], harmony search algorithm [23], GSA [24], DE algorithm [25], hybrid PSO and ICA [26], and exchange market algorithm [27].



Recently, a novel improved ALO algorithm [28,29], GB-WCA [30], multi-objective ALO algorithm [31], hybrid swarm intelligence [32], enhanced teaching learning-based optimization algorithm [33], ILAO [34], tunicate swarm algorithm [35], and AEO [36] have been employed to solve the OPRD with consideration of different constraints. In [37], an improved variant of the evaporation rate water cycle algorithm (ERWCA) has been presented to regulate the directional overcurrent relays in power systems. In this study, an oppositional learning strategy with Levy-flight was incorporated into ERWCA to prevent landing on the local optimum and increase the convergence rate, and it was validated on the CEC’2017 test suite and compared to other algorithms. In [38], a beetle antenna search algorithm was implemented to address the optimal active power dispatch in addition to enhancing the electrical performance of power networks by reducing fuel expenditure, air pollution, and power losses.



In The hybrid multi-swarm PSO algorithm was demonstrated in [25] to overcome the problem of OPRD while increasing the voltage profile and reducing real power loss. In [39], the EFA has been utilized to solve the ORPD and optimally active problems. In [40], the MODE has been characterized as solving the OPRD by reducing the power loss, the voltage deviation, and increasing the voltage stability. In [41], the convex quadratic optimization program has been elaborated to sustain the voltage bus even in the unbalanced distribution system. In [42], QODE has been successfully applied to solve the ORPD problem by reducing the power loss, improving the voltage profile, and increasing the voltage stability.



While in [43], FA has been combined with the APT-FPSO and applied to the ORPD problem with IEEE 30-bus, IEEE 57-bus, and IEEE 118-bus, considering the voltage stability index and voltage magnitude deviations. In [44], the ABC algorithm has been applied on ORPD IEEE 30- and 57-bus grids with consideration of voltage stability enhancement, real power loss minimization, and voltage deviation minimization. In [45], SHADE has been applied to ORPD IEEE 30-bus and 57-bus with steady-state voltage deviation and real power loss. To address the reactive power flow issue in power systems, accelerated bio-inspired optimization (ABO) was used [46]. Despite the fact that the results were significant, the obtained operating points in this study required feasibility validations.



In [47], a SCA was being used to handle the ORPD issue more efficiently than other meta-heuristic techniques. However, because this was a single objective minimization work, only power losses were considered. In [48], a WOA has been utilized to solve the ORPD task with applications on the IEEE 14-bus, IEEE 30-bus, and practical Algerian electrical network. In this study, the performance of WOA showed efficient performance compared to PSO and PSO-TVAC. However, the reported comparisons were only performed as a single objective optimization for network losses. In [49], a SBDE algorithm has been presented to handle the ORPD issue and achieve the maximum reduction of grid losses. However, the performance assessment of the presented SBDE algorithm compared with the GA was only applied to small grids of IEEE 14- and IEEE 30-bus grids.



In 2022, different studies have been proposed to solve ORPD issues, as in [50], an IMPA is introduced. IMPA improved the marine predator algorithm exploration and exploitation techniques by updating the predator position to be near the best predator using spiral movement. The IMPA was only tested using the IEEE 30-bus system and showed superiority over the original MPA. In [51], the CTFWO algorithm was introduced. The CTFWO algorithm enhances the exploration rate of the conventional TFWO using chaotic maps. The CTFWO was tested on two bus systems, the IEEE 30-bus and IEEE 57-bus. In [52], the authors introduced the CAC-DE hybrid approach, through which the best compromise solution is found using Fuzzy Logic. CAC-DE has effectively reduced the power loss, but it has not performed the same for the Voltage Stability Index. Furthermore, the authors proposed new algorithms in radial distribution networks for reducing energy loss and capacitor investment in order to reduce costs [53]. They proposed a hybridization of evolutionary algorithms with a sensitivity-based decision-making technique for the optimal planning of shunt capacitors [54] and a novel combined evolutionary algorithm for the optimal planning of distributed generators [55]. Finally, ref. [56] finds optimal solutions for the placement of reactive and active power generation components in distribution networks using a high-performance meta-heuristic algorithm.




1.3. Research Gap


The SNS algorithm was driven by social networking participants in various moods such as imitation, discussion, disputation, and creativity in attitudes used to express people’s new ideas on current events [57]. To begin, an imitation mood is created in which people must evaluate the viewpoints of other individuals in order to copy other users in expressing their particular opinions. Secondly, the dialogue mood is simulated, in which people may link and share the perspectives of others. Thirdly, the disputation mood is simulated, in which people can debate their opinions with a group of other users. Fourthly, the creativity mood is simulated, in which people analyze a topic that is generally related to their fresh convictions. According to [58], the SNS algorithm was used for OPF in its traditional configuration, but its related reliability required additional supports and adaptations in the fields of power simulations and optimizations, mathematical benchmarking frameworks, and complex engineering challenges. As a result, in this article, an ASNS algorithm for multi-dimensional ORPD in power grids is presented. Two enhancements are incorporated to improve the performance of the SNS algorithm. In the beginning, an effective exploitation strategy is intended to increase the seeking of the best view by all users. Second, because exploiting support is necessary towards the end of iterations, an adjustable variable is provided for this procedure. As this value grows, so does the level of support for the exploiting feature provided by the offered effective strategy [59].




1.4. Problem Statement


ORPD is one of the most important responsibilities in power system network operations. It targets determining the best-operating settings of the control variables, such as transformer tap, generator voltage, and the number of compensation devices to be switched. The primary goal of the ORPD is to reduce real power losses and voltage variations while improving system voltage stability. Several equality and inequality constraints must be handled, including voltages of generators, power flows through the lines, voltages of load buses, reactive power production, and transformer taps.




1.5. Major Contributions of this Study and Paper Organization


The following are the major contributions described in this work:




	
A novel ASNS algorithm with an effective exploitation strategy is introduced.



	
A novel ASNS algorithm-inspired scheme for handling the ORPD problem is offered and scrutinized on three typical IEEE test grids of different sizes.



	
A test is executed to authenticate the statistical efficacy of the suggested ASNS-inspired scheme.



	
The suggested ASNS algorithm presents a robust and straightforward solution for the ORPD problem under two-goal functions of minimizing grid losses and voltage deviations.



	
The simulation results disclose the dominance of the suggested ASNS algorithm over many solvers that were recently reported in the literature.








The following portions of this work are organized as follows: Section 2 presents the design framework for the ORPD optimization problem. Section 3 also establishes the basic SNS and the suggested ASNS, whereas Section 4 defines the discussions and simulation findings. Finally, Section 5 concludes this paper.





2. ORPD Formulation


In the ORPD issue, the decision variables are the generator voltages that are denoted by (VG1, VG2, …, VGNG), the transformer tap settings that are denoted by (Ta1, Ta2, …, TaNT), and the reactive power (VAr) supplied by switched capacitors and reactors, which are denoted by (Qr1, Qr2, …, QrNr), respectively. The values NG, Nr, and NT indicate the number of generators, the number of VAr sources, and the number of on-load tap transformers. The dependent variables include load bus voltage magnitudes, VAr outputs of the generators, and transmission line loadings, which are demonstrated by (VL1, …, VLNPQ), (QG1, QG2, …, QGNG), and (SF1, …, SFNL), respectively. The values NPQ and NL indicate the number of load buses and the number of transmission lines. As a result, the ORPD problem may be mathematically stated as shown in the following equation:


      Min   F   n  =    { f   1     ( X   u     , X   v     ) , f   2     ( X   u     , X   v   ) }     Subjected   to :      M ( X   u     , X   v  ) = 0     and      N ( X   u     , X   v  ) ≤ 0   



(1)







2.1. Problem Objectives


The primary goal of the ORPD issue is to reduce two technical objectives: real power losses in the transmission grid and voltage variations across the buses. Therefore, both technical objectives are investigated as follows:



2.1.1. Total Grid Losses


The minimization of TGLs in MW can be computed as [60]:


  T G L s =   ∑   i = 1    N b      ∑  j = 1   N b     G  i j      ( V   i    2     + V   j    2    −    2 ( V   i   V j     c o s   θ    i j   )    



(2)








2.1.2. Voltage Profile Improvement


The voltage profile gets improved by reducing the total voltage deviation (TVD) for the buses by 1 p.u. as follows:


  V D =   ∑  i = 1    N b      |   V i  −  V  r e f    |     



(3)








2.1.3. Voltage Stability Improvement


This objective function is introduced in order to improve voltage stability by decreasing the maximum voltage stability index (L-index), which is used in [61]. The L-index for each bus j (Lj) is established as follows:


   L j  =  |  1 −   ∑  i = 1    N g      F  j i      V i     V j    ∠ (  θ  i j   +  δ i  −  δ j  )    |   



(4)






   F  j i   =    [   Y  L L    ]    - 1    [   Y  L G    ]   



(5)







To increase the system’s VSI, the maximum L-index should be reduced as follows:


  V S I = M a x   (  L j  ) j = 1 , 2 , ........  N b   



(6)









2.2. Problem Constraints


2.2.1. The Inequality Constraints


The power system has to satisfy different inequality constraints corresponding to the operational variables. For the decision variables, Equations (7)–(9) describe the inequality constraints of the generator voltages, the transformer tap settings, and the reactive power injected into switched capacitors and reactors, respectively [62].


    V G     k    m i n   ≤   V G     k    ≤   V G     k    m a x    ,   k  =  1 : N G   



(7)






    T a  l  m i n   ≤   T a  l  ≤   T a  l  m a x    ,   l  =  1 : N T   



(8)






    Q r  s  m a x   ≤   Q r  s  ≤   Q r  s  m a x    ,   s  =  1 : N r   



(9)







For the dependent variables, Equations (10)–(12) describe the inequality constraints of the load bus voltage magnitudes, the reactive power outputs of the generators, and transmission line loadings, respectively:


    V L  m  m i n   ≤   V L  m  ≤   V L  m  m a x    ,   m  =  1 : N P Q   



(10)






   |    S F  L   |  ≤   S F  L  m a x    ,   L  =  1 : N L   



(11)






    Q G     k    m i n   ≤   Q G     k    ≤   Q G     k    m a x    ,   k  =  1 : N G   



(12)








2.2.2. The Equality Constraints


These constraints are represented by the load flow balance equations, as denoted in Equations (13) and (14):


    P g  i  −   P L  i  −  V i    ∑  j = 1   N b     V j       ( G    i j      c o s   θ    i j   +  B  i j      s i n   θ    i j   ) =  0 ,     i  =  1 ,    …  ,   Nb   



(13)






    Qg  i  −   QL  i  +   Qr  i  −  V i    ∑  j = 1   Nb     V j       ( G    ij      sin θ    ij   −  B  ij      cos θ    ij   ) =  0 ,     i  =  1 , 2 ,    …  ,   Nb   



(14)




where Pgi is the output power of each generator (i); PLi and QLi are the active and reactive power demands of each load (i); Bij is the mutual susceptance between bus i and j, respectively; Gij is the conductance of every line connecting buses i and j; θ, V, and Nb are the phase angle, voltage, and number of buses, respectively; and Qgi is the VAr output of each generator (i).






3. Proposed ASNS for Solving the ORPD Problem


3.1. Basic SNS Algorithm


The SNS framework is derived from participants on social networking sites, where people try to be attractive and express a variety of moods [57]. Such attitudes are techniques for sharing people’s fresh perspectives on a new occurrence. Firstly, the imitation mood is simulated, in which people must consider the perspectives of various individuals to emulate other users in expressing their personal thoughts. Secondly, the dialogue mood is simulated, in which people may link and share the perspectives of others. Thirdly, the disputation mood is simulated, in which people can debate their opinions with a group of other users. Fourthly, the creativity mood is simulated, in which people analyze a topic that is generally related to their fresh convictions. The four inspired moods of the SNS are mathematically described as:



3.1.1. Imitation


If there is a new event with an interesting notion, members can imitate renowned people by attempting to publish a thread that discusses this topic. This state of mind could be expressed as follows:


   U  i , n e w   =  U j  +  r 1  ×  r 2  × (  U i  −  U j  )  



(15)








3.1.2. Dialogue


People may learn more about an event by exchanging thoughts with one another from various points of view and then generating a fresh perspective on the event. This state of mind can be expressed numerically as:


   U  i , n e w   =  U k  +  r 1  × [ s i g n (  f i  −  f j  ) (  U i  −  U j  ) ]  



(16)







The term [sign(fi − fj)(Ui − Uj)] illustrates the diversity in the viewpoints of the users.




