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Abstract: In this research, we propose a combined approach to solving nonlinear fractional shock
wave equations using an Elzaki transform, the homotopy perturbation method, and the Adomian
decomposition method. The nonlinear fractional shock wave equation is first transformed into an
equivalent integral equation using the Elzaki transform. The homotopy perturbation method and
Adomian decomposition method are then utilized to approximate the solution of the integral equation.
To evaluate the effectiveness of the proposed method, we conduct several numerical experiments and
compare the results with existing methods. The numerical results show that the combined method
provides accurate and efficient solutions for nonlinear fractional shock wave equations. Overall, this
research contributes to the development of a powerful tool for solving nonlinear fractional shock
wave equations, which has potential applications in many fields of science and engineering. This
study presents a solution approach for nonlinear fractional shock wave equations using a combination
of an Elzaki transform, the homotopy perturbation method, and the Adomian decomposition method.
The Elzaki transform is utilized to transform the nonlinear fractional shock wave equation into an
equivalent integral equation. The homotopy perturbation method and Adomian decomposition
method are then employed to approximate the solution of the integral equation. The effectiveness
of the combined method is demonstrated through several numerical examples and compared with
other existing methods. The results show that the proposed method provides accurate and efficient
solutions for nonlinear fractional shock wave equations.

Keywords: Adomian decomposition method; homotopy perturbation method; Elzaki transform;
Caputo operator; fractional nonlinear shock wave equation

MSC: 26A33; 35R11; 74S40; 42A38

1. Introduction

Fractional differential equations (FDEs) provide a mathematical framework for mod-
eling systems that exhibit nonlinear or complex dynamics. Unlike traditional differential
equations, FDEs utilize fractional derivatives, which capture the rate of change in these
systems. FDEs have found widespread applications in fields such as physics, engineering,
finance, and biology, where they have been used to model phenomena such as anomalous
diffusion, viscoelastic materials, and fractional control systems [1–5].

Fractional derivatives are a generalization of classical integer derivatives and can
be defined in various ways, including the Riemann–Liouville, Caputo, and Grunwald–
Letnikov derivatives. Various numerical methods, such as the finite difference, boundary
element, and variational methods, can be used to solve FDEs. The study of FDEs has a rich
history dating back to the 17th century, when mathematician John Wallis first introduced
the concept of fractional calculus [6–8]. In recent years, FDEs have gained significant
attention and become increasingly popular due to their ability to model complex systems
and their broad range of applications [9–13].
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The nonlinear shock wave equation, also known as Burgers’ equation, is a fundamen-
tal equation in fluid dynamics and nonlinear physics. Its history can be traced back to the
early 20th century, with important contributions by several mathematicians and physicists.
In the following decades, mathematicians and physicists made significant contributions
to the understanding of Burgers’ equation and its properties. In the 1950s, the Russian
mathematician Andrei Kolmogorov studied the behavior of solutions to the equation in
the limit of high Reynolds numbers. He showed that the solutions exhibit self-similarity
and developed a theory of turbulence based on this observation [14,15]. In the 1960s, the
American mathematician Richard Courant and his collaborators developed numerical
methods for solving Burgers’ equation, which played a key role in the development of
computational fluid dynamics. In the 1970s and 1980s, the equation was studied extensively
in the context of nonlinear wave propagation and shock waves [16–19]. Today, Burgers’
equation continues to be an active area of research in mathematics, physics, and engineer-
ing. It has applications in fields such as fluid mechanics, nonlinear optics, and plasma
physics [20–24].

The nonlinear shock wave equation is a mathematical model that describes the be-
havior of shock waves, which are sudden changes in the pressure and density of a fluid
that propagates through it. Unlike linear shock wave equations, the nonlinear shock wave
equation takes into account the nonlinear effects that occur when the fluid pressure exceeds
a critical value [25,26]. These nonlinear effects cause the shock wave to become distorted
and the velocity of the fluid to change rapidly, leading to complex and diverse behaviors.
The nonlinear shock wave equation plays an important role in many areas of science and
engineering, including fluid dynamics, combustion, and blast waves [27–29].

