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Abstract: The ability to produce high-resolution climate maps is crucial for assessing climate change
impacts and mitigating climate disasters and risks in developing countries. Mainstream geostatistical
downscaling techniques use spatial interpolation or multi-linear regression models to produce high-
resolution climate maps in data-scarce regions. Since global climate evolution is a nonlinear process
governed by complex physical principles, these linear downscaling techniques cannot achieve the
desired accuracy. Moreover, these techniques cannot utilize different resolution data as model inputs.
In this study, we developed a hybrid of multilayer perceptrons that could couple high-resolution
topographic data with sparse climate observation data well and then generate high-resolution
climate maps. To test the performance of our tool, we generated high-resolution precipitation and
air temperature maps using sparse observation data from 21 meteorological stations in Ethiopia.
The accuracy of the high-resolution climate maps generated using our hybrid of MLPs clearly
outperformed those using a multi-linear regression model or a pure MLP.

Keywords: geostatistical downscaling analysis; hybrid of multilayer perceptrons; climate map

MSC: 86A32

1. Introduction

Climate change is considered one of the most serious environmental issues facing
the world. From the 1850s to the 2010s, the global surface temperature increased by
0.8–1.3 ◦C; furthermore, the increase in land surface temperature is greater than that of the
sea surface temperature [1]. Most of the observed warming is driven mainly by carbon
emissions produced by human activities, such as deforestation and burning fossil fuels.
The concentration of carbon dioxide in the atmosphere has significantly increased from
approximately 280 ppm in the 1850s to 414 ppm recorded at Mauna Loa Observatory in
Hawaii in 2021. The change in global climate is quicker than many policymakers realize.
The latest IPCC AR6 indicated that warming of 1.5 ◦C and 2 ◦C would be exceeded during
the 21st century unless significant reductions in carbon emissions occur in the coming
decades [2]. Many developing countries are extremely vulnerable to climate change due
to their rain-fed agriculture, weak industry basis and backward infrastructure. Recent
and future warming not only changes the temperature and precipitation patterns but also
increases the frequency of floods, droughts, heat waves, and the intensity of typhoons and
hurricanes, leading to higher risks of climate-related disasters. At present, developing
countries need to take urgent measures to better deal with the disastrous effects of climate
change. However, meteorological stations in these developing countries are always sparse
and irregularly distributed, and the limited climate observations are insufficient to meet
the needs of mitigating climate risks and improving resilience and adoption measures.
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In order to extract climate information at finer scales from climate observations, various
geostatistical algorithms are performed to derive climate maps with finer resolutions. The
bilinear interpolation, IDW interpolation and Kriging interpolation were first introduced
to downscale sparse climate data and produce high-resolution climate maps. Although
these spatial interpolations in geostatistics are easy to implement, they have obvious dis-
advantages: the whole interpolation process often ignores the influence of topographic
factors and other climate factors, the resulting climate maps always contain unrealistic
ring-like structures and extreme values in downscaled climate maps occur only at meteo-
rological sites. Therefore, these geostatistical algorithms are not suitable for developing
countries with sparse and uneven meteorological sites. Later on, with the rapid develop-
ment of global climate models (GCMs) that can provide reasonably accurate global- and
regional-scale historical climate simulations and future climate projections, the multi-linear
regression algorithm is used to establish the linear relationship between large-scale atmo-
spheric characteristics from coarse-resolution GCM outputs and local climate observations
and then utilize this linear relationship to downscale sparse climate observations [3]. Based
on this principle, the statistical downscaling model (SDSM) [4] is a well-developed model
that makes full use of huge amounts of variables from GCM outputs and has become the
most widely used software on robust climate downscaling and prediction analysis [5].
However, large-scale atmospheric circulations always affect local climate through a com-
plex non-linear non-stationary process; although the SDSM uses a huge amount of GCM
outputs, such a linear algorithm makes the improvement of downscaling performance
significantly limited [6]. Compared with traditional geostatistical techniques, statistical
learning techniques (e.g., GBR/SVM/RF) have the ability to deal with complex nonlinear
problems [7] since they map the predictor(s) without relying on known physical relation-
ships between them [8]. Wu et al. [9] developed a statistical learning-based downscaling
technique to downscale spatial precipitation in data-scarce regions. Wu et al. [9] only con-
sidered topographic variables (longitude, latitude and altitude), but ignored complex links
between observed climate variables. The reason for this was that the input of classic statis-
tical learning models cannot couple high-resolution topographic data with low-resolution
climate observations.