3.1.3. Disputation


People in this mood can communicate and advocate their viewpoints with remarks or discussions; however, they could be persuaded by other established commentators to exchange ideas about a specific issue. This state of mind can be expressed as:


   U  i , n e w   =  U i  +  r 1  ×  [   U  m e a n   −  (  ( 1 + r o u n d (  r 1  ) ) ×  U i   )   ]   



(17)




where the mean vector within a group or commenters’ views of friends is defined in Equation (18):


   U  m e a n   =  1   N  g r o u p       ∑  u = 1    N  g r o u p       U u     



(18)








3.1.4. Creativity


Users can express themselves creatively and innovatively regarding a given topic. As a result, a fresh concept will be generated, and this mood can be expressed as:


   U  i , n e w  d  =  t 2   U j d  + ( 1 −  r 2  ) (  r 1  × ( U  B d  − L  B d  ) + L  B d  )  



(19)








3.1.5. Rules Related to the Network


Each social network defines a set of roles for its users, and these roles are regarded by all users from shared perspectives. The following factors are used to limit the users’ perspectives:


   U  k , n e w   = min (  U  k , n e w   , U  B k  ) &  U  k , n e w   = max (  U  k , n e w   , L  B k  ) , k = 1 : D  



(20)








3.1.6. Rules for Publishing


The SNS method is produced by various moods, in which every user’s viewpoint is modified and fresh views are adopted based on their merit. To demonstrate, if the new idea is superior to the existing one, it will be approved. As a result, the value of a new idea can be quantitively estimated by its fitness function as follows:


   U i  =  {      U i    f (  U  i , n e w   ) > f (  U i  )      U  i , n e w     f (  U  i , n e w   ) < f (  U i  )       



(21)







To design SNS, the starting viewpoint for every user may be created as:


   U 0  =  (  r a n d ( 0 , 1 ) × ( U B − L B )  )  + L B  



(22)









3.2. ASNS with an Effective Exploitation Strategy


To increase the performance of the algorithm, an ASNS algorithm with EES is used. The performance of the SNS algorithm is improved with two adjustments. In the beginning, an EES is intended to improve the search capability for of all users. As a result, the basic SNS’s upgrading process has been adjusted, and the viewpoints of many users have been altered as follows:


   U  i , n e w  d  =  U  b e s t  d  + t × r  



(23)






  r =  U i  −  U j   



(24)






  t = r a n d ( 0 , 1 )  



(25)







Second, because exploitation support is required at the end of iterations, an adjustable parameter (α) is created using Equation (26) [63,64]:


  α =  t  2 ∗  T  max      



(26)







Using this formula, this parameter is grown directly proportional to the number of iterations until it reaches 0.5 of its upper level. The offered EES gives more support for the exploitative feature as this value increases. The suggested EES in Equation (26) is not engaged until more than half of the iterations have been completed, as indicated in [64]. As a consequence of this stance, the ASNS’s superior diversifying skills in uncovering newer prospective sectors are retained. Moreover, since the variable (α) grows directly proportional to the number of repetitions, the proposed EES is integrated with increasing likelihood. Consequently, the greater the number of repetitions, the further the search is reduced to the region encircling the user’s greatest viewpoint. This phase fosters exploitation while simultaneously enabling the discovery of a diverse variety of new viable locations.



According to this method, considerable assistance aims at boosting the search capability of the basic SNS algorithm to surround the best perspective solution, to improve its globally searching possibilities, and to avoid getting locked in a locally optimal solution.




3.3. Proposed ASNS with EES for Solving the ORPD Problem


When dealing with the mentioned ORPD problems, the equality and inequality restrictions are considered. The NRA is used to meet the equality criteria that defines power flow balancing equations. It represents the steady-state operation of electricity networks and satisfies the balancing restrictions.



As a result, the NRA, which is employed by MATPOWER, constitutes a critical foundation for showing three-phase power grids [65]. Furthermore, the decision/dependent variable constraints must be preserved. The operational limitations of independent variables in Equations (7)–(9) can be rewritten as follows:


  V  G    i    =  {      V  G i  min       i f   V  G    i    ≤ V  G    i    min         V  G    i    max       i f   V  G    i    ≥ V  G i  max         ,         i = 1 : N G  



(27)






  T  a l  =  {      T  a l  min       i f   T  a l  ≤ T  a l  min         T  a l  max       i f   T  a l  ≥ T  a l  max         ,         l = 1 : N T    



(28)






  Q  r s  =  {      Q  r s  min       i f   Q  r s  ≤ Q  r s  min         Q  r s  max       i f   Q  r s  ≥ Q  r s  max         ,         s = 1 : N r  



(29)







As demonstrated, the variables keep reaching their limits; however, if one of them exceeds the limit, it is reproduced at random within the necessary bounds. Furthermore, the fitness function broadens and penalizes the restrictions of the second classification. As a result, if the user vectors surpass any of the relevant limitations, they will be eliminated in the following round. As stated in Equation (30), those notions can be utilized to create the considered fitness.


  F =  f j  + P e  n 1    ∑  m = 1   N P Q    Δ V  L m 2    + P e  n 2    ∑  L = 1   N P Q    Δ S  F L 2    + P e  n 3    ∑  k = 1   N P Q    Δ Q  G k 2     



(30)




where fj indicates each fitness function; Pen1 is the penalty coefficient for any violation in load voltage; Pen2 is the penalty coefficient for any violation in reactive power output from generators; and Pen3 is the penalty coefficient for any violation in line power flow. Where ΔVLm, ΔSFL, and ΔQGk are presented as:


  Δ V  L m  =  {      V  L m  min   − V  L m     i f   V  L m  < V  L m  min        V  L m  max   − V  L m     i f   V  L m  > V  L m  max         



(31)






  Δ S  F L  = S  F L  max   − S  F L    i f   S  F L  > S  F L  max    



(32)






  Δ Q  G k  =  {      Q  G k  min   − Q  G k     i f   Q  G k  < Q  G k  min        Q  G k  max   − Q  G k     i f   Q  G k  > Q  G k  max         



(33)







Figure 1 displays the stages of the designed ASNS for ORPD.





4. Simulation Results


Three distinct standard IEEE grids were utilized as case studies for comparative purposes to investigate the capacity to handle the ORPD challenge as well as the resilience of the suggested ASNS in finding high-quality solutions. The SNS and ASNS algorithms were implemented in the MATLAB software language. The data for three power grids are provided in Table 1, and the entire dataset is derived from [29], while all the limits on control variables used here for all test systems are summarized in Appendix A. The three power grids represent real case studies, where the IEEE 30-bus grid test case represents a simple approximation of the American Electric Power system, while the IEEE 57-bus and IEEE 118-bus grids represent simple approximations of the American Electric Power system in the U.S. Midwest [66].



The SNS and the suggested ASNS algorithms were implemented by adjusting the size of the population and the maximum number of iterations to 50 and 300 for the first grid, 100 and 300 for the second grid, and 100 and 600 for the third grid.



The relation of proposed method parameters to system parameters can be clearly described with Equation (34):


  P o p u l a t i o n =  [     V  G  1 , i   ( i = 1 : N G )     T  a  1 , l   ( l = 1 : N T )     Q  r  1 , s   ( s = 1 : N r )       V  G  2 , i   ( i = 1 : N G )     T  a  2 , l   ( l = 1 : N T )     Q  r  2 , s   ( s = 1 : N r )      .       .        V  G  N , i   ( i = 1 : N G )     T  a  N , l   ( l = 1 : N T )     Q  r  N , s   ( s = 1 : N r )     ]   



(34)







The findings of each approach were acquired for each study case by executing 30 tests. The following two cases are being investigated:




	
Case 1: Minimization of the TGLs described in Equation (2).



	
Case 2: Minimization of the TVD described in Equation (3).



	
Case 3: Minimization of the VSI described in Equation (6).








4.1. Results of the First Grid


As illustrated in Figure 2, this grid comprises of 30-bus and 41-branch generators, 4 on-load tap changing transformers, and 9 shunted compensators. The entire dataset for lines, buses, and the limits of reactive power generation is utilized [67,68]. The limits for the generator voltage and tap settings are 1.1000 and 0.9000 p.u., respectively. The limits of voltage for the load buses are considered to be 1.0500 and 0.9500 p.u., respectively. The SNS and proposed ASNS algorithms are implemented in the first case, and the best control settings are presented in Table 2. The basic SNS algorithm reduces TGLs from 5.7960 MW to 4.5208 MW when compared to the initial case; however, the proposed ASNS algorithm achieves the lowest power losses of 4.5206 MW when compared to 5.7960 MW in the initial instance. This is a 22% reduction. The resulting solutions are contrasted with previously reported findings for minimizing the losses and utilizing the same circumstances, as summarized in Table 2, which shows that the proposed ASNS algorithm outperforms numerous strategies in minimizing the TGLs. ILAO [34], SCA [47], WOA [48], HFA [69], QOTLBO [70], CLPSO [22], ABC [28], ALO [28], MPA [50], MFA [71], and AEO [36] achieve TGLs of 4.5217, 4.7086, 4.5943, 4.529, 4.5594, 4.5615, 4.6110, 4.5900, 4.5335, 4.5340, and 4.5262, respectively.



Furthermore, the convergent properties of the proposed ASNS and SNS for Case 1 of the IEEE 30-bus grid are depicted in Figure 3. As shown, the curve describes the minimization of the total power losses throughout the iterations, while the small shape provides a zoning on the range [4.5–4.85] MW. The variation of the losses starts at a high value of 6.4500 MW at the fifth iteration and continues decreasing, reaching 4.5892, 4.5313, and 4.5206 MW at iterations 100, 200, and 300, respectively.



Figure 4 depicts the voltage levels acquired employing the SNS and ASNS algorithms. It is confirmed that the voltages on all system buses maintain within the acceptable voltage limitations. In addition, the voltages employed by the suggested SNS and ASNS are significantly higher than in the initial case.



In the second case, the minimization of TVD is considered where the SNS and proposed ASNS algorithms are executed, and the optimal control variables are shown in Table 3. The basic SNS algorithm reduces TVD from 0.8691 p.u. to 0.0846 p.u. when compared to the initial case; however, the proposed ASNS algorithm achieves the lowest TVD value of 0.08435 p.u. when compared to 0.8691 p.u. in the initial instance. This is a 90.3 percent reduction. The resulting solutions are contrasted with previously reported findings for minimizing the losses and utilizing the same circumstances, as summarized in Table 3, which shows that the proposed ASNS algorithm outperforms numerous strategies in minimizing the TGLs. LAO, ILAO [34], IPG-PSO [73], improved GSA [74], HFA [69], and QOTLBO achieved TVDs of 0.0945, 0.0876, 0.0892, 0.08968, 0.0980, and 0.0856, respectively.



Furthermore, the convergent properties of the proposed ASNS and SNS for Case 2 of the IEEE 30-bus grid are depicted in Figure 5. As shown, the curve describes the minimization of the throughput of the iterations, while the small shape provides the range [0.08–0.2] p.u. The TVD starts at a high value of 1.4052 p.u. at the fifth iteration and continues decreasing, reaching 658, 0.1076, 0.09821, and 0.0856 p.u. at iterations 50, 100, 200, and 300, respectively.



Figure 6 depicts the voltage values acquired employing the proposed SNS and ASNS algorithms. As shown, the voltages employing the suggested SNS and ASNS are significantly better than in the initial case. Based on the suggested SNS and ASNS, the voltages at all buses are very close to the preferred flat voltage of 1 p.u.



In the third case, the minimization of VSI is considered where the SNS and ASNS algorithms are executed, and the optimal control variables are shown in Table 4. The basic SNS algorithm reduces VSI from 0.1720 p.u. to 0.1248 p.u. when compared to the initial case; however, the proposed ASNS algorithm achieves the lowest VSI index of 0.1243 p.u. when compared to 0.1720 p.u. in the initial instance. This is a 27.7 percent reduction.



Table 5 compares the resulting solutions to previously reported findings in order to minimize the VSI objective. Furthermore, the convergent properties of the proposed ASNS and SNS for Case 3 of the IEEE 30-bus grid are depicted in Figure 7. As shown, the curve describes the minimization of the throughput of the iterations, while the small shape is provided on the range [0.1230–0.1480] p.u. The VSI starts at a high value of 0.1511 p.u. at the fifth iteration and continues decreasing, reaching 0.1259, 0.1249, and 0.1243 p.u. at iterations 100, 200, and 300, respectively.



As shown, the proposed ASNS algorithm outperforms numerous strategies in minimizing the VSI. ABC [44], GA [75], SQP, RGA, and CMAES [76] achieve VSIs of 0.1280, 0.1807, 0.1570, 0.1386, and 0.1382, respectively.