The fractional nonlinear shock wave equation is a mathematical tool extensively
employed to describe the intricate behavior of shock waves in different engineering and
physical applications. Due to the nonlinear nature of shock waves, their behavior can be
complicated and unpredictable. This equation incorporates the nonlinear effects, allowing
for an accurate representation of the shock wave’s dynamics over time. Moreover, the
use of fractional derivatives in this equation provides a more precise description of shock
wave behavior. The application of this equation is particularly valuable in fluid dynamics
research, where it is used to model shock waves in fluids with complex properties such
as viscoelastic fluids. Additionally, the equation finds its applications in material science,
where it can be employed to simulate the behavior of shock waves in solids, including their
responses to stress and deformation [30–32].

The highly nonlinear nature of the fractional nonlinear shock wave equation implies
that the solution is dependent on the initial conditions and underlying physical laws. Due
to this nonlinearity, there are diverse shock wave behaviors, such as propagating waves,
standing waves, and bifurcation points. These behaviors can exhibit multiple distinct
characteristics. Despite its complexity, the fractional nonlinear shock wave equation is
a crucial tool in comprehending shock wave behavior, leading to a more accurate and
thorough understanding of these complex physical phenomena. Continued research and
development of this equation is promising, and it is expected to offer new insights into a
wide range of scientific and engineering disciplines. Its implications will be essential in
several areas of research and development [33,34].

The homotopy perturbation method (HPM) and Elzaki transform are two mathe-
matical techniques that are widely used to solve nonlinear and linear partial differential
equations (PDEs) [35,36]. The HPM is a numerical method that is based on the concept of
homotopy and is used to approximate solutions to nonlinear problems. On the other hand,
the Elzaki transform is a mathematical tool that is used to transform linear problems into
nonlinear ones, making them easier to solve. Both the HPM and Elzaki transform have
been extensively researched and applied in various fields, including engineering, physics,
and mathematics [37,38].

The Adomian decomposition method (ADM) has been widely used for solving various
types of nonlinear differential equations. This method is based on the decomposition of
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the nonlinear term into a series of polynomials and then using this series to find the
solution. However, the convergence of the ADM series is slow, which makes it unsuitable
for some applications. To overcome this limitation, various researchers have proposed
combining the ADM with other mathematical techniques to improve its efficiency and
accuracy. One of these techniques is the Elzaki transform (ET), which has been used to
solve linear and nonlinear partial differential equations [39,40]. The combination of the
ADM and ET has been applied to solve various types of nonlinear differential equations,
including nonlinear partial differential equations, nonlinear integro-differential equations,
and nonlinear differential-difference equations (Elzaki and Mustafa, 2011; Khodaei et al.,
2015; Mahmoud, 2018). The results obtained from these studies demonstrate the efficiency
and accuracy of the combined method in solving nonlinear differential equations [39,40].

The following is the rest of this study. Section 2 compiles some basic definitions.
Section 3 introduces the concept of the HPTM, whereas Section 4 introduces the concept
of the ETDM. The proposed methods’ convergence analysis is provided in Section 5. In
Section 6, various approximative solutions to the fractional nonlinear wave equation are
derived by using the form of the initial value, and the structure of the solutions is displayed
using graphs and tables. In Section 6, the work’s conclusion is examined.

2. Basic Definitions

Definition 1. The fractional derivative Dß in the Abel–Riemann sense, having an order ß, is given
as follows [41,42]:

Dßθ(µ) =


dκ

dµκ θ(µ), ß = κ,
1

Γ(κ−ß)
d

dµκ

∫ µ
0

θ(µ)
(µ−φ)ß−κ+1 dφ, κ − 1 < ß < κ,

where κ ∈ Z+, ß ∈ R+ and

D−ßθ(µ) =
1

Γ(ß)

∫ µ

0
(µ− φ)ß−1θ(φ)dφ, 0 < ß ≤ 1.

Definition 2. The fractional integration operator κφ in the Abel–Riemann sense is defined as
[41,42]

κßθ(µ) =
1

Γ(ß)

∫ µ

0
(µ− φ)ß−1θ(µ)dµ, µ > 0, ß > 0.

having the properties

κßµκ =
Γ(κ + 1)

Γ(κ + ß + 1)
µκ+φ,

Dßµκ =
Γ(κ + 1)

Γ(κ − ß + 1)
µκ−φ.

