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Abstract: The movement of microorganism cells in fluid influences various biotic processes, including
septicity and marine life ecology. Many organic and medicinal applications need to look into the
insight of mechanism in nanofluids containing a microbial suspension. The current paper concerns
the bioconvection of a ternary hybrid nanofluid (Al2O3-Cu-CNT/water) flow containing motile
gyrotactic microorganisms toward three different geometries (a flat plate, a wedge, and a cone)
in the occurrence of natural convection, radiation, and heat source/sink. The Cattaneo–Christov
theory is employed to develop the model. The equations are solved by using the “bvp4c function
in MATLAB”. The influence of the crucial significant factors on the motile microorganisms’ density,
velocity, temperature, nanoparticles’ concentration, microbe density gradient, and transmission rates
of heat and mass is discussed. The results depict that the heat transmission rate is highest for the
flow toward the cone, whereas the mass transmission rate and microbe density gradient are highest
for the flow toward the wedge. In addition, the higher estimates of the thermal relaxation parameter
corresponding to the Cattaneo–Christov theory act to enhance the rate of heat transmission. The
results of the current study will be useful to many microbial-enhanced oil recovery systems, carriage
processes, architectural design systems, medicinal fields that utilize nanofluids, and so on.

Keywords: ternary hybrid nanofluid; Cattaneo–Christov model; gyrotactic microorganisms; cone;
wedge; plate

MSC: 76D05; 76-10

1. Introduction

The importance of NF and HNF flow over a wedge, a cone, and a flat plate is due to
their vast applications. These applications are seen in, but are not restricted to, fiber technol-
ogy, the design of vessels for nuclear waste retention, steam generators, spacecraft design,
and solar power collectors. Initially, for the aforementioned applications, manufacturers
utilized lubricants, air, and water to accomplish heat transmission (HT). However, such nat-
ural materials do not fulfill the standards at the industrial scale. Many working fluids have
poor thermal conductivity (TC), which is considered a hurdle in HT, and it slows down the
working of thermal flow models. In the present world, the production of several gadgets
and apparatuses utilized in industrial and technical arenas has evolved significantly. For
instance, in various devices, temperature rises over time, owing to electrical resistance. The
heat-transport capacity of such devices is diminished due to electric resistance, resulting in
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a technical defect. To lessen the possibility of a technical malfunction, many devices and
components must be heat-intolerant. Therefore, these applications require a coolant that
has superior TC and heat transfer qualities. Previous research (Choi [1]) has demonstrated
that dispersing nanoparticles (NPs) in a base fluid dramatically changes the characteristics
and heat transfer qualities of a convectional base fluid (BF). Furthermore, if necessary, the
characteristics of nanofluids (NFs) can be tailored to a specific purpose. The main limitation
with an NF containing a single type of NPs is that the NPs have better thermal linkages or
good rheological features, but not both. The properties of NFs may be enhanced by altering
the nanoparticles volume fraction (NVF); however, this has a restriction because of the
difficulties arising owing to viscosity escalation. To erase the limitation of NFs, researchers
studied hybrid nanofluids (HNFs) that aim to elevate the properties of nanoparticles of dif-
ferent materials. Early HNFs studies employed NFs with two different particles; however,
in the last three years, a distinct research trend has evolved that consists of mixing several
NPs to generate an ideal nanofluid: three NPs in a working fluid. Such NFs are mentioned
as “ternary nanofluids”, “ternary hybrid nanofluids” (THNF), or “trihybrid nanofluids.”
The authors of the present study have studied the comparative behavior of bioconvective
THNF flow over three different geometries (a flat plate, a wedge, and a cone). The main
aim of the authors is to investigate the HT rate of THNF (Al2O3-Cu-CNT/water) over the
surface of three different geometries (a flat plate, a wedge, and a cone).

In their review article, Sahoo [2] and Adun et al. [3] emphasized the shapes of NPs, the
material of NPs, the size of NPs, and the proportion of NPs in optimizing the properties of
THNF. Furthermore, selecting the appropriate NPs mixture, as well as optimal NPs mixing
and stability, are critical variables that may influence THNF development, notably for HT
applications (Xuan et al. [4]). The invention of THNFs and the experimental validation
of correlations (Sahoo and Kumar [5] and Sahoo [6]) have paved the way for researchers
working in numerical flow analysis to investigate the possibility of THNFs as a viable
coolant in industrial HT applications. Animasaun et al. [7] expounded the significance of
convective heating on the transport of THNF over a horizontal surface stretching with a
linear rate. They investigated the flow with water as a BF and aluminum oxide, aluminum,
and silver NPs, all with different shapes. They concluded that convective heating could
be utilized for achieving a high HT rate. Alanazi et al. [8] recently studied the dynamics
of ternary-hybrid nanofluid subject to magnetic flux density and heat source or sink on a
convectively heated surface. They deduced that increasing thermo-migration of NPs causes
HT to reduce. Raju et al. [9] explicated the nonlinear movements of axisymmetric ternary
hybrid nanofluids in a thermally radiated expanding or contracting permeable Darcy Walls
with different shapes and densities by using simple linear regression. Ramzan et al. [10]
expounded on the influence of ion slip and Hall current on kerosene-based THNF flow
towards a surface rotating about an axis with silver, copper, and graphene oxide NPs.