On the other side, taking into consideration the tap-changing transformers and shunt capacitors as discrete variables, Table 6 shows the corresponding results of the proposed ASNS algorithm for the three cases studied above. As shown, the outcomes are very similar. For the first case, the TGLs are minimized from 5.7960 to 4.5206 and 4.5222 MW, considering the continuous and discrete nature of tap-changing transformers and shunt capacitors. Furthermore, the TVD is minimized from 0.8691 to 0.08435 and 0.1037 p.u., while the VSI is minimized from 0.1720 to 0.1243 and 0.1241 p.u., respectively, considering the continuous and discrete nature of tap-changing transformers and shunt capacitors.




4.2. Results of the Second Grid


The second grid comprises of 57-bus, 80-line, 7-generator and 15 on-load tap changing transformers, and 3 shunted compensators. The limits for the generator voltage and tap settings are 1.1000 and 0.9000 p.u., respectively. The minimum and maximum values for the shunt reactive power injections at buses 18, 25, and 53 are 10.0000, 5.9000, and 6.3000 MVAr, respectively.



In the first case, the SNS and proposed ASNS algorithms are implemented, and the best control settings are presented in Table 7. Furthermore, their convergent properties are depicted in Figure 8. The basic SNS algorithm reduces TGLs from 27.8640 MW to 23.9700 MW when compared to the initial case; however, the proposed ASNS algorithm achieves the lowest power losses of 23.8440 MW when compared to 27.8640 MW in the initial instance. This is a 14.42 % reduction.



The minimization of TVD is considered in the second case. Furthermore, the optimal control variables are shown in Table 7, while the convergent properties of the SNS and proposed ASNS algorithms are depicted in Figure 9. The basic SNS algorithm reduces TVD from 1.3586 p.u. to 0.6520 p.u. when compared to the initial case; however, the proposed ASNS algorithm achieves the lowest TVD of 0.6400 p.u. when compared to 1.3586 p.u. in the initial instance. This is a 52.85 percent reduction. For this case, Figure 10 depicts the voltage values acquired employing the proposed SNS and ASNS algorithms. As shown, there have been great improvements in the voltages based on the SNS and ASNS, where the voltages at all buses are very close to the preferred flat voltage of 1.0000 p.u. In addition, the minimum voltage of 0.9359 p.u. at bus 31 is greatly enhanced to be 1.0000 and 0.9800 p.u. based on the SNS and ASNS algorithms, respectively.



The minimization of VSI is considered in the third case. Furthermore, the optimal control variables are shown in Table 7, while the convergent properties of the SNS and proposed ASNS algorithms are depicted in Figure 11. The basic SNS algorithm reduces VSI from 0.3000 p.u. to 0.2591 p.u. when compared to the initial case; however, the proposed ASNS algorithm achieves the lowest VSI of 0.2542 p.u. when compared to 0.3000 p.u. in the initial instance, with a reduction of 15.33%.



Table 8 illustrates a comparative result of the obtained objectives based on the SNS and ASNS algorithms and other reported findings of several recent algorithms. For the first case, the proposed ASNS obtains the lowest minimum, mean, and maximum TGLs of 23.8441, 23.9695, and 24.4367, respectively. This comparison derives the superior performance of the proposed ASNS against BSA [77], SCA [47], SMA [78], improved SMA [78], SOA [79], ABC [44], and PSO-ICA [26]. Despite the improved SMA [78], which provides the lowest standard deviation of 0.0617 , the maximum TGLs recorded by the proposed ASNS of 24.4367 MW are better than the best TGLs obtained by it with 24.5856 MW.



For the second case, the proposed ASNS obtains the lowest minimum, mean, and maximum TVD of 0.6405, 0.6653, and 0.7230, while the basic SNS achieves counterparts of 0.6520, 0.7018, and 0.8237, respectively. This comparison derives the superior performance of the proposed ASNS against the oppositional GSA (OGSA) [80], GB-WCA [30], and WCA [30], which acquire TVDs of 0.6982, 0.6501, and 0.6631, respectively. For the third case, the proposed ASNS obtains the lowest minimum, mean, and maximum VSIs of 0.2542, 0.2586, 0.2,680, and 0.0029, while the basic SNS achieves counterparts of 0.2591, 0.2650, 0.2714, and 0.0036, respectively. This comparison derives the superior performance of the proposed ASNS against HBO [81], and improved HBO [81] which acquire TVDs of 0.6291 and 0.5085, respectively.




4.3. Results of the Third Grid (Large-Scale Case Study)


The proposed SNS and ASNS optimizers are implemented to solve the ORPD problem for the large-scale IEEE 118-bus power grid, and to illustrate and appraise their competency in solving larger-scale ORPD challenges. The grid’s complete data can be obtained in [65]. In the first case, the SNS and proposed ASNS algorithms are implemented, and the best control settings are presented in Table 9. Furthermore, their convergent properties are depicted in Figure 12. The proposed ASNS algorithm successfully achieves the minimum TGL of 85.9111 MW, whereas the basic SNS algorithm reduces it to 87.3385 MW.



For the second case, Table 10 illustrates a comparative result for the obtained objectives based on the SNS and ASNS algorithms and other reported findings of several recent algorithms. As shown, the proposed ASNS obtains the lowest minimum, mean, and maximum TGLs of 85.9111, 87.8445, and 89.7491 MW, respectively. This comparison derives the superior performance of the proposed ASNS against MPA [78], SMA [78], improved SMA [78], OGSA [80], GB-WCA [30], WCA [30], and PSO-ICA [26]. In the second case, the minimization of TVD is considered, and the optimal control variables are shown in Table 11, where the convergent properties of the SNS and proposed ASNS algorithms are depicted in Figure 13. The proposed ASNS algorithm successfully achieves the minimum TVD of 2.9878 p.u., whereas the basic SNS algorithm reduces it to 3.1799 p.u.



The minimization of VSI is considered in the second case. Furthermore, the optimal control variables are shown in Table 12, while the convergent properties of the SNS and proposed ASNS algorithms are depicted in Figure 14. The proposed ASNS algorithm successfully achieves the minimum VSI of 0.0620 p.u., where the basic SNS algorithm reduces it to 0.0645 p.u.




4.4. SNS versus Proposed ASNS: Statistical Comparisons


To justify the rate of convergence of the proposed ASNS, the computational times (CPU times) of the SNS and ASNS are tabulated for the IEEE 30-, 57-, and 118-bus systems in Table 13. As shown, there is no significant difference between the SNS and ASNS in the computation time when solving the ORPD problem. In addition, the validation of the generators’ reactive power is demonstrated for IEEE 30-, 57-, and 118-bus systems, as stated in Appendix A.



For the sake of assessing the robustness study, the acquired minimum values of the TGLs and TVDs of the 30-runs are analyzed using the SNS and the proposed ASNS algorithms. Their spread and centers for both cases studied of the IEEE 30-, IEEE 57-, and IEEE 118-bus grids are described in Figure 15 via a Box and Whiskers plot. Furthermore, Table 14 displays the detailed robustness indices for Cases 1–3 of the IEEE 30-bus grid, and the percentage of improvement is evaluated to illustrate the difference between the results achieved by using SNS and ASNS regarding the medium-test system IEEE 30. Additionally, Figure 16 describes the obtained fitness values for both cases for the large-scale IEEE 118-bus grid. To investigate the analysis of the SNS and ASNS in terms of average success rate and convergence characteristics, minimizing the losses (Case 1) for the IEEEE 30-bus system is considered. At various percentages of convergence, including 70, 80, 90, and 100%, the absolute difference between the best and worst, its percentage, and the success rate are computed. Table 15 tabulates the related absolute difference between the best and worst and the best percentage, while Figure 17 depicts the regarded success rate. To investigate the robustness of the proposed algorithm parameters on the system behavior, the algorithm parameters are varied in terms of the number of search individuals and the maximum number of iterations, and the success rate is computed for minimizing the losses (Case 1) for the IEEE 30-bus system. The results are tabulated in Table 16.



Moreover, the effectiveness and performance of the envisaged ASNS and SNS are explored on 25 benchmark functions classified into unimodal, multimodal, fixed, and variable-dimension benchmark functions. Table 17 tabulates their full data in terms of their names, variable lengths, and permissible experiment intervals. The number of search individuals is 30 for the SNS and improved ASNS algorithms, and the maximum number of iterations is 1000. The simulations are performed thirty times. For this purpose, Table 17 provides detailed comparisons in terms of the mean, best, and standard deviation using ASNS and SNS as benchmark functions.




4.5. Discussion Analysis


The proposed ASNS and the original SNS algorithms derive adequate validation of the practical constraints related to the generators’ reactive power, which is demonstrated for IEEE 30-, 57-, and 118-bus systems. Based on the statistical comparisons via Figure 15, the proposed ASNS algorithm shows superior performance compared to the SNS algorithm for all cases studied of the IEEE 30-, IEEE 57-, and IEEE 118-bus grids.



For the IEEE 30-bus grid (Figure 15a), the proposed ASNS algorithm obtains the lowest minimum, mean, and maximum TGLs in the first case of 4.5207, 4.6154, and 4.8987 MW, respectively. Similarly, in the second case, it obtains the lowest minimum, mean, and maximum TVDs of 0.0843, 0.0896, and 0.0983 MW, respectively. Furthermore, the proposed ASNS algorithm provides the smallest standard deviations of TGLs of 0.1254 and TVD of 0.0041, respectively, relative to the SNS algorithm with TGLs of 0.1916 and TVD of 0.005.



As shown in Table 14, great improvement in the standard deviation is obtained with 34.5600, 18.7139, and 17.3804%, respectively, for Cases 1–3. Added to that, a great improvement in the maximum value is obtained with 5.6675, 4.2217, and 1.2360%, respectively, for Cases 1–3. Furthermore, significant improvements in the mean value are obtained with 3.5852, 2.6837, and 1.0783%, respectively, for Cases 1–3. For obtaining the minimum value, the obtained improvement is 0.0036, 0.3085, and 2.1955%, respectively, for Cases 1–3.



Similar findings are attained for the IEEE-57 bus grid (Figure 15b), where the proposed ASNS algorithm provides the smallest standard deviations of TGLs of 0.1119 and TVDs of 0.0207, respectively, relative to the SNS algorithm with TGLs of 0.7348 and TVDs of 0.0407.



For the IEEE 118-bus grid (Figure 15c), the proposed ASNS algorithm provides higher standard deviations of TGLs of 1.0300 and TVDs of 0.3300, respectively, relative to the SNS algorithm with TGLs of 0.6735 and TVDs of 0.3079. Despite that, the majority of the obtained fitness values for both cases are significantly lower than their counterparts using the SNS algorithm, as described in Figure 16.



From both Table 15 and Figure 17, the ASNS provides higher exploitation ability, which is increased with increasing the convergence level. It can be noted that:




	
The proposed ASNS always achieves a lower difference percentage compared to the SNS. At 100% convergence, it has 8.36% while the SNS has 14.87%.



	
The proposed ASNS always achieves a higher success rate compared to the SNS.



	
At 90% and 100% convergence, the proposed ASNS provides approximately 2.5 times the success rate compared to the SNS. At 70% and 80% convergence, the ASNS provides approximately double the success rate of the SNS.








Furthermore, as shown in Table 16, increasing the maximum number of iterations increases the success rate. For example, at 50 search individuals, the success rate increases from 20% at 150 iterations to 33.33% at 200 iterations to 56.66% at 250 iterations to 76.66% at 300 iterations. Furthermore, the higher the number of search individuals, the higher the improvement of the success rate. For example, at 300 iterations, the success rate increased from 6.66% at 15 search individuals to 16.66% at 25 search individuals to 26.66% at 40 search individuals to 76.66% at 50 search individuals.



Nevertheless, higher robustness and effectiveness of the proposed improvements to the ASNS algorithm are demonstrated since the proposed ASNS successfully obtains the lowest mean, best, and standard deviation for the majority of the considered benchmark functions, as shown in Table 17.




4.6. Parameter Tuning of SNS and ASNS Algorithms


To demonstrate parameter tuning, the SNS and ASNS algorithms are used with varying numbers of search agents and iterations while power loss minimization is considered. At first, the IEEE 30-bus system is simulated, and Figure 18 describes the corresponding curves for both algorithms.



As shown, the lowest power losses are achieved at 50 search agents and 300 iterations for both algorithms. Therefore, the SNS and ASNS algorithms are set to have these characteristics as stated in Table A1 in Appendix A. Furthermore, for both algorithms, increasing the number of iterations and the search agents results in reduced power losses. The proposed ASNS algorithm shows great superiority compared to the original SNS for most of the combinations of the iterations and the search agents. For example, at 300 iterations, the proposed ASNS algorithm provides a reduction in power losses of 2.29, 3.11, 5.51, and 3.59% at a number of search agents of 20, 30, 40, and 50, respectively.