Definition 3. The Caputo derivative Dß of the fractional order ß is given by [41,42]

CDßθ(µ) =


1

Γ(κ−ß)

∫ µ
0

θκ(φ)
(µ−φ)ß−κ+1 dφ, κ − 1 < ß < κ,

dκ

dµκ θ(µ), κ = ß.
(1)

Definition 4.

κß
µDß

µθ(µ) = θ(µ)−
m

∑
k=0

θk(0+)
µk

k!
, f or µ > 0, and κ − 1 < ß ≤ κ, κ ∈ N.

Dß
µκß

µθ(µ) = θ(µ).

(2)
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Definition 5. The Caputo operator in terms of the Elzaki transform is given by [41,42]

E[Dß
µθ(µ)] = s−ßE[θ(µ)]−

κ−1

∑
k=0

s2−ß+kθ(k)(0), where κ − 1 < ß < κ.

3. General Methodology of the HPTM

This section focuses on the core method used by the HPTM to find solutions for the
general partial differential equation

Dß
ϑV(℘, ϑ) = P1[℘]V(℘, ϑ) +Q1[℘]V(℘, ϑ), 1 < ß ≤ 2, (3)

subjected to the initial conditions

V(℘, 0) = ξ(℘),
∂

∂ϑ
V(℘, 0) = ζ(℘).

Here, Dß
ϑ = ∂ß

∂ϑß is the fractional Caputo derivative and P1[℘] and Q1[℘] are the linear
and nonlinear operators, respectively.

By utilizing the Elzaki transformation in Equation (3), we achieve

E[Dß
ϑV(℘, ϑ)] = E[P1[℘]V(℘, ϑ) +Q1[℘]V(℘, ϑ)], (4)

1
uß {V(℘, ϑ)− uV(0)− u2V

′
(0)} = E[P1[℘]V(℘, ϑ) +Q1[℘]V(℘, ϑ)]. (5)

After simplifying, the result is obtained:

V(℘, ϑ) = uV(0) + u2V
′
(0) + ußE[P1[℘]V(℘, ϑ) +Q1[℘]V(℘, ϑ)]. (6)

By applying the inverse Elzaki transform to both sides, we obtain

V(℘, ϑ) = V(0) + V
′
(0) + E−1[ußE[P1[℘]V(℘, ϑ) +Q1[℘]V(℘, ϑ)]]. (7)

Now, by using the HPM, we have

V(℘, ϑ) =
∞

∑
k=0

εkVk(℘, ϑ). (8)

The decomposition of the nonlinear terms can be expressed as follows. With the
perturbation parameter ε ∈ [0, 1], we have

Q1[℘]V(℘, ϑ) =
∞

∑
k=0

εk Hn(V). (9)

He’s polynomials, designated as Hk(V), are expressed by

Hn(V0, V1, . . . , Vn) =
1

Γ(n + 1)
Dk

ε

[
Q1

(
∞

∑
k=0

εiVi

)]
ε=0

. (10)

where Dk
ε = ∂k

∂εk .

By incorporating the sources in Equations (8) and (9) into Equation (7), we arrive at a
conclusion:

∞

∑
k=0

εkVk(℘, ϑ) = V(0) + V
′
(0) + ε×

(
E−1

[
ußE{P1

∞

∑
k=0

εkVk(℘, ϑ) +
∞

∑
k=0

εk Hk(V)}
])

. (11)
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Upon evaluating the ε coefficient, we obtain

ε0 : V0(℘, ϑ) = V(0) + V
′
(0),

ε1 : V1(℘, ϑ) = E−1
[
ußE(P1[℘]V0(℘, ϑ) + H0(V))

]
,

ε2 : V2(℘, ϑ) = E−1
[
ußE(P1[℘]V1(℘, ϑ) + H1(V))

]
,

.

.

.

εk : Vk(℘, ϑ) = E−1
[
ußE(P1[℘]Vk−1(℘, ϑ) + Hk−1(V))

]
, k > 0, k ∈ N.

(12)

Finally, we employ truncated series to estimate the analytical solution Vk(℘, ϑ):

V(℘, ϑ) = lim
M→∞

M

∑
k=1

Vk(℘, ϑ). (13)

The solutions to this series tend to reach stability rapidly.