In this study, we developed a hybrid of multi-layer perceptrons (a hybrid of MLPs)
to generate high-resolution climate maps using sparse observation data from developing
countries. The main advantages of our hybrid of MLPs over existing algorithms are
the following: (a) our algorithm can utilize the strong links between observed climate
data with different resolutions, while traditional interpolation, the SDSM and statistical
learning cannot utilize them; (b) our algorithm can extract nonlinear and non-stationary
relationships between climate and topographic variables while traditional interpolation
and SDSM algorithms cannot achieve this; and (c) our algorithm does not need to use a
huge amount of GCM outputs like the SDSM does, leading to a very low computation cost.
In order to test the performance of our model, we used the hybrid of MLPs to generate
high-resolution maps of air temperature and precipitation in Ethiopia. In terms of accuracy
indicators (mean absolute percentage error, coefficient of determination), the hybrid of
MLPs clearly outperformed multi-linear regression or a pure MLP.

2. Background: Multilayer Perceptron

The multilayer perceptron (MLP) is a multilayer feedforward neural network [10].
It has a three-layer structure, namely, the input layer, one or more hidden layers, and the
output layer [11]. The neurons between layers are fully connected, and the neurons inside
a layer are not connected.

The establishment of an MLP is based on two kinds of data flows: forward propagation
of data and backpropagation of error [12]. In the forward propagation, the relationship
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between the input x = [x1, x2 . . . xn] and the output y = [y1, y2 . . . yk] in an MLP with only
one hidden layer can be represented as

yk =
m

∑
j=1

[
f

(
n

∑
i=1

wijxi + bj

)
wjk + bk

]

where wij is the weight connecting the input layer and hidden layer, wjk is the weight
connecting the hidden layer and output layer, f is the activation function of the hidden
layer, bj is the bias from the input layer to the hidden layer and bk is the bias from the
hidden layer to the output layer.

The prediction error E of an MLP is defined as the difference between the MLP output
and the observation data. When one initiates an MLP to simulate a complex process, the
parameters (weight and bias) in the MLP can be trained (or optimized) again and again
through the backward propagation algorithm of the prediction error [13]. In detail, the
weight and bias in each neuron are updated as follows:

â The updated weight wjk
′ from the hidden layer to the output layer is

wjk
′ = wjk − η

∂E
∂wjk

â The updated weight wij
′ from the input layer to the hidden layer is

wij
′ = wij − η

∂E
∂wij

â The updated bias bk
′ from the hidden layer to the output layer is

bk
′ = bk − η

∂E
∂bk

â The updated bias bj
′ from the input layer to the hidden layer is

bj
′ = bj − η

∂E
∂bj

where η is the learning rate.

3. Hybrid of Multilayer Perceptrons

Statistical learning techniques showed excellent performance in dealing with complex
nonlinear links since they can map the predictors without constructing an explicit function
and relying on existing physical relationships between them [12]. Noticing that various
climate and topographic factors are closely linked, we needed to make full use of these
links to generate high-resolution climate maps from sparse and irregular observations, i.e.,
we needed to establish a statistical learning-based model:

Y = f (T1, T2, T3; X1, X2, . . . ., Xn)

where T1, T2 and T3 are three topographic factors (longitude, latitude and altitude), and
X1, X2, . . . , Xn are climate factors that are closely linked to climate factor Y. If both the T1,
T2 and T3 set and the X1, X2, . . . , Xn set have the same high resolution, it is easy to use
statistical learning to generate a high-resolution map for climate variable Y from its sparse
observation. Unfortunately, in the real world, the resolution of observed climate factors
X1, X2, . . . ., Xn is much lower than that of topographical factors T1, T2 and T3, and thus,
we could not input these data with different resolutions directly into the above statistical
learning model to generate high-resolution climate maps.