Furthermore, the IEEE 57-bus system is simulated, and Figure 19 depicts the relevant contours for both methods. As demonstrated, the suggested ASNS algorithm outperforms the original SNS for the majority of cycles and search agent combinations. At 100 rounds, the suggested ASNS algorithm reduces power losses by 2.29, 3.71, 4.28, and 4.76% at search agent counts of 30, 40, and 50, respectively. At 200 rounds, the suggested ASNS algorithm reduces power losses by 4.36, 5.76, and 4.83% at search agent counts of 30, 40, and 50, respectively. At 300 rounds, the suggested ASNS algorithm improves power losses by 3.97, 3.95, and 3.19% at search agent counts of 30, 40, and 50, respectively.



Furthermore, for both algorithms, increasing the number of iterations and search agents results in a greater decrease in power losses. Both methods attain the lowest power losses at 100 search agents and 300 iterations. As a result, the SNS and ASNS algorithms are configured to have the traits listed in Table A1 in Appendix A.



Finally, the IEEE 118-bus system is simulated, and Figure 20 describes the corresponding curves for both algorithms.



As demonstrated, the suggested ASNS algorithm outperforms the original SNS for most of the repetition and search agent combinations. For example, at 600 iterations, the proposed ASNS algorithm provides a reduction in power losses of 1.12, 1.82, and 1.34% at a number of search agents of 60, 80, and 100, respectively. Furthermore, for both algorithms, increasing the number of iterations and search agents results in a greater decrease in power losses. Both algorithms attain the lowest power losses at 100 search agents and 600 rounds. Therefore, the SNS and ASNS algorithms are set to have these characteristics as stated in Table A1 in Appendix A.





5. Conclusions


This study introduces an intelligent optimizer used for finding the optimal scheduling of reactive ORPD power resources (i.e., ASNS). ASNS aims to reduce real power losses and voltage variations while avoiding falling into local optima through two strategies: effective exploitation and adaptable parameter strategies. Simulations were conducted using three standard grids, the IEEE 30-, 57-, and 118-bus. The performance validation across companies’ diverse comparisons and statistical analyses is compared with the state of the art. The proposed analysis demonstrates the capability of the ASNS to tackle the ORPD issues with effective and robust performance. The proposed ASNS shows superiority over the state of the art and achieves a great reduction of power losses ( 22%, 14.42%, and 1.62%) and a higher improvement of voltage profiles of 90.3%, 52.85%, and 6.07% for IEEE 30-, IEEE 57-, and IEEE 118-bus grids, respectively. Furthermore, the simulation results show that the ASNS algorithm supports the diversity of populations.



The main objectives that are usually utilized in the ORPD problem are power loss, voltage profile, and voltage stability. Usually, they are very important measures that reflect the technical performance of the steady state operating condition of the system under study. On the other side, some other objectives could be considered for future work, such as reactive power reserve margin maximization and loadability enhancement. Therefore, the future of this study covers two categories. The first aims to solve other complex problems such as OPF for different power system requirements, adding new constraints and limitations for AC/DC grids with the high penetration of renewable energy resources. On the other hand, from the standpoint of solution methodology, developing other optimization algorithms to solve the considered problems.
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Abbreviations




	
ABC

	
Artificial bee colony




	
ABO

	
Accelerated bio-inspired optimizer




	
AEO

	
Artificial ecosystem optimizer




	
ALO

	
Ant lion optimizer




	
APT-FPSO

	
Adaptive particularly tunable fuzzy particle swarm optimization




	
ASNS

	
Augmented social network search




	
BBO

	
Biogeography based optimizer




	
BFA

	
Bacteria foraging-based algorithm




	
BSA

	
Backtracking search algorithm




	
CAC-DE

	
Continuous ant colony-based differential evolution




	
CLPSO

	
Comprehensive learning particle swarm optimization




	
CMAES

	
Covariance matrix adopted evolutionary strategy




	
CTFWO

	
Chaotic turbulent flow of water-based optimization




	
DE

	
Differential evolution




	
EES

	
Effective exploitation strategy




	
EFA

	
Enhanced firefly algorithm




	
ERWCA

	
Evaporation rate water cycle algorithm




	
FLP

	
Fuzzy-based procedure




	
GA

	
Genetic algorithm




	
GB-WCA

	
Gaussian bare-bones water cycle algorithm




	
GSA

	
Gravitational search algorithm




	
HBO

	
Heap-based optimizer




	
HFA

	
Hybrid firefly algorithm




	
ICA

	
Imperialist competitive algorithm




	
ILAO

	
improved lightning attachment procedure optimizer




	
IMPA

	
Improved version of the marine predator algorithm




	
IMPA

	
Improved marine predators’ algorithm




	
IPG-PSO

	
Improved pseudo-gradient particle swarm optimization




	
MFA

	
Moth-flame optimization




	
MODE

	
Multi-objective differential evolution




	
MPA

	
Marine predators’ algorithm




	
NRA

	
Newton-Raphson algorithm




	
OGSA

	
Oppositional GSA




	
OPF

	
Optimal power flow




	
ORPD

	
Optimal reactive power dispatch




	
p.u.

	
Per unit




	
PSO

	
Particle swarm optimization




	
PSO-TVAC

	
PSO with time-varying acceleration coefficients




	
PSO-ICA

	
Particle swarm optimization-imperialism competitive algorithm




	
QEA

	
Quantum-inspired evolutionary algorithm




	
QODE

	
Quasi-oppositional differential evolution




	
QOTLBO

	
Quasi-oppositional teaching-learning based optimization




	
RGA

	
Real coded genetic algorithm




	
SBDE

	
Self-balanced differential evolution




	
SCA

	
Sine-cosine Algorithm




	
SHADE

	
Successful history-based adaptive Differential Evolution algorithm




	
SMA

	
Slime-mould algorithm




	
SNS

	
Social network search




	
SOA

	
Seeker optimization algorithm




	
SQP

	
Sequential quadratic programming




	
TGLs

	
Total grid losses




	
TVD

	
Total voltage deviation




	
VSI

	
Voltage stability index




	
WCA

	
Water cycle algorithm




	
WOA

	
Whale optimization algorithm




	
Symbols




	
N

	
Number of objectives




	
F

	
Vector of n objectives




	
Xu and Xv

	
Dependent and independent variables, respectively




	
Gij

	
Conductance of every link connecting buses i and j




	
θ, V and Nb

	
Phase angle, voltage, and number of buses, respectively




	
View

	
The reference voltage of buses which is taken as 1 p.u.




	
Lj

	
L-index for each bus j




	
δi and δj

	
Phase angles of the voltage at buses i and j, respectively




	
YLL and YLG

	
Sub-matrices of Y-Bus matrix




	
VG1, VG2, …, VGNG

	
Generator voltages




	
Ta1, Ta2, …, TaNT

	
Transformer tap settings




	
Qr1, Qr2, …, QrNr

	
Reactive power (VAr) supplied by switched capacitors and reactors




	
NG, Nr and NT

	
Number of generators, number of the VAr sources,

and number of on-load tap transformers, respectively




	
VL1, …, VLNPQ

	
Load bus voltage magnitudes




	
QG1, QG2, …, QGNG

	
VAr outputs of the generators




	
SF1, …, SFNL

	
Transmission line loadings




	
SFL and NL

	
Power flows in line L and the number of transmission lines,

respectively




	
PL, QL and Bij

	
Active and reactive power demand,

and mutual susceptance between bus i and j, respectively




	
Ui and Uj

	
Vectors of the user’s view of i and j, respectively




	
r1 and r2

	
Random vectors which are, respectively,

inside the ranges [0, 1] and [−1, 1].




	
Uk

	
Randomly selected event vector




	
Umean

	
Mean vector within a group or commenters of views of friends




	
Ngroup

	
Number of users in the group




	
    U i d    

	
The current idea of the user i about each variable d




	
Ubest

	
Best viewpoint among the users that get

the lowest fitness for every iteration




	
LBd and UBd

	
Lower and upper limits of the variable d, accordingly




	
MaxIter

	
Maximum number of iterations




	
N

	
Number of users









Appendix A


For both SNS and ASNS algorithms, Table A1 describes the number of search individuals and the maximum number of iterations. Furthermore, it contains all the limits on control variables (LB, UB) used herein for all test systems (IEEE 30-, 57-, and 118-bus systems).
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Table A1. Parameters of the ASNS and SNS for ORPD applications.
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Items and Studied Systems

	
IEEE 30-Bus System

	
IEEE 57-Bus System

	
IEEE 118-Bus System






	
N

	
50

	
100

	
100




	
MaxIter

	
300

	
300

	
600




	
Generator voltages (p.u.)

	
LB

	
0.9000

	
0.9000

	
0.9400




	
UB

	
1.1000

	
1.1000

	
1.0600




	
Tap-changing transformers (p.u.)

	
LB

	
0.9000

	
0.9000

	
0.9000




	
UB

	
1.1000

	
1.1000

	
1.1000




	
Shunt Capacitors (MVAr)

	
LB

	
0

	
0

	
0




	
UB

	
−30.0000

	
10.0000, 5.9000, and 6.3000

	
30.0000









Additionally, Table A2, Table A3 and Table A4 provide the generators’ reactive power for IEEE 30-, 57-, and 118-bus systems.
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Table A2. Generators’ reactive power for the IEEE 30-bus system.
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	QMAX
	QMIN
	Case 1-SNS
	Case 1-ASNS
	Case 2-SNS
	Case 2-ASNS
	Case 3-SNS
	Case 3-ASNS





	QG 1
	200
	−20
	−11.0933
	−10.0538
	−20
	−19.9097
	−11.6589
	−17.1944



	QG 2
	100
	−20
	15.7518
	15.5574
	−6.8016
	−7.4537
	15.6506
	−13.3928



	QG 5
	80
	−15
	24.4079
	24.0469
	37.5118
	37.6167
	15.8655
	44.3173



	QG 8
	60
	−15
	29.0434
	28.8129
	38.7653
	42.4471
	56.6655
	58.8949



	QG 11
	50
	−10
	−2.9666
	−0.9345
	1.45
	0.4212
	1.9563
	6.465



	QG 13
	60
	−15
	−7.156
	−13.3821
	−2.8688
	−4.786
	0.4302
	1.2194
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Table A3. Generators’ reactive power for the IEEE 57-bus system.
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	QMAX
	QMIN
	Case 1-SNS
	Case 1-ASNS
	Case 2-SNS
	Case 2-ASNS
	Case 3-SNS
	Case 3-ASNS





	QG 1
	200
	−140
	25.5118
	24.9556
	−4.5304
	−6.9715
	110.6362
	18.4536



	QG 2
	50
	−17
	49.4901
	50
	43.1114
	44.316
	19.51
	37.5813



	QG 3
	60
	−10
	45.8101
	47.6413
	57.4301
	59.8936
	9.9011
	19.4484



	QG 6
	25
	−8
	−5.5959
	0.2218
	14.8235
	18.9114
	−2.8447
	18.2721



	QG 8
	200
	−140
	69.586
	66.5433
	16.1191
	8.1599
	48.3652
	68.1371



	QG 9
	9
	−3
	7.1224
	8.8809
	9
	9
	4.8712
	1.0238



	QG 12
	155
	−150
	75.7926
	71.2139
	149.7989
	154.1204
	100.0011
	136.6506
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Table A4. Generators’ reactive power for the IEEE 118-bus system.
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	QMAX
	QMIN
	Case 1-SNS
	Case 1-ASNS
	Case 2-SNS
	Case 2-ASNS
	Case 3-SNS
	Case 3-ASNS