4. General Methodology of the YTDM

This section focuses on the core procedure for resolving partial differential equations
of any arbitrary order through the utilization of the ETDM:

Dß
ϑV(℘, ϑ) = P1(℘, ϑ) +Q1(℘, ϑ), 0 < ß ≤ 1, (14)

subjected to initial conditions

V(℘, 0) = ξ(℘),
∂

∂ϑ
V(℘, 0) = ζ(℘).

By utilizing the Elzaki transformation, it is possible to express the fractional Caputo
derivative Dß

ϑ as the fractional derivative with respect to ϑß. Additionally, P1 and Q1 are
linear and nonlinear operators, respectively:

E[Dß
ϑV(℘, ϑ)] = E[P1(℘, ϑ) +Q1(℘, ϑ)]. (15)

By utilizing the characteristic of the Elzaki transform that distinguishes it, we can
deduce that

1
uß {M(u)− uV(0)− u2V

′
(0)} = E[P1(℘, ϑ) +Q1(℘, ϑ)]. (16)

Regarding simplification, we obtain

M(V) = uV(0) + u2V
′
(0) + ußE[P1(℘, ϑ) +Q1(℘, ϑ)]. (17)

By applying the inverse Elzaki transformation to both sides, we obtain

V(℘, ϑ) = V(0) + V
′
(0) + E−1[ußE[P1(℘, ϑ) +Q1(℘, ϑ)]. (18)

By utilizing the ETDM, the solution to the infinite series of V(℘, ϑ) is obtained:

V(℘, ϑ) =
∞

∑
m=0

Vm(℘, ϑ). (19)
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The Adomian polynomials for nonlinear terms Q1 can be expressed by

Q1(℘, ϑ) =
∞

∑
m=0
Am. (20)

where

Am =
1

m!

[
∂m

∂`m

{
Q1

(
∞

∑
k=0

`k℘k,
∞

∑
k=0

`kϑk

)}]
`=0

. (21)

By combining Equations (21) and (19) into Equation (18), we arrive at a new expression:

∞

∑
m=0

Vm(℘, ϑ) = V(0) + V
′
(0) + E−1uß

[
E

{
P1(

∞

∑
m=0

℘m,
∞

∑
m=0

ϑm) +
∞

∑
m=0
Am

}]
. (22)

The following terms will be explained:

V0(℘, ϑ) = V(0) + ϑV
′
(0), (23)

V1(℘, ϑ) = E−1
[
ußE+{P1(℘0, ϑ0) +A0}

]
.

In general, when m ≥ 1, it can be stated that

Vm+1(℘, ϑ) = E−1
[
ußE+{P1(℘m, ϑm) +Am}

]
.

5. Applications

Example 1. Consider the fractional shock wave equation, given by

∂ßV
∂ϑß +

(
1
c0
− Υ + 1

2
V
c2

0

)
∂V
∂℘

= 0, 0 < ß ≤ 1, (24)

with the initial condition

V(℘, 0) = exp

(
− ℘2

2

)
.

We utilized the Elzaki transform and set the constant values of c0 to 2 and Υ to 1.5, which
correspond to the flow of air:

E

(
∂ßV
∂ϑß

)
= −E

[(
1
c0
− Υ + 1

2
V
c2

0

)
∂V
∂℘

]
. (25)

By utilizing the differentiation property of the Elzaki transform, it can be shown that

1
uß {M(u)− uV(0)} = −E

[(
1
c0
− Υ + 1

2
V
c2

0

)
∂V
∂℘

]
, (26)

M(u) = uV(0)− ußE

[(
1
c0
− Υ + 1

2
V
c2

0

)
∂V
∂℘

]
. (27)

Using the inverse Elzaki transformation, we obtain

V(℘, ϑ) = V(0)− E−1

[
uß

{
E

[(
1
c0
− Υ + 1

2
V
c2

0

)
∂V
∂℘

]}]
,

V(℘, ϑ) = exp

(
− ℘2

2

)
− E−1

[
uß

{
E

[(
1
c0
− Υ + 1

2
V
c2

0

)
∂V
∂℘

]}]
.