In order to solve this issue, we proposed a hybrid of MLP to couple low-resolution
climate observations with high-resolution topographic data and then generate a high-
resolution climate map (see Figure 1).
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Figure 1. Using the hybrid of MLPs to generate a high-resolution map of climate factor Y by using
three topographic factors T1, T2 and T3 and sparse climate observations X1, X2 and X3.

Our algorithm consisted of two stages: In stage 1, we established an MLP model for
each climate factor by viewing it as a function of three topographic factors (longitude,
latitude and altitude). This MLP model could be trained by using the longitude, latitude
and altitude of meteorological stations and sparse observations of each climate factor.
Finally, based on this MLP, we could roughly enhance the spatial resolution of this climate
factor. In stage 2, in order to make full use of the strong nonlinear relationships between
climate factors, we viewed each climate factor as a function of topographic factors and
the remaining climate factors. Therefore, we established the second MLP so that its input
was three topographical factors and the remaining climate factors, and its output was
the climate factor that needed to be downscaled. Since we roughly enhanced the spatial
resolution of each climate factor in stage 1, all topographical and climate data, as the input
of the second MLP, could be chosen to have the same spatial resolution. Finally, based on
this MLP, we could generate high-resolution climate maps.

4. Case Study

Although climate change is a global-scale phenomenon, its impacts and mitigation
measures always vary from region to region. High-resolution regional climate information
is very important for the assessment of climate disasters and risks [14]. Unfortunately, the
distribution of meteorological stations in most developing countries is sparse and irregular.
In this section, by using our hybrid of MLPs, we generated high-resolution climate maps in
Ethiopia from sparse observation data.

4.1. Study Area and Data

Ethiopia is located in the center of the Horn of Africa (Figure 2). Its longitude range is
33◦–48◦ E and its latitude range is 3◦–15◦ N. Ethiopia is adjacent to Somalia and Djibouti
in the east, Kenya in the south, Eritrea in the north and Sudan in the west. Ethiopia has a
very complex terrain (Figure 2). More than 60% of its territory is 1000 m above sea level,
the national average altitude is 2000–2500 m and there are also extinct volcanoes that are
more than 3500 m high, and thus, it is called the “Roof of Africa” [15]. The East African Rift
Valley divides Ethiopia into eastern and western parts. The western plateau is the main
body of Ethiopia, and the terrain trend is from east to west; the southeast of Ethiopia is a
low plateau with an altitude of 500–1500 m.

Ethiopia is dominated by a plateau climate. Although it is located in the tropics,
due to the large differences in latitude and altitude, the air temperature is uneven. The
temperature in most parts of Ethiopia is 14~27 ◦C, and the annual average air temperature
is about 22 ◦C. Because of the great variance in the topography of Ethiopia, the precipitation
in different regions in Ethiopia is also very different. Some regions have sufficient rainfall
all year round, while some regions are dry and rainless all year round. Moreover, the
rainfall in most regions is seasonal. Ethiopia’s precipitation comes partly from the Indian
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Ocean in the northeast and partly from the Atlantic Ocean in the west. The wind over the
Red Sea can also bring a small amount of rainfall to the northern region in winter. The
area with the largest precipitation in Ethiopia is the central plateau area, where the annual
precipitation can reach 2000 mm. The minimum precipitation occurs in the northeast, which
is less than 400 mm [16]. In addition, the period from June to September is the local rainy
season, during which the total rainfall will account for 90% of the whole year; therefore,
the seasonal distribution of rainfall in Ethiopia is uneven.
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In this study, the daily climate observation data during 1990–2020 were collected
from 21 meteorological stations in Ethiopia (Figure 3, Table 1). Due to geographical and
environmental factors, the distribution of meteorological stations is sparse and irregular.
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Table 1. Geographical locations of 21 meteorological stations in Ethiopia.