	QG 1
	15
	−5
	14.5662
	14.5171
	14.6358
	14.7846
	5.0759
	7.8489



	QG 4
	300
	−300
	24.0705
	−5.7346
	−158.184
	−42.621
	−136.723
	−45.0406



	QG 6
	50
	−13
	25.8123
	20.798
	4.1469
	24.9696
	22.6758
	−7.127



	QG 8
	300
	−300
	−25.5407
	5.4553
	179.2201
	122.6642
	178.53
	94.9364



	QG 10
	200
	−147
	−100.486
	−101.849
	−89.6337
	−102.598
	−26.3501
	−21.9034



	QG 12
	120
	−35
	53.7451
	47.5395
	99.0349
	108.5367
	76.6854
	22.4387



	QG 15
	30
	−10
	11.6375
	17.6951
	−4.5287
	−9.7037
	−0.1446
	−4.803



	QG 18
	50
	−16
	38.4646
	20.1267
	−13.2123
	−10.1985
	35.1172
	11.0603



	QG 19
	24
	−8
	13.4858
	17.414
	−5.3478
	−1.8856
	4.004
	−7.1696



	QG 24
	300
	−300
	−8.0755
	6.6627
	24.6526
	7.9436
	−19.9092
	43.1933



	QG 25
	140
	−47
	79.5415
	50.3089
	−19.0465
	80.2624
	−24.6135
	−32.0925



	QG 26
	1000
	−1000
	−93.8935
	−64.4136
	−71.0957
	−129.847
	33.0448
	−69.801



	QG 27
	300
	−300
	24.8739
	20.9573
	12.6348
	71.796
	70.9331
	101.5602



	QG 31
	300
	−300
	30.6733
	22.3169
	91.0509
	60.4686
	27.5755
	14.6481



	QG 32
	42
	−14
	9.9814
	17.4136
	9.809
	21.75
	−10.8293
	7.3427



	QG 34
	24
	−8
	13.5709
	−6.4994
	−1.1196
	5.37
	4.1177
	14.9506



	QG 36
	24
	−8
	7.427
	2.3472
	−3.3417
	−5.6468
	−6.9791
	7.5597



	QG 40
	300
	−300
	34.2823
	33.0815
	68.7116
	93.961
	−91.0034
	50.7242



	QG 42
	300
	−300
	19.9429
	20.2193
	46.3348
	33.4737
	183.3751
	50.9194



	QG 46
	100
	−100
	2.58
	−11.4573
	5.3837
	11.5149
	41.3022
	35.5478



	QG 49
	210
	−85
	49.9421
	51.7827
	139.1609
	76.4511
	209.4643
	207.6757



	QG 54
	300
	−300
	42.6336
	34.5675
	49.4748
	53.0367
	7.9369
	−5.374



	QG 55
	23
	−8
	16.2703
	11.3564
	−6.2283
	20.4349
	15.1702
	10.8474



	QG 56
	15
	−8
	1.1199
	4.943
	−6.5023
	−5.3435
	−6.4955
	5.9728



	QG 59
	180
	−60
	91.1813
	108.4431
	139.8281
	96.177
	13.9116
	28.593



	QG 61
	300
	−100
	−2.492
	−18.1329
	−18.0023
	−93.7582
	−14.4094
	−97.3926



	QG 62
	20
	−20
	−3.1049
	7.5193
	−6.57
	−4.0851
	−13.9373
	−8.5001



	QG 65
	200
	−67
	16.9089
	3.2103
	−8.3426
	−66.4617
	16.5881
	86.23



	QG 66
	200
	−67
	−61.7869
	−65.5083
	−34.4029
	−65.5431
	−59.0314
	49.8348



	QG 69
	300
	−300
	−134.618
	−110.43
	−98.2275
	−181.783
	161.5133
	186.1353



	QG 70
	32
	−10
	10.3158
	19.4645
	1.7462
	31.0587
	27.373
	25.3555



	QG 72
	100
	−100
	−6.4364
	−13.4015
	2.4662
	1.6687
	−18.189
	−22.4441



	QG 73
	100
	−100
	−3.1452
	−5.3301
	26.1035
	12.8339
	−21.4349
	−35.1946



	QG 74
	9
	−6
	7.992
	6.6092
	6.3794
	3.7695
	6.2625
	−3.1613



	QG 76
	23
	−8
	22.8668
	22.0407
	16.8353
	20.2507
	19.5854
	22.912



	QG 77
	70
	−20
	56.9625
	60.605
	36.5389
	46.2464
	46.2572
	46.2732



	QG 80
	280
	−165
	39.3082
	3.2877
	240.1401
	230.5782
	−123.555
	−136.336



	QG 85
	23
	−8
	19.3618
	18.9086
	18.0338
	22.8371
	14.0021
	16.052



	QG 87
	1000
	−100
	−0.5023
	0.025
	12.7369
	10.2115
	8.7072
	5.9641



	QG 89
	300
	−210
	0.1398
	24.1265
	−123.079
	−116.085
	−28.4652
	−11.6247



	QG 90
	300
	−300
	51.6318
	37.6659
	210.6461
	199.8874
	72.1733
	45.8006



	QG 91
	100
	−100
	−3.3313
	−1.1698
	−51.9619
	−60.1563
	4.301
	27.8025



	QG 92
	9
	−3
	0.821
	5.5476
	−2.7115
	−2.5073
	−0.4118
	−2.8518



	QG 99
	100
	−100
	−3.6525
	−6.4569
	34.6788
	38.4328
	17.4873
	−16.9542



	QG 100
	155
	−50
	33.2354
	59.9011
	−40.3621
	−49.2498
	63.7574
	19.4836



	QG 103
	40
	−15
	15.7092
	2.3865
	10.6147
	24.2089
	1.3529
	39.2042



	QG 104
	23
	−8
	19.9708
	8.3988
	9.961
	15.3062
	17.6745
	4.8378



	QG 105
	23
	−8
	18.0353
	8.845
	12.829
	−6.6591
	3.9311
	20.6032



	QG 107
	200
	−200
	−1.2282
	−10.9052
	55.4818
	50.2043
	16.5422
	27.9711



	QG 110
	23
	−8
	19.8166
	10.8218
	0.0812
	1.6577
	16.7011
	16.1153



	QG 111
	1000
	−100
	−1.189
	−2.5185
	−9.6835
	−19.4414
	6.8634
	−19.2893



	QG 112
	1000
	−100
	13.0845
	12.7739
	34.4648
	43.5942
	18.6459
	40.1109



	QG 113
	200
	−100
	−7.4075
	−12.5293
	62.0482
	−99.4147
	−59.7926
	18.0029



	QG 116
	1000
	−1000
	27.7889
	10.5345
	−275.617
	4.7293
	−66.9456
	−155.514
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Figure 1. Proposed ASNS for solving the ORPD problem. 
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Figure 2. IEEE 30-bus grid [72]. 
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Figure 3. Convergence features of the ASNS and SNS for Case 1 of the IEEE 30-bus grid. 
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Figure 4. Voltage Profile of the proposed ASNS and SNS for Case 1 of the IEEE 30-bus grid. 
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Figure 5. Convergence features of the proposed ASNS and SNS for Case 2 of the IEEE 30-bus grid. 
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Figure 6. Voltage Profile of the proposed ASNS and SNS for Case 2 of the IEEE 30-bus grid. 
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Figure 7. Convergence features of the proposed ASNS and SNS for Case 3 of the IEEE 30-bus grid. 
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Figure 8. Convergence features of the proposed ASNS and SNS for Case 1 of the IEEE 57-bus grid. 
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Figure 9. Convergence features of the proposed ASNS and SNS for Case 2 of the IEEE 57-bus grid. 
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Figure 10. Voltage Profile of the proposed ASNS and SNS for Case 2 of the IEEE 57-bus grid. 
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Figure 11. Convergence features of the proposed ASNS and SNS for Case 3 of the IEEE 57-bus grid. 
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Figure 12. Convergence features of the proposed ASNS and SNS for Case 1 of the large-scale IEEE 118-bus grid. 
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Figure 13. Convergence features of the ASNS and SNS for Case 2 of IEEE 118-bus grid. 






Figure 13. Convergence features of the ASNS and SNS for Case 2 of IEEE 118-bus grid.



[image: Mathematics 11 01236 g013]







[image: Mathematics 11 01236 g014 550] 





Figure 14. Convergence features of the proposed ASNS and SNS for Case 3 of the IEEE 118-bus grid. 
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Figure 15. Box and Whiskers plot for the SNS and proposed ASNS of the IEEE 30-, IEEE 57-, and IEEE 118-bus grids. 
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Figure 16. Obtained fitness values for SNS and proposed ASNS of the IEEE 118-bus grids. 
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Figure 17. Success rates of SNS and ASNS for Case 1 for the IEEE 30-bus system. 
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Figure 18. Parameter Tuning of SNS and ASNS Algorithms for Case 1 for the IEEE 30-bus system. 
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Figure 19. Parameter Tuning of SNS and ASNS Algorithms for Case 1 for IEEE 57-bus system. 
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Figure 20. Parameter Tuning of SNS and ASNS Algorithms for Case 1 for the IEEE 118-bus system. 
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Table 1. Information from the studied systems.
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	Case Study
	Number of Branches
	Number of Loads
	Number of Generators
	Number of Control Variables
	Number of Transformers
	Number of Compensators





	IEEE 30-bus grid
	41
	24
	6
	19
	4
	9



	IEEE 57-bus grid
	80
	50
	7
	25
	15
	3



	IEEE 118-bus grid
	186
	64
	54
	75
	9
	12
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Table 2. Optimal results for Case 1 of the IEEE 30-bus grid.
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	Variables
	Initial Case
	SNS
	Proposed ASNS
	ILAO * [34]
	SCA * [47]
	WOA * [48]
	HFA * [69]



	VG 1
	1.0500
	1.1000
	1.0999
	1.1000
	1.1000
	1.1000
	1.1000



	VG 2
	1.0400
	1.0946
	1.0941
	1.0944
	1.1000
	1.0963
	1.0543



	VG 5
	1.0100
	1.0751
	1.0741
	1.0944
	1.0869
	1.0789
	1.0751



	VG 8
	1.0100
	1.0768
	1.0759
	1.0767
	1.0870
	1.0774
	1.0869



	VG 11
	1.0500
	1.0544
	1.0907
	1.1000
	1.1000
	1.0955
	1.1000



	VG 13
	1.0500
	1.0905
	1.0824
	1.1000
	1.0800
	1.0929
	1.1000



	Ta 6–9
	1.0780
	1.0746
	0.9871
	1.0300
	1.0500
	0.9936
	0.9801



	Ta 6–10
	1.0690
	0.9080
	1.0185
	0.900
	1.0500
	0.9867
	0.9500



	Ta 4–12
	1.0320
	1.0000
	0.9992
	0.9800
	1.0500
	1.0214
	0.9702



	Ta 28–27
	1.0680
	0.9686
	0.9669
	0.9600
	1.0500
	0.9867
	0.9700



	Qr 10
	0.0000
	16.6738
	11.8166
	4.9900
	4.6310
	3.1695
	4.7003



	Qr 12
	0.0000
	19.4818
	24.57618
	5.0000
	3.0890
	2.0477
	4.7061



	Qr 15
	0.0000
	3.9071
	3.7694
	5.0000
	5.0000
	4.2956
	4.7007



	Qr 17
	0.0000
	5.5106
	5.4730
	5.0000
	4.6970
	2.6782
	2.3059



	Qr 20
	0.0000
	4.0268
	3.5115
	3.8000
	2.1290
	4.8116
	4.8035



	Qr 21
	0.0000
	9.7636
	10.0785
	5.0000
	3.1910
	4.8163
	4.9026



	Qr 23
	0.0000
	0.9029
	1.3975
	3.3500
	5.0000
	3.5739
	4.8040



	Qr 24
	0.0000
	6.8624
	6.6386
	5.0000
	4.3880
	4.1953
	4.8053



	Qr 29
	0.0000
	2.2385
	2.1505
	1.4400
	3.5750
	2.0009
	3.3984



	TGLs
	5.7960
	4.5208
	4.5206
	4.5217
	4.7086
	4.5943
	4.5290



	Variables
	QOTLBO * [70]
	CLPSO * [22]
	ABC * [28]
	MFA * [71]
	AEO * [36]
	ALO * [28]
	MPA * [50]