Improvement of thermal control is a concern of manufacturers of the electrical division,
thermal systems, power sector, and medicinal bids. To study the HT rate in any medium, it is of
utmost importance to see the regulations of HT in that particular medium. For a long period,
HT was analyzed with the Fourier law [11], which says that HT occurs at an infinite speed.
Later, Cattaneo [12] modified the law of Fourier by generalizing it and stating that HT occurs
at a restricted speed in any medium. He incorporated a time relaxation factor to generalize
the Fourier model, and it reduced the nature of the parabolic thermal equation to a hyperbolic
equation. Christov [13] achieved the material invariant form of Cattaneo’s law through the
Oldroyd derivative. After the successful formulation by Cattaneo and Christov, the model came
to be known as the Cattaneo–Christov heat flux model (CCHM). Numerous researchers have
calculated the HT rate of different flows with a time lag factor using CCHM. Venkateswarlu
et al. [14] expounded on the significance of CCHM in nanofluid flow past a surface with a linear
stretching rate. They discussed the nanofluid flow with BF as water, discussed the flow pattern,
and presented a comparison of MoS2/water and MgO/water nanofluid. Rawat and Kumar [15]
analyzed Cu-water NF flow over a stretching surface with CCHM and inferred that time lag
presence reduces the HT rate. Ramzan et al. [16] expounded on the flow behavior of dusty
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micropolar NF flow over a sheet with CCHM. Lv et al. [17] studied the significance of CCHM
in Reiner–Rivlin NF flow over a disk rotating about an axis with bioconvection phenomena.
Abderrahmane et al. [18] elucidated the impact of MHD Hybrid Nanofluid Mixed Convection
Heat Transfer and Entropy Generation in a 3-D Triangular Porous Cavity with Zigzag Wall and
Rotating Cylinder.

Another intriguing study field is the bioconvection phenomenon, which covers a range of
applications in the real world. The directed movement of diverse microorganisms functions as the
base for many bioconvection models. Different species are distinguished by the direction in which
these microorganisms swim. Gyrotactic microbes (GM) are the ones that travel upwards against
gravity in stagnant water, resulting in the higher section of the fluid being denser than the lower.
When the higher portion gets too dense, owing to microbe accumulation, it becomes unstable,
and microbes fall, causing bioconvection. This bioconvection pattern is maintained by returning
swimming microorganisms. Applications of this phenomenon include biological tissues, biofuels,
biotechnology, microsystems, transportation processes, enzyme biosensors, microbial-enhanced
oil recovery, and so on. Furthermore, bioconvective nanofluid has vast applications, including the
development of nanoparticle processing, architectural design, nanoparticle stability, polymer coat-
ing, automobile coolants, and sterilizing applications in thermal sciences, among others. The novel
idea of nanofluid with different nanoparticles are presented in [19–21]. Shi et al. [22] explicated
the idea of a magnetic bioconvective stream of a Cross nanoliquid over a stretched sheet. They
determined that the growing Lewis number causes the density of gyrotactic microorganisms (GM)
to fall. Al Khaled and Khan et al. [23] expounded on the thermal properties of a Casson nanoliquid
flow containing GM over a surface in motion. Bhatti et al. [24] explicated the applications of
GM in blood-based non-Newtonian nanoliquid flow through a narrow artery. They utilized the
Sutterby fluid model to study blood flow. Kairi et al. [25] expounded on the significance of the
suspension of GM in a Casson nanoliquid flow past an inclined, stretched sheet with Marangoni
convection. Ali et al. [26] explicated the magnetic Cross nanomaterial flow over an extending
horizontal plate and horizontal cylinder and studied the significance of GM and CCHM in their
flow model.

Of late, several researchers have published papers on the flow of NFs or HNFs over a
cone, a wedge, and a flat plate (Mishra and Kumar [27] and Yaseen et al. [28], Mahanthesh
and Mackolil [29], and Gumber et al. [30]). In this research communication, authors have
modeled and investigated the bioconvective THNF flow (Al2O3-Cu-CNT/water flow) over
three different geometries (a flat plate, a wedge, and a cone) with motile gyrotactic microor-
ganisms (GM). Moreover, the significance of CCHM, heat generation/absorption, natural
convection, and thermal radiation are also studied. Some past research (see, for instance,
Rawat et al. [31], Sandeep and Reddy [32], and Reddy et al. [33]) has conducted such com-
parative studies. However, until now, no author(s) have attempted or published a study,
which shows the comparative behavior of bioconvective THNF (Al2O3-Cu-CNT/water)
flow over three different geometries (a flat plate, a wedge, and a cone). The results of the
current study will be useful to many microbial-enhanced oil recovery systems, carriage
processes, architectural design systems, medicinal fields that utilize nanofluids, and so on.
The novelty and aim of this research communication and the aspects this paper attempts to
explore are as mentioned in the following points:

• The mathematical flow model of THNF (Al2O3-Cu-CNT/water) over three different
geometries (a flat plate, a wedge, and a cone).

• The application of CCHM in the THNF flow.
• The significance of motile GM in THNF (Al2O3-Cu-CNT/water).
• Investigating the HT rate of THNF flow over three different geometries (a flat plate, a

wedge, and a cone) and finding the condition/geometries under present modeling for
which THNF has the maximum HT rate.

• Comparison of the HT rate of THNF flow with the HT rate of HNF and NF in the case
of all three geometries.



Mathematics 2023, 11, 1237 4 of 25

2. Flow Model and Governing Equations
2.1. Flow Assumptions and Mathematical Model

This research communication explores the flow of THNF (Al2O3-Cu-CNT/water)
toward three different geometries (a cone, a wedge, and a flat plate) containing motile GM.
This section of the paper deals with the modeling of the flow of THNF in the boundary
layer region (BLR) and the assumptions of the model. To study the THNF flow, the surface
of a cone, wedge, and flat plate are assumed coincidental to the x-axis, and the y-axis is
normal to it (refer to Figure 1). The flow is instigated by the manifestation of the convection
effect. The half angle of the wedge and cone are denoted by α, and the radius of the cone is
denoted by r. To overview the influence of the presence of time lag in the heat transfer (HT)
and mass transfer (MT) rate, the authors modeled the flow with the Cattaneo–Christov
theory. Furthermore, heat source/sink, thermal radiation, and injection/suction effects are
also deliberated together to study the flow of THNF in the present problem. In the last
term on the right hand side in the energy equation (Equation (3)), qr denotes the thermal
radiative heat flux, and it is defined later, after governing equations.
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Based on the assumptions and aforesaid discussion, the bioconvective flow of THNF
(Al2O3-Cu-CNT/water) toward three different geometries (a flat plate, a wedge, and a
cone) is represented by the following PDEs [34,35]:

Continuity equation:
∂(rnu)

∂x
+

∂(rnv)
∂y

= 0 (1)

Since the thermal BLR thickness is very minuscule, the r = xsin(α).
Momentum equations:

u
∂u
∂x

+ v
∂u
∂y

= νthn f

(
∂2u
∂y2

)
+

(ρβ)thn f

ρthn f
g(T − T∞) cos α (2)
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Energy equation:

(
ρCp

)
thn f

u ∂T
∂x + v ∂T

∂y + τt

 u2 ∂2T
∂x2 +

(
u ∂u

∂x + v ∂u
∂y

)
∂T
∂x +

(
u ∂v

∂x + v ∂v
∂y

)
∂T
∂y

+2uv ∂2T
∂x∂y + v2 ∂2T

∂y2 − Qo
(pCp)thn f

(
u ∂T

∂x + v ∂T
∂y

) 
= kthn f

∂2T
∂y2 + Q0(T − T∞)− ∂qr

∂y

(3)

Concentration equation:

u
∂C
∂x

+ v
∂C
∂y

+ τc

[
u2 ∂2C

∂x2 +

(
u

∂u
∂x

+ v
∂u
∂y

)
∂C
∂x

+

(
u

∂v
∂x

+ v
∂v
∂y

)
∂C
∂y

+ 2uv
∂2C
∂x∂y

+ v2 ∂2C
∂y2

]
= Dn

∂2C
∂y2 (4)

Microorganisms’ equation:

u
∂N
∂x

+ v
∂N
∂y

+

(
bWc

Cw − C∞

)(
∂

∂y

(
N

∂C
∂y

))
= Dm

∂2N
∂y2 (5)

where “(u, v) are the velocity components along (x, y) directions”, respectively. In addition,
the variables used in Equations (1)–(6) have the following meaning: “T—temperature”,
“C—concentration”, “N—motile microorganisms concentration”, “Q0—heat source/sink co-
efficient”, “b—chemotaxis constant”, “Wc—swimming cells speed”, “τt—thermal relaxation
time”, “τc—solutal relaxation time”. Furthermore, “k—thermal conductivity, µ—dynamic
viscosity, ν—kinematic viscosity, Cp—heat capacity, ρ—density, σ—electrical conductiv-
ity, Dn—Brownian diffusion coefficient, and Dm—microorganisms diffusion”. Moreover,
subscript w—wall condition, ∞—free stream condition, thnf —ternary hybrid nanofluid,
nf —nanofluid, and bf —fluid.

Furthermore, at the surface, suction/injection is applied with vw as velocity of mass
transfer, and surface is moving with initial velocity, as uw = ν f x/l2. The temperature at the
surface Tw is taken as a variable Tw = T∞ + axs, where T∞ is the free stream temperature of
THNF, and s is the parameter related to surface temperature. In addition, Cw and Nw are
concentrations of NPs and GM at the surface, whereas C∞ and N∞ are concentrations of
NPs and GM at the free stream.

The Boundary Conditions (BCs) are:

u = uw =
ν f x

l2 , v = vw, T = Tw = T∞ + axs, C = Cw, N = Nw at y = 0
u→ 0, T → T∞, C→ C∞, N → N∞ as y→ ∞

}
(6)

The Rosseland theory is used to approximate the thermal radiative heat flux qr, and it
is demarcated as follows [15]:

qr = −
4σ∗

3k∗
∂T4

∂y
(7)

where “k* is the mean absorption coefficient”, and “σ* is the Stefan-Boltzmann constant”.
In Equation (7), the value of qr is estimated by assuming T4 ∼= 4T∞

3T − 3T∞
4 with the

help of expansion via Taylor’s series. This assumption is valid for flow that has minuscule
temperature differences in the layers. To arrive at such an assumption, higher-order terms
are neglected in Taylor’s series expansion about T∞. The energy equation (Equation (3)) is
further solved with the help of Equation (7) and the aforementioned assumption of T4.

The flow of THNF (Al2O3-Cu-CNT/water) toward three different geometries (a cone,
a wedge, and a flat plate) is characterized by the following conditions [32,35]:

(a) THNF flow toward cone: n = 1 and α 6= 0.
(b) THNF flow toward wedge: n = 0 and α 6= 0.
(c) THNF flow toward flat plate: n = 0 and α 6= 0.
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2.2. Properties of Ternary Hybrid Nanofluid

The current subsection refers to the modeling and investigation of THNF. The charac-
teristics of THNF are subjected to the base fluid (water), NPs, and the NVF of Al2O3, Cu,
and CNT NPs, as presented in Table 1 [15,36]. Moreover, the authors investigated the effect
of differently shaped nanoparticles (CNT—cylindrical, Cu—platelet, and Al2O3—spherical)
on the thermal behavior of the THNF in this study.

Table 1. Thermo-physical properties of water, Al2O3, Cu, and CNT nanoparticles [15,36].

ρ (kg/m3) Cp (J/kgK) k (W/mK) β (K−1) Shape Sphericity

Water 997.1 4179 0.613 21

Al2O3 3970 765 40 0.85 Spherical ψ = 1

Cu 8933 385 401 1.67 Platelet ψ = 0.612

CNT 2600 425 6600 1.6 × 10−6 Cylindrical ψ = 0.52

Table 2 lists the models used to develop thermophysical correlations of the properties
of THNF [36,37]. These correlations are valid and provide precise results when the NVF is
taken between the range of 0.01 to 0.1 and temperature range is between 35 ◦C to 50 ◦C. In
this paper, NVF of Al2O3, Cu, and CNT NPs is denoted by ϕ1, ϕ2, and ϕ3. Furthermore,
the following subscripts are used for: sp1—Al2O3, sp2—Cu, and sp3—CNT NPs.