Station Latitude Longitude Elevation (m) Station Latitude Longitude Elevation (m)

Addis 38.80 8.98 2354 Jijiga 42.72 9.37 1557
Arba 37.56 6.06 1220 Jimma 36.82 7.67 1710

Atnago 36.95 8.30 1847 Jinka 36.56 5.78 1373
Awassa 38.48 7.07 1694 Konso 37.44 5.34 1431

Bulki 36.81 6.28 2430 Mehal 39.66 10.31 3084
Bullen 36.08 10.60 1659 Metehara 39.92 8.87 952
Butajra 38.38 8.12 2074 Neghele 39.27 5.33 1439
Debre 37.74 10.33 2446 Tulu 38.21 8.66 2190
Dire 41.90 9.61 1045 Wolaita 37.75 6.82 1854

Gondar 37.43 12.52 1973 Wolkite 37.77 8.28 1884
Hosana 37.86 7.57 2306
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4.2. Downscaling Analysis and Results

We used our hybrid of MLPs to generate high-resolution climate maps in Ethiopia by
utilizing the observed climate data from 21 meteorological stations and topographic data
from Google Earth. In order to demonstrate the accuracy of our model, we randomly chose
observation data from 16 meteorological stations to train the hybrid of MLPs and then
used the observation data from the remaining 5 meteorological stations to test the accuracy
of the obtained high-resolution maps. The nice coupling of continuous topographic data
and sparse climate data in the input of the hybrid of MLPs could significantly enhance the
learning ability of our model in the downscaling process, and thus, our hybrid of MLPs
generated more accurate downscaling results than multi-linear regression or a pure MLP.

4.2.1. Precipitation

We used our hybrid of MLPs to downscale sparse daily observed precipitation data
and generated precipitation maps with a resolution of 0.1◦ × 0.1◦. We compared the
accuracy of the high-resolution precipitation maps generated using three algorithms: the
hybrid of MLPs, a pure MLP and multi-linear regression (Table 2). In terms of accuracy
indicators, namely, mean absolute percentage error (MAPE) and coefficient of determination(

R2), our hybrid of MLPs demonstrated significantly better downscaling performance
than multi-linear regression: the R2 value attained when using our hybrid of MLPs was
0.08–0.13 higher than that found when using multi-linear regression, and the MAPE value
attained when using our hybrid of MLPs was 7.36–10.72% lower than that found when
using multi-linear regression. Compared with a pure MLP, the R2 value attained when
using the hybrid of MLPs was increased by 0.06 and the MAPE found when using the
hybrid of MLPs was decreased by 3.62. This means that the downscaling performance of
our hybrid of MLPs was also better than that of a pure MLP.

Table 2. Accuracy of high-resolution precipitation maps generated using three models.

Models
MAPE (%) R2

Range Mean Range Mean

Multi-linear regression 14.58–41.33 25.31 0.73–0.8 0.79
Pure MLP 5.82–38.31 19.79 0.73–0.89 0.82

Hybrid of MLPs 3.86–33.97 16.17 0.81–0.94 0.88

The high-resolution spatial distribution map of the mean annual precipitation in
Ethiopia from 1990 to 2020 is shown in Figure 4. The East African Rift Valley divides
Ethiopia into an eastern flat lowland region and a western highland region. By comparing
the mean annual precipitation distribution (Figure 4) and topographic features (Figure 2),
an obvious difference in annual precipitation between the eastern and western regions was
found. Ethiopia’s precipitation was significantly affected by altitude: it went from an arid
climate in the eastern flat lowland region to a humid climate in the western highland region.
The annual precipitation in Ethiopia was mainly concentrated in the western highland
regions, and it increased with altitude. The eastern lowland region had a flat terrain
and significantly less precipitation. Figure 5 shows high-resolution maps of the monthly
average precipitation generated by our hybrid of MLPs. Less precipitation occurred from
December to February. From May to October, affected by the humid southeast monsoon,
the precipitation gradually increased; in particular, the precipitation reached the maximum
during June to August.
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4.2.2. Air Temperature

We used the hybrid of MLPs to downscale the sparse air temperature observations
and generated an air temperature map with a resolution of 0.1◦ × 0.1◦. The two statistical
indicators in Table 3 showed the downscaling performance of our hybrid of MLPs, a
pure MLP and multi-linear regression. Our hybrid of MLPs showed significantly better
downscaling performance than multi-linear regression. The MAPE value attained when
using the hybrid of MLPs was 0.5~4.17% lower than that found when using the multi-linear
regression, the R2 values attained when using hybrid of MLPs was 0.05–0.19 higher than



Mathematics 2023, 11, 1239 8 of 10

that found when using multi-linear regression. The hybrid of MLPs was also better than
the pure MLP: the R2 value attained when using the hybrid of MLPs was increased by 0.08
and the MAPE value was decreased by 2.13.