(28)
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Now, by applying the HPM, we achieve

∞

∑
k=0

εkVk(℘, ϑ) = γ + ε

(
E−1

[
ußE

[
1
c0

∂V
∂℘

(
∞

∑
k=0

εkVk(℘, ϑ)

)
− Υ + 1

2
1
c2

0

(
∞

∑
k=0

εk Hk(V)

)]])
. (29)

where the nonlinear terms shown by He’s polynomial Hk(V), represented by

∞

∑
k=0

εk Hk(V) = V
∂V
∂℘

. (30)

A few components of He’s polynomial are determined as follows:

H0(V) = V0
∂V0

∂℘
, H1(V) = V0

∂V1

∂℘
+ V1

∂V0

∂℘

By comparing both sides’ coefficients of ε, we achieve

ε0 : V0(℘, ϑ) = exp

(
− ℘2

2

)
,

ε1 : V1(℘, ϑ) = E−1

(
ußE

[
1
c0

∂V0

∂℘
− Υ + 1

2
1
c2

0
H0(V)

])
= −

[
1
c0
− Υ + 1

2c2
0

exp

(
− ℘2

2

)]
℘ exp

(
− ℘2

2

)
ϑß

Γ(ß + 1)
,

ε2 : V2(℘, ϑ) = E−1

(
ußE

[
1
c0

∂V1

∂℘
− Υ + 1

2
1
c2

0
H1(V)

])
= exp

(
− ℘2

2

)[
− 1

c2
0
+

℘2

c2
0
− Υ + 1

c3
0

exp

(
− ℘2

2

)

− 2(Υ + 1)
c3

0
℘2 exp

(
− ℘2

2

)
− (Υ + 1)2

4c4
0

exp(−℘2) +
3(Υ + 1)2

4c4
0

℘2 exp(−℘2)

]
ϑ2ß

Γ(2ß + 1)
,

...

Some element of the HPTM result can be obtained:

V(℘, ϑ) = exp

(
− ℘2

2

)
−
[

1
c0
− Υ + 1

2c2
0

exp

(
− ℘2

2

)]
℘ exp

(
− ℘2

2

)
ϑß

Γ(ß + 1)
+ exp

(
− ℘2

2

)
[
− 1

c2
0
+

℘2

c2
0
− Υ + 1

c3
0

exp

(
− ℘2

2

)
− 2(Υ + 1)

c3
0

℘2 exp

(
− ℘2

2

)
− (Υ + 1)2

4c4
0

exp(−℘2)+

3(Υ + 1)2

4c4
0

℘2 exp(−℘2)

]
ϑ2ß

Γ(2ß + 1)
+ · · · .

Now, We Use the ETDM
The Elzaki decomposition method is a mathematical technique used to decompose a given

function into a set of simpler functions. The Elzaki decomposition method involves expressing the
original function as a sum of the auxiliary functions, each of which satisfies a simpler differential
equation. The auxiliary functions used in the Elzaki decomposition method are chosen so that
they form a complete set, meaning that any function can be expressed as a linear combination of
these functions. Once the auxiliary functions have been determined, the coefficients of the linear
combination can be found by applying the boundary conditions or initial conditions to the original
function.

By applying the Elzaki transformation in Equation (24), we obtain

E

{
∂ßV
∂ϑß

}
= −E

[(
1
c0
− Υ + 1

2
V
c2

0

)
∂V
∂℘

]
. (31)
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By applying the Elzaki transformation differentiation property, we have

1
uß {M(u)− uV(0)} = −E

[(
1
c0
− Υ + 1

2
V
c2

0

)
∂V
∂℘

]
, (32)

M(u) = uV(0) + ußE

[(
1
c0
− Υ + 1

2
V
c2

0

)
∂V
∂℘

]
. (33)

By applying the inverse Elzaki transformation, we achieve

V(℘, ϑ) = V(0)− E−1

[
uß

{
E

[(
1
c0
− Υ + 1

2
V
c2

0

)
∂V
∂℘

]}]
,

V(℘, ϑ) = exp

(
− ℘2

2

)
− E−1

[
uß

{
E

[(
1
c0
− Υ + 1

2
V
c2

0

)
∂V
∂℘

]}]
.