Table 2. Thermophysical properties of ternary hybrid nanofluid [36,37].

Density ρthn f = (1− φ1 − φ2 − φ3)ρb f + φ1ρsp1 + φ2ρsp2 + φ3ρsp3

Heat capacitance

(
ρCp

)
thn f = (1− φ1 − φ2 − φ3)

(
ρCp

)
b f + φ1

(
ρCp

)
sp1 +

φ2
(
ρCp

)
sp2 + φ3

(
ρCp

)
sp3,

Modified Maxwell model:
kn fi
kb f

=
ki+(n−1)kb f +(n−1)φi(ki−kb f )

ki+(n−1)kb f−φi(ki−kb f )

where, n =
(

3
ψ

)
is shape factor.

Nanoparticle—1 (Spherical) ⇒


µn f 1
µb f

= 1 + 2.5φ1 + 6.2φ2
1

kn f 1
kb f

=
k1+2kb f +2φ1(k1−kb f )
k1+2kb f−φ1(k1−kb f )

Nanoparticle—2 (Platelet) ⇒


µn f 2
µb f

= 1 + 13.5φ2 + 904.4φ2
2

kn f 2
kb f

=
k2+3.9kb f +3.9φ2(k2−kb f )

k2+3.9kb f−φ2(k2−kb f )

Nanoparticle—3 (Cylindrical) ⇒


µn f 3
µb f

= 1 + 37.1φ3 + 612.6φ2
3

kn f 3
kb f

=
k3+4.7kb f +4.7φ3(k3−kb f )

k3+4.7kb f−φ3(k3−kb f )

Viscosity µthn f =
µn f 1φ1+µn f 2φ2+µn f 3φ3

φthn f

Thermal conductivity kthn f =
kn f 1φ1+kn f 2φ2+kn f 3φ3

φthn f
Where φthn f = φ1 + φ2 + φ3

2.3. Conversion of the Model Equations with Similarity Transformation

The flow governing PDEs (Equations (1)–(6)) are first modified using the similarity
transformation [32,38]:

η =
y
l

, u =
ν f x
l2 f ′(η), v = − (n + 1)ν f

f (η)
l

, θ(η) =
T − T∞

Tw − T∞
, φ(η) =

C− C∞

Cw − C∞
, ζ =

N − N∞

Nw − N∞
(8)

The continuity equation (Equation (1)) is identically satisfied, and the same can be
verified by utilizing the similarity transformations from Equation (7) in the continuity
equation (Equation (1)). The reduced form of Equations (2)–(5) and BCs (Equation (6)) after
using similarity transformations are as follows:
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Reduced Momentum equation:

f ′2 − (n + 1) f f ′′ =
31

32
f ′′′ +

33

32
λθ cos α (9)

Reduced Energy equation:

s f ′θ − (n + 1) f θ′ + γt

 s(s− 1) f ′2θ + s
(

θ f ′2 − (n + 1)θ f f ′′
)

+(n + 1)2θ′ f f ′ − 2(n + 1)s f f ′θ′

+ (n + 1)2 f 2θ′′ − Q
34
(sθ f ′ − (n + 1) f θ′)

 =
1
34 Pr

(
35 +

4
3

Rd

)
θ′′ +

Q
34

θ (10)

Reduced Concentration equation:

φ′′ + Le(n + 1) f φ′ − Le(n + 1)2γc

{
f f ′φ′ + f 2φ′′

}
= 0 (11)

Reduced Microorganisms’ equation:

ζ ′′ − Pe
(
ζ ′φ′ + (v + ζ)φ′′

)
+ (n + 1)Lb f ζ ′ = 0 (12)

Reduced BCs:

f ′(0) = 1, f (0) = Su
(n+1) , θ(0) = 1, φ(0) = 1, ζ(0)= 1 at η = 0

f ′(0) = 0, θ(0) = 0, φ(0) = 0, ζ(0)= 0 as η → ∞

}
(13)

In the aforementioned Equations (9)–(12) and BCs (Equation (13)), the nondimensional
parameters are encountered, and they are named and defined as follows:

“λ
(
= Grx/Rex

2)—Natural convection parameter, where Grx

(
= gβ f (Tw − T∞)l4/xν f

2
)

—Local Grashof number, Rex =
(

uwx/v f

)
—Local Reynolds number. Furthermore,

Pr(= (ρcp) f ν f /k f ) —Prandtl number, Rd =
(

4σ∗T3
∞/k f k∗

)
—Thermal radiation parame-

ter, Q
(
= Q0l2/(ρCp) f ν f

)
—Heat source/sink parameter, and γt =

(
τtν f /l2

)
—Thermal

relaxation parameter. In addition, Le
(
= v f /Dn

)
—Lewis number, Lb

(
= v f /Dm

)
—bioconvection Lewis number, Pe(= bWc/Dm)—bioconvection Peclet number,
v(= N2/(N1 − N2))—bioconvection constant, γc =

(
τcν f /l2

)
—Solutal relaxation pa-

rameter, and Su =
(
−vwl/v f

)
—Suction/Injection parameter. Furthermore, 31= µthn f /µ f ,

32= ρthn f /ρ f , 33= (ρβ)thn f /(ρβ) f , 34= (ρCp)thn f /(ρCp) f , 35= kthn f /k f are constants
based on THNF correlations and properties (see Table 2)”.

To have similar solutions of the Equations (9)–(12) with the BCs (Equation (13)), the
term of x must vanish from these equations. It is noticed that the natural convection
parameter λ

(
= Grx/Rex

2) appearing in Equation (9) when computed in the simplified
form will be written as λ = gβ f (Tw − T∞)l4/ν2

f x. Further, the BCs (Equation (6)) imply
that surface temperature is in a variable form, as Tw = T∞ + axs. So, further simplification
will lead to the value of the natural convection parameter as λ = gβ f axs−1l4/ν2

f . Therefore,
a similar solution will exist only when s = 1 because the term of x will vanish. For a similar
solution to exist and for the computations of the results of this study, the value of the
parameter related to surface temperature is strictly restricted to s = 1.