Table 3. Accuracy of high-resolution air temperature maps generated using three models.

Models
MAPE (%) R2

Range Mean Range Mean

Multi-linear regression 1.48–6.94 4.09 0.65–0.88 0.76
Pure MLP 2.13–6.33 3.80 0.75–0.91 0.82

Hybrid of MLPs 0.98–2.77 1.96 0.84–0.93 0.90

The high-resolution map of Ethiopia’s mean annual air temperature generated using
the hybrid of MLPs is shown in Figure 6. During 1990–2020, the mean annual air tem-
perature in Ethiopia was about 16–28 ◦C. By comparing the mean annual air temperature
distribution (Figure 6) and topographic features (Figure 2), the annual air temperature in
Ethiopia significantly decreased with the increase in altitude: it went from a hot climate in
the eastern terrain to a cool climate in the western plateau. Since the central region is the
Ethiopian plateau with an average altitude of nearly 3000 m, the air temperature for this
region was the lowest in Ethiopia. The high air temperature was mainly concentrated in
the northeast and southeast, and the highest annual air temperature reached 28 ◦C.
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The high-resolution monthly air temperature maps generated using the hybrid of
MLPs are shown in Figure 7. The air temperature in Ethiopia gradually increased from
March to August, with the highest air temperature of 31 ◦C. The coldest months in Ethiopia
were November and December, where the lowest air temperature reached 13 ◦C. From the
monthly air temperature high-resolution map, it was found that the climate in Ethiopia
was characterized by a high air temperature in summer and a low temperature in winter.
The air temperature decreased with altitude. In most months, the air temperature in the
central region was lower than that in other regions.
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5. Conclusions

Many developing countries are extremely vulnerable to climate change due to their
rain-fed agriculture, weak industry basis and backward infrastructure. At the same time,
meteorological stations in these developing countries are always sparse and irregularly dis-
tributed; these limited climate observations are insufficient to meet the needs of mitigating
climate risks and improving resilience and adoption measures. Mainstream geostatistical
downscaling techniques use spatial interpolation or multi-linear regression to produce high-
resolution climate maps. Since global climate evolution is a nonlinear process governed
by complex physical principles, these linear downscaling techniques cannot achieve the
desired accuracy. The latest statistical learning techniques can extract nonlinear relations,
but they cannot use different-resolution observation data as model inputs. In this study, we
developed a hybrid of MLPs to solve these issues.

Our hybrid of MLPs not only fully coupled different-resolution observation data but
also identified the complex nonlinear relationships without considering physical principles
in advance. Compared with existing geostatistical algorithms, our hybrid of MLPs is the
first geostatistical algorithm to utilize a strong link between observed climate variables
to generate high-resolution climate maps. Our algorithm does not need to use a huge
amount of GCM outputs like the statistical downscaling model (SDSM) does and has a
simple network structure, and thus, its computation cost is very low. As a demonstration
experiment, we generated high-resolution precipitation and air temperature maps using
sparse observation data from 21 meteorological stations in Ethiopia. The accuracy of the
high-resolution climate maps generated using our hybrid of MLPs clearly outperformed
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those created using a multi-linear regression model or a pure MLP. If we can obtain
observations of more climate variables (e.g., humidity, wind and atmospheric pressure) at
these Ethiopian meteorological stations, higher accuracy high-resolution climate maps can
be achieved. Although we only demonstrated the generation of high-resolution Ethiopian
climate maps, our hybrid of MLPs can generate high-resolution climate maps from sparse
observation data in any developing country.
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