	VG 1
	1.1000
	1.1000
	1.1000
	1.1000
	1.1000
	1.1000
	1.1000



	VG 2
	1.0942
	1.1000
	1.0971
	1.0943
	1.0944
	1.0953
	1.0949



	VG 5
	1.0745
	1.0795
	1.0866
	1.0747
	1.0751
	1.0767
	1.0761



	VG 8
	1.0765
	1.1000
	1.0800
	1.0766
	1.077
	1.0788
	1.078



	VG 11
	1.1000
	1.1000
	1.0850
	1.1000
	1.1000
	1.1000
	1.0873



	VG 13
	1.0999
	1.1000
	1.1000
	1.1000
	1.1000
	1.1000
	1.1000



	Ta 6–9
	1.0664
	0.9154
	1.0700
	1.0433
	1.0392
	1.0100
	0.9807



	Ta 6–10
	0.9000
	0.9000
	0.9500
	0.9000
	0.9000
	0.9900
	1.0222



	Ta 4–12
	0.9949
	0.9000
	1.0200
	0.9791
	0.9729
	1.0200
	0.9765



	Ta 28–27
	0.9714
	0.9397
	1.1000
	0.9647
	0.9632
	1.0000
	0.9707



	Qr 10
	5.0000
	4.9265
	5.0000
	5.0000
	4.9948
	4.0000
	1.7900



	Qr 12
	5.0000
	5.0000
	0.0000
	5.0000
	4.9963
	2.0000
	4.8300



	Qr 15
	5.0000
	5.0000
	2.0000
	4.8055
	4.8409
	4.0000
	3.9700



	Qr 17
	5.0000
	5.0000
	5.0000
	5.0000
	4.9985
	3.0000
	4.9900



	Qr 20
	4.4500
	5.0000
	4.0000
	4.0623
	4.2895
	2.0000
	4.2200



	Qr 21
	5.0000
	5.0000
	5.0000
	5.0000
	5.0000
	4.0000
	4.6100



	Qr 23
	2.8300
	5.0000
	4.0000
	2.5193
	2.6464
	3.0000
	4.6900



	Qr 24
	5.0000
	5.0000
	5.0000
	5.0000
	4.9998
	5.0000
	4.1200



	Qr 29
	2.5600
	5.0000
	4.0000
	2.1925
	2.2293
	5.0000
	3.2900



	TGLs
	4.5594
	4.5615
	4.611
	4.5340
	4.5262
	4.59
	4.5335







* The techniques in the comparisons are not coded by the authors but are employed by their creators.
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Table 3. Optimal results for Case 2 of the IEEE 30-bus grid.
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	Initial Case
	SNS
	Proposed ASNS
	LAO * [34]
	ILAO * [34]
	IPG-PSO * [73]
	Improved GSA * [74]
	HFA * [69]
	QOTLBO * [70]





	VG 1
	1.0500
	1.0040
	1.0041
	1.0286
	0.9942
	1.0122
	1.0085
	1.0035
	1.0005



	VG 2
	1.0400
	1.0000
	0.9999
	0.9702
	0.9563
	1.0083
	1.0057
	1.0164
	0.9919



	VG 5
	1.0100
	1.0000
	1.0000
	1.0683
	1.0689
	1.0168
	1.0192
	1.0195
	1.0217



	VG 8
	1.0100
	1.0023
	1.0033
	0.9983
	0.9919
	1.0102
	1.0103
	1.0182
	1.0147



	VG 11
	1.0500
	1.0001
	1.0000
	1.0134
	1.0650
	1.0222
	1.0184
	0.9823
	0.9950



	VG 13
	1.0500
	1.0000
	1.0001
	1.0027
	1.0436
	1.0075
	1.0079
	1.0155
	1.0447



	Ta 6–9
	1.0780
	1.0074
	1.0038
	1.0100
	1.0900
	1.0390
	1.0340
	0.9900
	1.0076



	Ta 6–10
	1.0690
	1.0992
	1.0814
	0.9700
	0.9400
	0.9000
	0.9000
	0.9000
	0.9030



	Ta 4–12
	1.0320
	1.0196
	1.0225
	0.9700
	1.0400
	0.9759
	0.9840
	0.9800
	1.0472



	Ta 28–27
	1.0680
	0.9946
	0.9816
	0.9700
	0.9800
	0.9686
	0.9780
	0.9600
	0.9674



	Qr 10
	0.0000
	5.9271
	12.0240
	0.0000
	0.0200
	5.0000
	5.0000
	3.2000
	4.8700



	Qr 12
	0.0000
	12.6348
	21.6595
	2.0400
	3.9900
	1.8472
	5.0000
	0.5000
	3.0400



	Qr 15
	0.0000
	9.9277
	3.9063
	4.9900
	4.5000
	5.0000
	5.0000
	4.9000
	5.0000



	Qr 17
	0.0000
	9.3855
	5.5190
	0.3700
	1.0800
	0.0026
	0.0000
	0.1000
	0.0000



	Qr 20
	0.0000
	12.9420
	12.6443
	4.6400
	4.6700
	5.0000
	5.0000
	3.8000
	5.0000



	Qr 21
	0.0000
	16.4084
	12.5312
	0.0100
	0.0200
	5.0000
	5.0000
	5.0000
	5.0000



	Qr 23
	0.0000
	2.3579
	3.3287
	3.8800
	4.9800
	4.9915
	5.0000
	5.0000
	5.0000



	Qr 24
	0.0000
	12.3446
	11.7143
	4.0100
	5.0000
	4.9378
	5.0000
	3.9000
	5.0000



	Qr 29
	0.0000
	6.1102
	3.8151
	2.5300
	4.7900
	2.5206
	4.9500
	1.5000
	2.5600



	TGLs
	5.7960
	5.9001
	5.7765
	5.6154
	6.2794
	5.7429
	5.7500
	5.7500
	6.4962



	TVD
	0.8691
	0.0846
	0.08435
	0.0945
	0.0876
	0.0892
	0.08968
	0.0980
	0.0856







* The techniques in the comparisons are not coded by the authors but are employed by their creators.
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Table 4. Optimal results for Case 3 of the IEEE 30-bus grid.
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	Initial Case
	SNS
	Proposed ASNS





	VG 1
	1.0500
	1.0990
	1.0998



	VG 2
	1.0400
	1.0933
	1.0945



	VG 5
	1.0100
	1.0671
	1.1000



	VG 8
	1.0100
	1.0869
	1.1000



	VG 11
	1.0500
	1.0998
	1.0991



	VG 13
	1.0500
	1.0997
	1.0993



	Ta 6–9
	1.0780
	0.9896
	1.0351



	Ta 6–10
	1.0690
	0.9355
	0.9001



	Ta 4–12
	1.0320
	1.0076
	1.0315



	Ta 28–27
	1.0680
	0.9545
	0.9618



	Qr 10
	0.0000
	5.5187
	0.2385



	Qr 12
	0.0000
	15.0421
	18.0726



	Qr 15
	0.0000
	0.4000
	3.1113



	Qr 17
	0.0000
	2.2772
	8.5207



	Qr 20
	0.0000
	5.4560
	9.9379



	Qr 21
	0.0000
	4.5358
	2.0944



	Qr 23
	0.0000
	7.4148
	0.2498



	Qr 24
	0.0000
	0.1587
	0



	Qr 29
	0.0000
	0.0183
	0.0005



	TGLs
	5.7960
	5.9001
	4.9165



	TVD
	0.8691
	2.7656
	2.7286



	VSI
	0.1720
	0.1248
	0.1243
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Table 5. Comparative results for Case 3 of the IEEE 30-bus grid.






Table 5. Comparative results for Case 3 of the IEEE 30-bus grid.





	Method
	VSI (p.u.)





	Proposed ASNS
	0.1243



	SNS
	0.1248



	ABC * [44]
	0.1280



	GA * [75]
	0.1807



	SQP * [76]
	0.1570



	RGA * [76]
	0.1386



	CMAES * [76]
	0.1382







* The techniques in the comparisons are not coded by the authors but are employed by their creators.
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Table 6. Results for Cases 1–3 of the IEEE 30-bus grid considering the continuous and discrete nature of tap-changing transformers and shunt capacitors.
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Case 1 (TGLs Minimization)

	
Case 2 (TVD Minimization)

	
Case 3 (VSI Minimization)




	

	
Initial Case

	
Continuous

	
Discrete

	
Continuous

	
Discrete

	
Continuous

	
Discrete






	
VG 1

	
1.0500

	
1.0999

	
1.0999

	
1.0041

	
1.0041

	
1.0998

	
1.0998




	
VG 2

	
1.0400

	
1.0941

	
1.0941

	
0.9999

	
0.9999

	
1.0945

	
1.0945




	
VG 5

	
1.0100

	
1.0741

	
1.0741

	
1.0000

	
1.1000

	
1.1000

	
1.1000




	
VG 8

	
1.0100

	
1.0759

	
1.0759

	
1.0033

	
1.0033

	
1.1000

	
1.1000




	
VG 11

	
1.0500

	
1.0907

	
1.0907

	
1.0000

	
1.1000

	
1.0991

	
1.0991




	
VG 13

	
1.0500

	
1.0824

	
1.0824

	
1.0001

	
1.0001

	
1.0993

	
1.0993




	
Ta 6–9

	
1.0780

	
0.9871

	
0.9800

	
1.0038

	
1.1000

	
1.0351

	
1.0400




	
Ta 6–10

	
1.0690

	
1.0185

	
1.0200

	
1.0814

	
1.0800

	
0.9001

	
0.9000




	
Ta 4–12

	
1.0320

	
0.9992

	
1.0000

	
1.0225

	
1.0300

	
1.0315

	
1.0300




	
Ta 28–27

	
1.0680

	
0.9669

	
0.9700

	
0.9816

	
0.9800

	
0.9618

	
0.9600




	
Qr 10

	
0.0000

	
11.8166

	
12.0000

	
12.0240

	
12.0000

	
0.2385

	
0.0000




	
Qr 12

	
0.0000

	
24.5761

	
25.0000

	
21.6595

	
22.0000

	
18.0726

	
18.0000




	
Qr 15

	
0.0000

	
3.7694

	
4.0000

	
3.9063

	
4.0000

	
3.1113

	
3.0000




	
Qr 17

	
0.0000

	
5.4730

	
5.0000

	
5.5190

	
6.0000

	
8.5207

	
9.0000




	
Qr 20

	
0.0000

	
3.5115

	
4.0000

	
12.6443

	
13.0000

	
9.9379

	
10.0000




	
Qr 21

	
0.0000

	
10.0785

	
10.0000

	
12.5312

	
13.0000

	
2.0944

	
2.0000




	
Qr 23

	
0.0000

	
1.3975

	
1.0000

	
3.3287

	
3.0000

	
0.2498

	
0.0000




	
Qr 24

	
0.0000

	
6.6386

	
7.0000

	
11.7143

	
12.0000

	
0.0000

	
0.0000




	
Qr 29

	
0.0000

	
2.1505

	
2.0000

	
3.8151

	
4.0000

	
0.0005

	
0.0000




	
TGLs

	
5.7960

	
4.5206

	
4.5222

	
5.7765

	
5.7884

	
4.9165

	
4.9185




	
TVD

	
0.8691

	
2.5863

	
2.5924

	
0.08435

	
0.1037

	
2.7286

	
2.7249




	
VSI

	
0.1720

	
0.1260

	
0.1264

	
0.1511

	
0.1506

	
0.1243

	
0.1241
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Table 7. Optimal results for Cases 1–3 of the IEEE 57-bus grid.
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Case 1

	
Case 2

	
Case 3




	