3. Engineering Parameters

The analysis of the concerned and related engineering parameters is necessary while
studying a flow model because it helps in applying the bids of the flow model in real-
life applications. The “Nusselt number Nu” (representing heat transfer rate), “Sherwood
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number Sh” (representing mass transfer rate), and motile microorganism density gradient
(Nm), at the surface of the flat plate, wedge, and cone, respectively, are [24,39]:

Nu = −(35 +Rd)θ
′(0) (14)

Sh = −ϕ′(0) (15)

Nm = −ζ ′(0) (16)

4. Methodology of Numerical Approach

The current section demonstrates the approach taken to solve the model depicted
by similarity equations (Equations (9)–(12)) and BCs (13). The transfigured equations are
nonlinear and coupled. Deducing an analytical solution to such a system is not an easy
task. Therefore, the authors attempted to solve the system (Equations (9)–(12)) and BCs (13)
numerically. The numerical solution of the Equations is derived with the “bvp4c function
(a built-in package in MATLAB)”. The “bvp4c function” uses a finite difference scheme
together with a precision of fourth-order with the help of the “3-stage Lobatto IIIA formula”.
The step-by-step working of bvp4c function is provided by Shampine et al. [40]. To derive
the solution of the present problem, the Equations (9)–(12) are transformed into ODEs of
first-order with the help of following transformation:

=(1) = f , =(2) = f ′, =(3) = f ′′ , =(4) = θ, =(5) = θ′, =(6) = ϕ, =(7) = ϕ′,=(8) = ζ,=(9) = ζ ′ (17)

Utilizing the new variables, the following MATLAB syntax is used:

==1 = 32
31

(
=(2)

2 − (n + 1)=(1)=(3) −
33
32

λ=(4) cos α
)

;

==2 = −

Q
34
=(4)−=(2)=(4)+ (n+1)=(1)=(5)−γ

 =(4)=(2)
2 − (n + 1)=(4)=(1)=(3) + (n + 1)2=(5)=(1)=(2)

−2(n + 1)=(1)=(2)=(5) −
Q
34

(
=(4)=(2) − (n + 1)=(1)=(5)

) 
1
34Pr (35+

4
3 Rd−γ (n+1)2=(1)2)

;

==3 = − Le(n+1)=(1)=(7) −Le(n+1)2γc=(1)=(2)=(7)
(1+Le(n+1)2γc=(1)2)

;

==4 = Pe
(
=(9)=(7) +

(
v +=(8)

)
(==3)

)
− (n + 1)Lb=(1)=(9);

(18)

The following MATLAB syntax is used for BCs at the surface and far-field:

=(2)(0) = 1, =(1)(0) =
Su

(n+1) , =(4)(0) = 1, =(6)(0) = 1, =(8)(0) = 1 at η = 0
=(2)(η) = 0, =(4)(η) = 0,=(6)(η) = 0, =(8)(η) = 0 as η → ∞

}
(19)

In addition, the values of slopes not known are guessed to begin the process of solving
the equations. The iteration process is repeated, and the solution is acknowledged only
when BCs are met (see Figure 2). In this model, ηmax was taken as 6, as the conditions at
this point were satisfied asymptotically, and step size was taken as 0.01. To authenticate
the results of the present model, a comparison is outlined with the published results of
Vajravelu and Nayfeh [38] (see Table 3). The results are reasonably consistent, confirming
that the present conclusions are effective.
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Table 3. Comparison of values of f ′′ (0) and− θ′(0) with results of Vajravelu and Nayfeh [38] for the
flow over cone when Rd = 0, γt = γc = 0, Su = 0; Le = Lb = Pe = v = 0.

Q Pr Gr M s f”(0) (See [38]) f”(0) [Present] −θ’(0) (See [38]) −θ’(0) [Present]

−5 0.3 −0.5 1 −2.1 −0.155592 −0.15570252 −2.237475 −2.23538986

−5 0.3 −0.5 1 2.1 −0.156001 −0.15588966 −2.232780 −2.23418090

−5 0.3 −0.5 3 2.1 −0.126400 −0.12634921 −2.233732 −2.23472524

−5 1.0 0.5 3 2.1 0.125260 0.12541914 −2.245321 −2.24047000

5. Results and Discussion

This communication explores the flow of THNF (Al2O3-Cu-CNT/water) toward
three different geometries (a flat plate, a wedge, and a cone) containing motile GM. This
section of the paper deals with the analysis of results and their discussion of THNF flow
toward the three different geometries (a flat plate, a wedge, and a cone). The discussion
will be focused on the velocity f ′(η), temperature θ(η), NPs concentration ϕ(η), and
microorganism concentration profile ζ(η) inside the BLR. The “bvp4c function in MATLAB”
was operated to deduce the numerical solution of this model, and various properties of the
flow were analyzed with the solution deduced. During the derivation of the solution, the
following general values of the parameters (present in Equations (18) and (19)) were used
for computations: Pr = 6.2 (water), Rd = 10, Su = 0.1, Pe = 0.1, Ω = 0.2, γt = 1.5, γc = 0.01,
Le = 1.5, Lb = 0.5, λ = 0.2, Q = −2, s = 1, and α = π

4 (for cone and wedge).

5.1. Discussion of Velocity Profiles, Velocity Boundary Layer Patterns, and Streamlines

Figures 3–7 show the influence of the natural convection parameter λ, NVF φi, and
suction/injection parameter Su on the velocity f ′(η), respectively. Figure 3 displays that
the velocity f ′(η) of THNF rises with an increase in the natural convection parameter λ.
The natural convection phenomenon is the mechanism of transportation of heat. This
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phenomenon causes THNF motion because of variation in fluid density, which occurs due
to temperature gradients. The applications of natural convection can be seen in food and
chemical industries and also in solar applications. In the present model, the increasing value
of the parameter λ causes the buoyancy forces to increase and helps the velocity increase
in all three cases (i.e., THNF flow toward a cone, a wedge, and a flat plate). Figures 4–6
display the velocity f ′(η) of THNF with a rise in the NVF φi of the NPs. The increasing
NVF φ1 of Al2O3 nanoparticles in the working fluid causes the velocity f ′(η) to decrease. In
addition, the increasing NVF φ2 and φ3 of Cu and CNT nanoparticles results in an increase
in velocity f ′(η). The decrease in velocity due to an increase in NVF of Al2O3 nanoparticles
is due to the spherical shape of these NPs, as the spherical shape has a larger surface area
for interacting with other NPs, and due to this, the effective viscosity of THNF increases.
Consequently, the velocity f ′(η) of THNF decreases with an increment in the NVF of Al2O3
nanoparticles. Figure 7 displays that the velocity f ′(η) of THNF drops with a surge in the
numerical value of the suction/injection parameter Su. The application of suction/injection
at the BLR has a central role in the boundary layer separation and is often used to delay the
boundary layer separation.
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The increasing suction at the surface causes the thickness of the momentum boundary
layer to reduce; consequently, the layers of the flow are strongly held toward the surface
destruct the momentum, and hence, velocity decreases.

In Figures 3–7, it is perceived that the velocity of THNF is highest for the flow toward
the plate and is lowest for the flow toward the cone. The flat plate provides a plane and
a smooth surface for the motion of the THNF, whereas the curved surface of the cone
provides obstruction to the flow, and hence, for the cone, the velocity is lowest. The above
results are also validated by the velocity boundary layer patterns and streamlines drawn
in Figures 8 and 9. Figures 8 and 9 show the velocity boundary layer configuration and
streamlines for the THNF flow toward the plate, wedge, and cone. The velocity boundary
layer configuration in Figure 8 show that the flow toward the cone has lower velocity in
comparison to the flow toward the plate and wedge. In addition, streamlines in Figure 9
also depict the same. It can be seen that for THNF flow toward the plate and wedge, the
streamlines are narrow, whereas for the THNF flow toward the cone, the streamlines are
wider. The wider streamlines depict that the velocity is low for the particular case.
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5.2. Discussion of Temperature Profiles

Figures 10–15 show the influence of heat source/sink parameter Q, NVF φ, thermal
radiation parameter Rd, suction/injection parameter Su, thermal relaxation parameter γt,
and natural convection parameter λ on the temperature θ, respectively. Figure 10 displays
that the temperature θ of the THNF is ominously affected by the heat source/sink parameter
Q values. The temperature θ increases on increasing the value of parameter Q. The negative
(Q < 0) and positive (Q > 0) values of parameter Q depict the mechanism of a heat sink and
source, respectively.
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The results depict that on amplifying the magnitude of the heat sink in the model,
the temperature θ of THNF flow falls. The reason for the falling temperature is that the
heat sink absorbs the heat produced in the BLR during the flow, which results in a falling
temperature. Figures 11–13 display the temperature θ of THNF with a rise in the NVF
φi of the NPs. The increasing NVF φ1 of Al2O3 nanoparticles in the working fluid causes
the temperature θ to increase. In addition, the increasing NVF φ2 and φ3 of Cu and CNT
nanoparticles results in a decrease in temperature θ. The increase in temperature due to
an increase in NVF of Al2O3 nanoparticles is due to the spherical shape of these NPs, as
the spherical shape has a larger surface area for interacting with other NPs, and due to
this, the effective viscosity of THNF increases and a greater amount of heat is released.
Consequently, the temperature θ of THNF increases with an increment in the NVF of Al2O3
nanoparticles. Figure 14 displays that the temperature θ of THNF surges with intensification
in the radiation parameter Rd. This means that the radiation provides energy to the fluid
particles, which surges their movement, and hence, the temperature rise. Furthermore, it
is also seen that the temperature θ of the THNF is considerably affected by the radiation
parameter Rd, which confirms its crucial role in the heat transmission process.

Figure 15 displays that the temperature θ of THNF falls with a rise in the numerical
value of the suction/injection parameter Su. The increasing suction at the surface causes
the width of the momentum boundary layer to reduce; consequently, the layers of the
flow with zero momentum are provided energy, and they gain momentum and start their
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motion again. This process destroys the flow and reduces the friction at the boundary
layer due to layers with zero momentum. Consequently, the temperature falls. Figure 16
displays that the temperature θ of THNF falls for higher estimates of the thermal relaxation
parameter γt. The nonzero parameter γt denotes lag in the heat conduction. The zero
value of the parameter γt resembles the traditional Fourier’s law for heat conduction. The
higher values of the parameter γt resemble the increased amount of time during the heat
conduction. This revelation character of the Cattaneo–Christov model differentiates it from
the “Fourier law of heat conduction”. The results indicate that increasing time lag during
the heat transfer leads to lower temperature. Figure 17 displays that the temperature θ of
THNF decreases with an increment in the natural convection parameter λ. The natural
convection phenomenon is the mechanism of transportation of heat. This phenomenon
causes THNF motion because of variation in fluid density, which occurs due to temperature
gradients. The increasing temperature gradients cause the temperature to fall.
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In Figures 10–17, it is perceived that the temperature θ of THNF flow is highest for the
flat plate and is lowest for the flow toward the cone. The flat surface of the plate allows
the smooth motion of the flow and the increasing interaction of the NPs and working fluid
particles, causing the system to interact properly, and consequently, the temperature rises.
However, the curved surface of the cone obstructs the movement and the interaction of
particles, and hence, the temperature is comparatively low for the flow toward the cone.