	
Initial Case

	
SNS

	
ASNS

	
SNS

	
ASNS

	
SNS

	
ASNS






	
VG 1

	
1.0400

	
1.0600

	
1.0600

	
1.0096

	
1.0093

	
1.0600

	
1.0398




	
VG 2

	
1.0100

	
1.0506

	
1.0508

	
1.0000

	
1.0001

	
1.0359

	
1.0266




	
VG 3

	
0.9850

	
1.0448

	
1.0451

	
1.0018

	
1.0021

	
1.0100

	
1.0202




	
VG 6

	
0.9800

	
1.0385

	
1.0405

	
1.0003

	
1.0004

	
0.9967

	
1.0234




	
VG 8

	
1.0050

	
1.0600

	
1.0600

	
1.0071

	
1.0038

	
1.0196

	
1.0392




	
VG 9

	
0.9800

	
1.0282

	
1.0287

	
0.9891

	
0.9876

	
1.0010

	
1.0108




	
VG 12

	
1.0150

	
1.0363

	
1.0351

	
1.0206

	
1.0214

	
1.0278

	
1.0406




	
Ta 4–18

	
0.9700

	
0.9001

	
1.0015

	
1.0124

	
0.9222

	
0.9042

	
0.9190




	
Ta 4–18

	
0.9780

	
1.0994

	
0.9264

	
0.9749

	
1.0603

	
0.9246

	
0.9900




	
Ta 21–20

	
1.0430

	
1.0357

	
1.0129

	
0.9808

	
0.9767

	
1.1000

	
1.0978




	
Ta 24–25

	
1.0000

	
1.0895

	
1.0221

	
1.0769

	
1.0806

	
0.9129

	
0.9001




	
Ta 24–25

	
1.0000

	
0.9340

	
1.0244

	
0.9922

	
1.0543

	
0.9412

	
1.0064




	
Ta 24–26

	
1.0430

	
0.9922

	
1.0070

	
0.9984

	
1.0007

	
1.0502

	
1.0629




	
Ta 7–29

	
0.9670

	
0.9538

	
0.9476

	
0.9951

	
0.9951

	
0.9134

	
0.9119




	
Ta 34–32

	
0.9750

	
0.9598

	
0.9612

	
0.9266

	
0.9165

	
0.9014

	
0.9000




	
Ta 11–41

	
0.9550

	
0.9002

	
0.9043

	
0.9016

	
0.9000

	
0.9007

	
0.9003




	
Ta 15–45

	
0.9550

	
0.9342

	
0.9335

	
0.9133

	
0.9190

	
0.9124

	
0.9223




	
Ta 14–46

	
0.9000

	
0.9294

	
0.9206

	
0.9628

	
0.9548

	
0.9003

	
0.9023




	
Ta 10–51

	
0.9300

	
0.9318

	
0.9282

	
0.9940

	
0.9974

	
0.9033

	
0.9141




	
Ta 13–49

	
0.8950

	
0.9113

	
0.9001

	
0.9000

	
0.9001

	
0.9272

	
0.9060




	
Ta 11–43

	
0.9580

	
0.9369

	
0.9175

	
0.9311

	
0.9407

	
0.9156

	
0.9038




	
Ta 40–56

	
0.9580

	
1.0019

	
1.0041

	
1.0093

	
0.9895

	
1.0397

	
1.0974




	
Ta 39–57

	
0.9800

	
0.9887

	
0.9733

	
0.9099

	
0.9025

	
0.9773

	
1.0901




	
Ta 9–55

	
0.9400

	
0.9424

	
0.9400

	
0.9902

	
0.9891

	
0.9580

	
0.9130




	
Qr 18

	
10.0000

	
22.4644

	
12.9690

	
11.8506

	
11.4394

	
10.6182

	
25.4222




	
Qr 25

	
5.9000

	
13.2932

	
14.9441

	
18.3588

	
20.0403

	
0.0006

	
0.2065




	
Qr 53

	
6.3000

	
12.5535

	
12.4807

	
28.6528

	
29.1235

	
22.3590

	
0.1518




	
TGLs

	
27.8640

	
23.9692

	
23.8441

	
28.3819

	
28.5729

	
26.1348

	
26.5536




	
TVD

	
1.3586

	
2.9201

	
3.4179

	
0.6520

	
0.6405

	
2.4676

	
2.9997




	
VSI

	
0.3000

	
0.2658

	
0.2604

	
0.2990

	
0.3031

	
0.2591

	
0.2542
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Table 8. Comparative results for Cases 1 and 2 of the IEEE 57-bus grid.






Table 8. Comparative results for Cases 1 and 2 of the IEEE 57-bus grid.





	
Case 1 (TGLs Minimization)




	
Method

	
Min

	
Mean

	
Max

	
Std




	
Proposed ASNS

	
23.8441

	
23.9695

	
24.4367

	
0.1119




	
SNS

	
23.9692

	
24.7606

	
26.1838

	
0.7348




	
BSA * [77]

	
25.3980

	
24.8382

	
24.3744

	
0.2960




	
SCA * [47]

	
24.0540

	
24.6940

	
25.5270

	
0.3450




	
SMA * [78]

	
24.9009

	
25.5487

	
26.0263

	
0.2346




	
Improved SMA * [78]

	
24.5856

	
24.7079

	
24.8927

	
0.0617




	
SOA * [79]

	
24.2655

	
-

	
-

	
-




	
ABC * [44]

	
24.1025

	
-

	
-

	
-




	
PSO-ICA * [26]

	
25.5856

	
-

	
-

	
-




	
Case 2 (TVD Minimization)




	

	
Min

	
Mean

	
Max

	
Std




	
Proposed ASNS

	
0.6405

	
0.6653

	
0.7230

	
0.0208




	
SNS

	
0.6520

	
0.7018

	
0.8237

	
0.0408




	
OGSA * [80]

	
0.6982

	
-

	
-

	
-




	
GB-WCA * [30]

	
0.6501

	
-

	
-

	
-




	
WCA * [30]

	
0.6631

	
-

	
-

	
-




	
Case 3 (VSI Minimization)




	

	
Min

	
Mean

	
Max

	
Std




	
Proposed ASNS

	
0.2542

	
0.2586

	
0.2680

	
0.0029




	
SNS

	
0.2591

	
0.2650

	
0.2714

	
0.0036




	
HBO * [81]

	
0.6291

	
-

	
-

	
-




	
Improved HBO * [81]

	
0.5085

	
-

	
-

	
-








* The techniques in the comparisons are not coded by the authors but are employed by their creators.
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Table 9. Optimal results for Case 1 of the IEEE 118-bus grid.
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Variable

	
SNS

	
ASNS

	
Variable

	
SNS

	
ASNS

	
Variable

	
SNS

	
ASNS






	
VG 1

	
0.9506

	
0.9424

	
VG 62

	
0.9679

	
0.9720

	
VG 113

	
0.9682

	
0.9708




	
VG 4

	
0.9809

	
0.9713

	
VG 65

	
1.0036

	
1.0597

	
VG 116

	
0.9963

	
1.0572




	
VG 6

	
0.9715

	
0.9623

	
VG 66

	
0.9983

	
0.9985

	
Ta 8

	
1.0466

	
1.0461




	
VG 8

	
1.0470

	
1.0478

	
VG 69

	
1.0111

	
1.0045

	
Ta 32

	
1.0758

	
1.0498




	
VG 10

	
1.0598

	
1.0598

	
VG 70

	
0.9683

	
0.9717

	
Ta 36

	
1.0589

	
1.0477




	
VG 12

	
0.9673

	
0.9592

	
VG 72

	
0.9659

	
0.9679

	
Ta 51

	
1.0330

	
1.0495




	
VG 15

	
0.9553

	
0.9562

	
VG 73

	
0.9658

	
0.9673

	
Ta 93

	
1.0057

	
1.0796




	
VG 18

	
0.9610

	
0.9578

	
VG 74

	
0.9562

	
0.9593

	
Ta 95

	
1.0310

	
1.0859




	
VG 19

	
0.9543

	
0.9543

	
VG 76

	
0.9404

	
0.9400

	
Ta 102

	
0.9728

	
1.0262




	
VG 24

	
0.9746

	
0.9899

	
VG 77

	
0.9738

	
0.9730

	
Ta 107

	
0.9306

	
1.0104




	
VG 25

	
1.0073

	
1.0202

	
VG 80

	
0.9860

	
0.9835

	
Ta 127

	
1.0020

	
1.0570




	
VG 26

	
1.0591

	
1.0600

	
VG 85

	
0.9584

	
0.9726

	
Qr 34

	
4.1112

	
6.0706




	
VG 27

	
0.9635

	
0.9713

	
VG 87

	
0.9491

	
0.9657

	
Qr 44

	
6.7088

	
1.7000




	
VG 31

	
0.9559

	
0.9589

	
VG 89

	
0.9730

	
0.9913

	
Qr 45

	
26.5882

	
29.9781




	
VG 32

	
0.9589

	
0.9679

	
VG 90

	
0.9511

	
0.9627

	
Qr 46

	
1.2823

	
20.4191




	
VG 34

	
0.9628

	
0.9547

	
VG 91

	
0.9517

	
0.9658

	
Qr 48

	
9.3371

	
14.3187




	
VG 36

	
0.9584

	
0.9498

	
VG 92

	
0.9583

	
0.9730

	
Qr 74

	
22.5637

	
29.9500




	
VG 40

	
0.9554

	
0.9496

	
VG 99

	
0.9677

	
0.9691

	
Qr 79

	
29.9349

	
29.9540




	
VG 42

	
0.9582

	
0.9545

	
VG 100

	
0.9688

	
0.9741

	
Qr 82

	
27.7066

	
28.6906




	
VG 46

	
0.9699

	
0.9721

	
VG 103

	
0.9631

	
0.9583

	
Qr 83

	
10.5665

	
12.9289




	
VG 49

	
0.9847

	
0.9841

	
VG 104

	
0.9529

	
0.9445

	
Qr 105

	
18.8040

	
29.4293




	
VG 54

	
0.9534

	
0.9491

	
VG 105

	
0.9522

	
0.9451

	
Qr 107

	
17.9742

	
27.4281




	
VG 55

	
0.9518

	
0.9474

	
VG 107

	
0.9497

	
0.9418

	
Qr 110

	
10.9274

	
20.1976




	
VG 56

	
0.9518

	
0.9480

	
VG 110

	
0.9554

	
0.9468

	
TGLs

	
87.3385

	
85.9111




	
VG 59

	
0.9692

	
0.9679

	
VG 111

	
0.9629

	
0.9533

	
TVD

	
4.5467

	
4.8383




	
VG 61

	
0.9710

	
0.9733

	
VG 112

	
0.9489

	
0.9400
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Table 10. Comparative results for Case 1 of the IEEE 118-bus grid.
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	Method
	Min
	Mean
	Max
	Std





	Proposed ASNS
	85.9111
	87.8445
	89.7491
	1.0300



	SNS
	87.3385
	89.0330
	90.1690
	0.6735



	MPA * [78]
	115.6104
	117.2336
	119.3328
	1.0301



	SMA * [78]
	116.6795
	118.0399
	118.8109
	0.5734



	Improved SMA * [78]
	114.7325
	115.2126
	115.6699
	0.2520



	OGSA * [80]
	126.9900
	-
	-
	-



	GB-WCA * [30]
	121.4700
	-
	-
	-



	WCA * [30]
	131.8300
	-
	-
	-



	PSO-ICA * [26]
	116.8550
	-
	-
	-







* The techniques in the comparisons are not coded by the authors but are employed by their creators.
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Table 11. Optimal results for Case 2 of the IEEE 118-bus grid.






Table 11. Optimal results for Case 2 of the IEEE 118-bus grid.





	
Variable

	
SNS

	
ASNS

	
Variable

	
SNS

	
ASNS

	
Variable

	
SNS

	
ASNS






	
VG 1

	
0.9817

	
0.9813

	
VG 62

	
0.9580

	
0.9542

	
VG 113

	
0.9970

	
0.9575




	
VG 4

	
0.9978

	
1.0008

	
VG 65

	
0.9912

	
0.9660

	
VG 116

	
0.9558

	
0.9770




	
VG 6

	
0.9958

	
0.9998

	
VG 66

	
0.9925

	
0.9766

	
Ta 8

	
0.9180

	
0.9664




	
VG 8

	
0.9911

	
0.9999

	
VG 69

	
0.9995

	
1.0002

	
Ta 32

	
0.9899

	
1.0290




	
VG 10

	
0.9984

	
0.9997

	
VG 70

	
0.9786

	
0.9878

	
Ta 36

	
1.0241

	
0.9283




	
VG 12

	
0.9973

	
1.0000

	
VG 72

	
1.0026

	
1.0017

	
Ta 51

	
1.0331

	
1.0032




	
VG 15

	
0.9541

	
0.9568

	
VG 73

	
1.0024

	
1.0001

	
Ta 93

	
1.0512

	
0.9707




	
VG 18

	
0.9463

	
0.9508

	
VG 74

	
0.9551

	
0.9606

	
Ta 95

	
1.0378

	
0.9477




	
VG 19

	
0.9443

	
0.9485

	
VG 76

	
0.9405

	
0.9513

	
Ta 102

	
0.9966

	
0.9811




	
VG 24

	
1.0074

	
1.0030

	
VG 77

	
0.9833

	
0.9938

	
Ta 107

	
0.9489

	
0.9339




	
VG 25

	
1.0008

	
1.0048

	
VG 80

	
1.0096

	
1.0187

	
Ta 127

	
1.0156

	
1.0137




	
VG 26

	
0.9876

	
0.9878

	
VG 85

	
0.9644

	
0.9740

	
Qr 34

	
2.3968

	
8.3187




	
VG 27

	
0.9833

	
1.0096

	
VG 87

	
0.9998

	
1.0012

	
Qr 44

	
27.2772

	
23.1574




	
VG 31

	
1.0044

	
1.0019

	
VG 89

	
0.9609

	
0.9661

	
Qr 45

	
28.9069

	
29.6803




	
VG 32

	
0.9862

	
0.9965

	
VG 90

	
1.0034

	
1.0009

	
Qr 46

	
4.6377

	
28.9136




	
VG 34

	
0.9545

	
0.9591

	
VG 91

	
0.9544

	
0.9503

	
Qr 48

	
5.1663

	
16.6178




	
VG 36

	
0.9483

	
0.9522

	
VG 92

	
0.9504

	
0.9552

	
Qr 74

	
12.7093

	
9.0686




	
VG 40

	
0.9890

	
0.9990

	
VG 99

	
0.9905

	
1.0002

	
Qr 79

	
20.9656

	
26.9882




	
VG 42

	
1.0040

	
0.9979

	
VG 100

	
0.9597

	
0.9668

	
Qr 82

	
24.6778

	
29.6204




	
VG 46

	
1.0002

	
1.0131

	
VG 103

	
0.9552

	
0.9665

	
Qr 83

	
27.8694

	
29.0008




	
VG 49

	
1.0072

	
0.9941

	
VG 104

	
0.9483

	
0.9537

	
Qr 105

	
9.6319

	
0.1302




	
VG 54

	
0.9524

	
0.9533

	
VG 105

	
0.9534

	
0.9548

	
Qr 107

	
7.2698

	
14.0471




	
VG 55

	
0.9464

	
0.9506

	
VG 107

	
0.9983

	
1.0017

	
Qr 110

	
14.8929

	
26.5572




	
VG 56

	
0.9493

	
0.9507

	
VG 110

	
0.9483

	
0.9659

	
TGLs

	
100.0307

	
99.9273




	
VG 59

	
0.9604

	
0.9552

	
VG 111

	
0.9490

	
0.9589

	
TVD

	
3.1799

	
2.9878




	
VG 61

	
0.9611

	
0.9596

	
VG 112

	
0.9560

	
0.9794
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Table 12. Optimal results for Case 3 of the IEEE 118-bus grid.
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	Variable
	SNS
	ASNS
	Variable
	SNS
	ASNS
	Variable
	SNS
	ASNS