Mathematics 2023, 11, 1237 17 of 25

5.3. Discussion of Nanoparticles Concentration and Microorganisms Concentration

Figures 18–20 show the influence of the Lewis number Le, suction/injection param-
eter Su, and solutal relaxation parameter γc on the concentration φ of NPs, respectively.
Figure 18 shows the fall in the concentration of NPs with a rise in the Lewis number Le.
The Lewis number Le is negatively correlated with molecular diffusivity. The increment in
the Lewis number Le is seen as the lower molecular diffusivity. The lower diffusivity of
the NPs in the BLR causes a fall in the concentration of NPs. Figure 19 displays that the
NPs concentration is negatively correlated to the suction/injection parameter. Stronger
suction at the surface destroys the flow and momentum, reducing the diffusivity of the
NPs. Hence, the concentration falls due to the stronger suction.
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Figure 20. Effect of γc on φ(η).

Figure 20 depicts the influence of the solutal relaxation parameter γc on concentration
of NPs, and γc 6= 0 signifies the manifestation of lag in mass transfer. The zero value of
parameter γc corresponds to the traditional Fick’s law for mass diffusion. The higher values
of the parameter γc resemble the increased amount of time during the mass diffusion.
Results depict that the higher estimates of parameter γc lead NPs’ concentration to rise.

Figures 21–24 depict the fluctuation of the microorganism concentration profile ζ(η)
with the bioconvection Lewis number Lb, bioconvection Peclet number Pe, bioconvection
constant v, and suction/injection parameter Su. Figures 21–23 show that the microorganism
concentration profile ζ(η) falls with higher estimates of the bioconvection Lewis number
Lb, Peclet number Pe, and bioconvection constant. The bioconvection Lewis number Lb
is in charge of the system’s bioconvection. It increases heat diffusivity at the surface,
lowering the density of microbes. It also diminishes the width of the boundary layer,
which is proportional to the density of the motile microbe. Figure 24 shows that a rise in
the suction/injection parameter Su causes the microorganism concentration profile ζ(η)
to decrease. A stronger effect of the suction/injection parameter reduces the width of
momentum and the NPs’ concentration boundary layer; as a result, the movement of
layers and particles reduces, and it further causes the obstruction in the movement of the
microorganism. Consequently, the microorganism concentration profile ζ(η) falls with
increasing application of suction at the surface. In Figures 18–24, it is observed that the
concentration of NPs and microorganism concentration is highest for the flow toward the
flat plate and is lowest for the flow toward the cone. The flat surface of the plate allows
the smooth motion of the flow, and more and more diffusion of the NPs occurs; similarly,
it also provides the smooth functioning of the microorganisms’ movement. However, the
curved surface of the cone obstructs the diffusion of NPs and microorganisms’ movement;
hence, these two profiles are comparatively low for the flow toward the cone.
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5.4. Discussion of Nusselt Number, Sherwood Number, and Motile Microorganisms’ Density Gradient

Tables 4 and 5 display the influence of flow parameters on the Nusselt (Nu) number
depicting HT rate, Sherwood (Sh) number depicting mass transmission rate (MT rate),
and microorganisms’ density gradient (Nm) at the surface. Figure 25 is drawn to present
the variation in Nusselt number (Nu). The higher estimates of the natural convection
parameter λ cause the HT rate to rise, whereas the MT rate and microorganisms’ density
gradient fall. The rising natural convection phenomenon causes the HT rate to rise due to
the transportation of heat. This phenomenon causes THNF motion because of variation
in fluid density, which occurs due to temperature gradients. The increasing magnitude
of the suction parameter Su and heat sink parameter Q (Q < 0) acts to increase the HT
rate. The magnification in the HT rate is due to a reduction in thermal BLR thickness. The
reduced thickness allows more transmission of heat through the surface. On the contrary,
the increasing suction parameter causes the MT rate and microorganisms’ density gradient
(Nm) to decrease. Higher estimates of the radiation parameter Rd increase the HT rate. This
means that the radiation provides energy to the particles, which surges their movement
and, hence, the interaction with other particles, causing the HT rate to rise.
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Table 4. Numerical values of the Nusselt number (Nu), Sherwood number (Sh), and motile microorganisms’ density gradient (Nm).

Cone
(
n = 1, α = π

4
)

Wedge
(
n = 0, α = π

4
)

Plate (n = 0, α = 0)

Pe v γt γC Le Lb λ Q Rd S Nu Sh Nm Nu Sh Nm Nu Sh Nm

0.1 0.2 1.5 0.01 1.5 0.5 0.2 −2 10 0.1 24.92767 −1.51382 −0.87947 23.00199 −1.09132 −0.6332 23.02106 −1.09284 −0.63419

0.2 - - −1.03107 - - −0.74255 - - −0.74368

0.4 - - −1.33868 - - −0.96453 - - −0.96592

0.1 0.7 - - −0.93948 - - −0.67622 - - −0.67727

1.7 - - −1.0595 - - −0.76227 - - −0.76342

0.2 0.9 20.81458 −1.51501 −0.88056 19.29351 −1.09256 −0.63414 19.31295 −1.09457 −0.63551

1.3 23.60737 −1.51414 −0.87976 21.80354 −1.09167 −0.63346 21.82288 −1.09332 −0.63456

1.5 0.06 - −1.38953 −0.86634 - −1.04645 −0.62838 - −1.04774 −0.62935

0.16 - −1.16796 −0.84311 - −0.96177 −0.6193 - −0.96266 −0.62024

0.01 2 - −1.81643 −0.91215 - −1.3191 −0.65807 - −1.32073 −0.65908

3 - −2.3356 −0.96938 - −1.71464 −0.70207 - −1.71641 −0.70309

1.5 0.6 - - −0.97675 - - −0.69807 - - −0.69919

0.7 - - −1.06895 - - −0.76131 - - −0.76253

0.5 −1.8 24.55437 −1.47761 −0.85227 22.49837 −1.04949 −0.60575 22.28255 −1.03021 −0.59317

2.2 25.26119 −1.5448 −0.90259 23.4335 −1.12445 −0.65503 23.61331 −1.13766 −0.66375

0.2 −1.4 21.88554 −1.51457 −0.88013 20.27092 −1.09219 −0.63385 20.294 −1.09404 −0.6351

−0.8 18.43186 −1.51581 −0.88131 17.15315 −1.09365 −0.63502 17.18372 −1.09606 −0.63672

0.4 7.816058 −1.53274 −0.90268 7.173743 −1.11078 −0.65175 7.408173 −1.11788 −0.65803

−2 12 26.66715 −1.51439 −0.87998 24.58693 −1.09197 −0.63368 24.61154 −1.09374 −0.63487

14 28.25102 −1.51495 −0.88049 26.03504 −1.0926 −0.63417 26.06564 −1.09462 −0.63555

16 29.70916 −1.51549 −0.88101 27.37275 −1.09321 −0.63465 27.40974 −1.09547 −0.63623

10 −0.1 22.27847 −1.287 −0.77905 19.99349 −0.85639 −0.53176 20.0157 −0.85824 −0.53294

0.1 24.92767 −1.51382 −0.87947 23.00199 −1.09132 −0.6332 23.02106 −1.09284 −0.63419

0.3 27.94773 −1.7543 −0.98592 26.47821 −1.3467 −0.74315 26.49433 −1.3479 −0.74397
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Table 5. Numerical values of the Nusselt number (Nu), Sherwood number (Sh), and motile microor-
ganisms’ density gradient (Nm) for volume fraction of nanoparticles.

. Cone
(
n = 1, α = π

4
)

Wedge
(
n = 0, α = π

4
)

Plate (n = 0, α = 0)

ϕ1 ϕ2 ϕ3 Nu Sh Nm Nu Sh Nm Nu Sh Nm

0.02 0.02 0.02 24.92767 −1.51382 −0.87947 23.00199 −1.09132 −0.6332 23.02106 −1.09284 −0.63419

0.03 24.84579 −1.41239 −0.8171 22.92604 −1.01785 −0.58918 22.94572 −1.01933 −0.59014

0.04 24.78749 −1.33885 −0.77203 22.87163 −0.96459 −0.55737 22.89167 −0.96603 −0.5583

0.02 0.03 25.06144 −1.67807 −0.98093 23.12018 −1.21024 −0.7047 23.13655 −1.21166 −0.70564

0.04 25.26947 −1.98846 −1.17404 23.30667 −1.43523 −0.84079 23.31994 −1.43655 −0.84169

0.02 0.03 25.15922 −1.86527 −1.09724 23.20391 −1.346 −0.78672 23.21942 −1.34746 −0.78771

0.04 25.4086 −2.36089 −1.40762 23.42386 −1.70561 −1.00551 23.43616 −1.70703 −1.00649

On increasing the NVF ϕ2 and ϕ3 of Cu and CNT nanoparticles, the HT rate rises, but
on the contrary, on increasing the NVF ϕ1 of Al2O3 nanoparticles, the HT rate decreases.
This is because of the fact that when increasing the NVF of Cu and CNT nanoparticles,
thermal boundary layer thickness decreases, whereas on increasing the NVF of Al2O3
nanoparticles, thermal boundary layer thickness increases. The reduction in thermal
boundary layer thickness causes a greater amount of heat to transfer through the surface.
Consequently, the HT rate increases. The amplification of the thermal relaxation parameter
γt causes the HT rate to increase at the surface. This result implies that the higher time
lag present during the transmission causes an enhanced HT rate. Furthermore, higher
solutal relaxation parameter γc acts to increase the MT rate and microorganisms’ density
gradient (Nm). This implies that a higher time lag during the mass transmission causes an
enhanced MT rate, and it also helps the microorganisms’ density to increase. The rising
Lewis number acts to decrease the MT rate and microorganisms’ density gradient (Nm). In
addition, bioconvection Peclet number Pe, bioconvection constant v, and bioconvection
Lewis number Lb are negatively correlated with the microorganisms’ density gradient (Nm).
The results depict that the heat transmission rate is highest for the flow toward the cone,
whereas the mass transmission rate and microbe density gradient are highest for the flow
toward the wedge.

6. Conclusions

This paper deals with the bioconvective 2D THNF flow (Al2O3-Cu-CNT/water flow)
containing a microbial suspension toward three different geometries (a flat plate, a wedge,
and a cone) with the suction/injection effect. The Cattaneo–Christov theory is used to
analyze HT rate and MT rate. The THNF flow is modeled bearing in mind the effects
of natural convection, radiation, and heat source/sink. The in-built function “bvp4c in
MATLAB” is used to solve the equations, and the solutions are shown in graphs. The key
findings of the study are:

â A stronger application of suction causes the thickness of the momentum boundary
layer to reduce.

â The temperature of THNF increases with higher radiation parameter and heat
source/sink parameter.

â The increasing value of the thermal relaxation parameter corresponding to the
Cattaneo–Christov theory acts to enhance the heat transmission rate.

â The microorganism concentration profile decreases with higher bioconvection
Lewis number.

â The heat transmission rate is highest for the flow toward the cone.
â Mass transmission rate and microbe density gradient are highest for the flow toward

the wedge.
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Future Scope of Research

The present study discusses the flow of ternary hybrid nanofluid without the nanopar-
ticle aggregation effect. The study can be extended for nanoparticle aggregation effect with
proper modeling of fluid flow by utilization of validated thermophysical correlations.
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Abbreviations

Thermal conductivity TC
Heat transmission HT
Nanoparticles NPs
Base fluid BF
Nanofluids NFs
Nanoparticles volume fraction NVF
Hybrid nanofluids HNFs
Ternary hybrid nanofluid THNF
Cattaneo–Christov heat flux model CCHM
Gyrotactic microorganism GM
Aluminum oxide Al2O3
Copper Cu
Carbon nanotube CNTs
Boundary layer region BLR
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