	VG 1
	0.9402
	0.9402
	VG 62
	0.9506
	0.9408
	VG 113
	0.9477
	0.9658



	VG 4
	0.9652
	0.9806
	VG 65
	0.9521
	0.9802
	VG 116
	0.9405
	0.9453



	VG 6
	0.9670
	0.9593
	VG 66
	0.9920
	0.9648
	Ta 8
	0.9208
	0.9000



	VG 8
	0.9572
	0.9400
	VG 69
	1.0571
	1.0544
	Ta 32
	0.9891
	1.0238



	VG 10
	1.0040
	0.9866
	VG 70
	0.9813
	0.9749
	Ta 36
	0.9116
	0.9758



	VG 12
	0.9637
	0.9553
	VG 72
	0.9408
	0.9474
	Ta 51
	0.9338
	0.9004



	VG 15
	0.9446
	0.9463
	VG 73
	0.9582
	0.9427
	Ta 93
	0.9425
	0.9352



	VG 18
	0.9516
	0.9429
	VG 74
	0.9673
	0.9569
	Ta 95
	0.9648
	0.9470



	VG 19
	0.9413
	0.9428
	VG 76
	0.9408
	0.9400
	Ta 102
	0.9721
	1.1000



	VG 24
	0.9461
	0.9778
	VG 77
	0.9611
	0.9628
	Ta 107
	0.9031
	0.9202



	VG 25
	0.9746
	0.9471
	VG 80
	0.9591
	0.9627
	Ta 127
	0.9231
	0.9042



	VG 26
	0.9726
	0.9542
	VG 85
	0.9403
	0.9404
	Qr 34
	2.2060
	25.8409



	VG 27
	0.9576
	0.9731
	VG 87
	0.9626
	0.9533
	Qr 44
	29.9001
	29.9736



	VG 31
	0.9427
	0.9457
	VG 89
	0.9551
	0.9564
	Qr 45
	29.6673
	29.9865



	VG 32
	0.9400
	0.9565
	VG 90
	0.9468
	0.9410
	Qr 46
	3.7885
	3.6437



	VG 34
	0.9516
	1.0280
	VG 91
	0.9476
	0.9561
	Qr 48
	3.3209
	28.1680



	VG 36
	0.9443
	1.0238
	VG 92
	0.9443
	0.9433
	Qr 74
	18.1443
	14.3624



	VG 40
	0.9400
	1.0403
	VG 99
	0.9679
	0.9400
	Qr 79
	24.6361
	29.8855



	VG 42
	1.0600
	1.0484
	VG 100
	0.9621
	0.9513
	Qr 82
	23.6569
	27.7690



	VG 46
	1.0600
	1.0591
	VG 103
	0.9496
	0.9560
	Qr 83
	4.1180
	0.3922



	VG 49
	1.0394
	1.0311
	VG 104
	0.9407
	0.9400
	Qr 105
	19.6368
	3.2235



	VG 54
	0.9482
	0.9423
	VG 105
	0.9403
	0.9451
	Qr 107
	16.2616
	22.6529



	VG 55
	0.9451
	0.9400
	VG 107
	0.9554
	0.9774
	Qr 110
	0.2012
	5.5425



	VG 56
	0.9466
	0.9419
	VG 110
	0.9430
	0.9474
	TGLs
	107.2403
	106.9493



	VG 59
	0.9401
	0.9414
	VG 111
	0.9568
	0.9403
	TVD
	5.8744
	5.7535



	VG 61
	0.9545
	0.9471
	VG 112
	0.9401
	0.9589
	VSI
	0.0645
	0.0620
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Table 13. Average computational time per iteration using ASNS and SNS.
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	SNS
	Proposed ASNS





	IEEE 30-bus systems
	0.7222
	0.6690



	IEEE 57-bus systems
	2.1332
	2.1979



	IEEE 118-bus systems
	4.031
	4.1401
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Table 14. Detailed robustness indices for Cases 1-3 of the IEEE 30-bus grid.
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	SNS
	Proposed ASNS
	% Improve
	SNS
	Proposed ASNS
	% Improve
	SNS
	Proposed ASNS
	% Improve





	Min.
	4.5208
	4.5206
	0.0036
	0.084611
	0.08435
	0.3085
	0.0652
	0.0637
	2.1955



	Mean
	4.7870
	4.6154
	3.5852
	0.092111
	0.089639
	2.6837
	0.0665
	0.0658
	1.0783



	Max.
	5.1931
	4.8988
	5.6675
	0.102589
	0.098258
	4.2217
	0.2714
	0.2679
	1.2360



	Standard deviation
	0.1916
	0.1254
	34.5600
	0.0050
	0.0041
	18.7139
	0.0036
	0.0029
	17.3804
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Table 15. Absolute difference between the best and worst of SNS and ASNS for minimizing the losses (Case 1) for the IEEE 30-bus system.
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At 100% Convergence

	
At 90% Convergence

	
At 80% Convergence

	
At 70% Convergence




	
SNS

	
ASNS

	
SNS

	
ASNS

	
SNS

	
ASNS

	
SNS

	
ASNS






	
|Best-worst| (MW)

	
0.6723

	
0.3781

	
0.6991

	
0.4451

	
0.7427

	
0.5441

	
0.7828

	
0.6340




	
|Best-worst| (%)

	
14.8700

	
8.3600

	
15.4600

	
10.0400

	
16.4300

	
12.0400

	
17.3100

	
14.0800
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Table 16. Success rates for different values of the ASNS parameters used for minimizing the losses (Case 1) for the IEEE 30-bus system.
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Items and Values

	
Number of Search Individuals




	
15

	
25

	
40

	
50






	
Maximum number of iterations

	
150

	
0.0000%

	
10.0000%

	
16.6667%

	
20.0000%




	
200

	
3.3334%

	
16.6667%

	
16.6667%

	
33.3334%




	
250

	
3.3334%

	
16.6667%

	
20.0000%

	
56.6667%




	
300

	
6.6667%

	
16.6667%

	
26.6667%

	
76.6667%
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Table 17. Comparisons of the mean, best, and standard deviation using ASNS and SNS for benchmark functions.
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Fun. No.

	
Name

	
Ranges

	
Dim.

	
Mean

	
Standard Deviation

	
Best




	
ASNS

	
SNS

	
ASNS

	
SNS

	
ASNS

	
SNS






	
F1

	
Beale

	
[−4.5, 4.5]

	
2

	
0

	
0

	
0.0000

	
0.0000

	
0

	
0




	
F2

	
Schaffer No. 4

	
[−100, 100]

	
2

	
0.292579

	
0.292579

	
6.9100 × 10−17

	
6.9100 × 10−17

	
0.292579

	
0.292579




	
F3

	
Salomon

	
[−100, 100]

	
30

	
0.099873

	
0.099873

	
7.7500 × 10−14

	
1.9300 × 10−9

	
0.099873

	
0.099873




	
F4

	
Leon

	
[−1.2, 1.2]

	
2

	
0

	
1.16 × 10−26

	
0.0000

	
5.4100 × 10−26

	
0

	
1.23 × 10−32




	
F5

	
Zettl

	
[−5, 10]

	
2

	
−0.00172

	
−0.00224

	
1.0670 × 10−3

	
1.0970 × 10−3

	
−0.00351

	
−0.00377




	
F6

	
Sphere

	
[−100, 100]

	
30

	
3.0079 × 10−160

	
1.1789 × 10−147

	
9.5051 × 10−160

	
5.7805 × 10−147

	
7.1727 × 10−167

	
2.9501 × 10−152




	
F7

	
Schwefel’s 2.20

	
[−100, 100]

	
30

	
1.40367 × 10−81

	
2.58878 × 10−75

	
2.3913 × 10−81

	
6.4732 × 10−75

	
3.98714 × 10−83

	
2.44512 × 10−77




	
F8

	
Brown

	
[−1, 4]

	
30

	
2.6755 × 10−163

	
1.4484 × 10−151

	
0.0000

	
3.9041 × 10−151

	
1.3097 × 10−167

	
4.2958 × 10−156




	
F9

	
Powell Singular

	
[−4, 5]

	
30

	
1.69066 × 10−20

	
3.93264 × 10−10

	
8.7726 × 10−20

	
2.1540 × 10−9

	
4.43765 × 10−30

	
1.82433 × 10−38




	
F10

	
Perm 0,D,Beta

	
[−5, 5]

	
5

	
0.062787588

	
0.111982376

	
0.086737

	
0.16016

	
0.002908003

	
0.001297683




	
F11

	
Sum Squares

	
[−10, 10]

	
30

	
6.4142 × 10−161

	
1.1355 × 10−149

	
2.1289 × 10−160

	
2.5163 × 10−149

	
1.4778 × 10−165

	
2.6613 × 10−152




	
F12

	
Adjiman

	
[−1, 2]

	
2

	
−1.81123

	
−1.80019

	
0.18895

	
0.20109

	
−2.02181

	
−2.0201




	
F13

	
Bird

	
[−2pi, 2pi]

	
2

	
−82.1769

	
−75.2806

	
20.711

	
21.134

	
−106.193

	
−106.656




	
F14

	
Hartman 3

	
[0, 1]

	
3

	
−3.43303

	
−3.41297

	
0.27033

	
0.33938

	
−3.85014

	
−3.84113




	
F15

	
Cross-in-tray

	
[−10, 10]

	
2

	
−2.01815

	
−2.01409

	
0.046780

	
0.052864

	
−2.06206

	
−2.06043




	
F16

	
Cross leg table

	
[−10, 10]

	
2

	
−0.00011

	
−0.00011

	
1.4600 × 10−5

	
1.4900 × 10−5

	
−0.00014

	
−0.00015




	
F17

	
Crowned cross

	
[−10, 10]

	
2

	
0.001192

	
0.001317

	
1.6300 × 10−5

	
7.0700 × 10−4

	
0.00118

	
0.001177




	
F18

	
Helical Valley

	
[−10, 10]

	
3

	
6.69 × 10−82

	
5.79 × 10−46

	
2.5500 × 10−81

	
3.1700 × 10−45

	
6.96 × 10−91

	
1.61 × 10−64




	
F19

	
Shubert

	
[−10, 10]

	
2

	
−88.996

	
−77.3831

	
41.2951

	
44.065

	
−177.796

	
−179.212




	
F20

	
Periodic

	
[−10, 10]

	
30

	
1.044367

	
1.43648

	
0.053020

	
0.081863

	
1.001063

	
1.266691




	
F21

	
Qing

	
[−500, 500]

	
30

	
1.177906

	
5.138242

	
1.4770

	
13.791

	
0.103473

	
0.066978




	
F22

	
Alpine N. 1

	
[−10, 10]

	
30

	
1.83 × 10−83

	
2.46 × 10−77

	
2.5400 × 10−83

	
6.8600 × 10−77

	
1.26 × 10−85

	
4.67 × 10−79




	
F23

	
Xin-She Yang

	
[−5, 5]

	
30

	
1.79 × 10−75

	
2.44 × 10−54

	
9.6700 × 10−75

	
1.3400 × 10−53

	
8.23 × 10−94

	
6.89 × 10−72




	
F24

	
Wayburn Seader 3

	
[−500, 500]

	
2

	
19.10588

	
19.10588

	
1.4800 × 10−14

	
1.7800 × 10−14

	
19.10588

	
19.10588




	
F25

	
Dixon and Price

	
[−10, 10]

	
30

	
0.666666677

	
0.666666692

	
2.0899 × 10−8

	
4.7866 × 10−8

	
0.666666667

	
0.666666667
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