(34)

The series form solution of V(℘, ϑ) is given by

V(℘, ϑ) =
∞

∑
m=0

Vm(℘, ϑ). (35)

The nonlinear functions found with the help of the Adomian polynomials of V ∂V
∂℘ = ∑∞

m=0Am
are given by

∞

∑
m=0

Vm(℘, ϑ) = V(℘, 0)− E−1

[
uß

{
E

[(
1
c0

∂V
∂℘
− Υ + 1

2c2
0

∞

∑
m=0
Am

)]}]
,

∞

∑
m=0

Vm(℘, ϑ) = exp

(
− ℘2

2

)
− E−1

[
uß

{
E

[(
1
c0

∂V
∂℘
− Υ + 1

2c2
0

∞

∑
m=0
Am

)]}]
.

(36)

In same technique, the nonlinear terms are expressed as follows:

A0 = V0
∂V0

∂℘
, A1 = V0

∂V1

∂℘
+ V1

∂V0

∂℘
.

When comparing both sides, we obtain

V0(℘, ϑ) = exp

(
− ℘2

2

)
,

For m = 0, we have

V1(℘, ϑ) = −
[

1
c0
− Υ + 1

2c2
0

exp

(
− ℘2

2

)]
℘ exp

(
− ℘2

2

)
ϑß

Γ(ß + 1)
.

For m = 1, we have

V2(℘, ϑ) = exp

(
− ℘2

2

)[
− 1

c2
0
+

℘2

c2
0
− Υ + 1

c3
0

exp

(
− ℘2

2

)
− 2(Υ + 1)

c3
0

℘2 exp

(
− ℘2

2

)
−

(Υ + 1)2

4c4
0

exp(−℘2) +
3(Υ + 1)2

4c4
0

℘2 exp(−℘2)

]
ϑ2ß

Γ(2ß + 1)
.
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The remaining steps of ßm for the ETDM for (m ≥ 2) are simple to obtain. Hence, we write
the series type result as follows:

V(℘, ϑ) =
∞

∑
m=0

Vm(℘, ϑ) = V0(℘, ϑ) + V1(℘, ϑ) + V2(℘, ϑ) + · · · .

V(℘, ϑ) = exp

(
− ℘2

2

)
−
[

1
c0
− Υ + 1

2c2
0

exp

(
− ℘2

2

)]
℘ exp

(
− ℘2

2

)
ϑß

Γ(ß + 1)
+ exp

(
− ℘2

2

)
[
− 1

c2
0
+

℘2

c2
0
− Υ + 1

c3
0

exp

(
− ℘2

2

)
− 2(Υ + 1)

c3
0

℘2 exp

(
− ℘2

2

)
− (Υ + 1)2

4c4
0

exp(−℘2)+

3(Υ + 1)2

4c4
0

℘2 exp(−℘2)

]
ϑ2ß

Γ(2ß + 1)
+ · · · .

In Figure 1, The solutions for the V(℘, ϑ) surface with regard to ℘ and ϑ are explored for
various values of ß. (a) The surface solution of the function V(℘, ϑ) at the value of ß = 0.25, (b)
ß = 0.50, (c) ß = 0.75, and (d) ß = 1. Each of these solutions provides insight into how the surface
of V(℘, ϑ) changes as the value of ß is altered.

Figure 1. The solutions for the V(℘, ϑ) surface with regard to ℘ and ϑ are explored for various values
of ß. (a) The surface solution of the function V(℘, ϑ) at the value of ß = 0.25, (b) ß = 0.50, (c) ß = 0.75,
and (d) ß = 1. Each of these solutions provides insight into how the surface of V(℘, ϑ) changes as the
value of ß is altered.

Example

Consider the fractional shock wave equation, given by

∂ßV
∂ϑß + V

∂V
∂℘
− ∂

∂ϑ

∂V2

∂℘2 = 0, 0 < ß ≤ 1, (37)
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with the initial condition

V(℘, 0) = 3sech2

(
℘− 15

2

)
.

By using the Elzaki transformation, we obtain

E

(
∂ßV
∂ϑß

)
= E

(
∂

∂ϑ

∂V2

∂℘2 −V
∂V
∂℘

)
. (38)

By applying the Elzaki transformation differentiation property, we obtain

1
uß {M(u)− uV(0)} = E

(
∂

∂ϑ

∂V2

∂℘2 −V
∂V
∂℘

)
, (39)

M(u) = uV(0) + ußE

(
∂

∂ϑ

∂V2

∂℘2 −V
∂V
∂℘

)
. (40)

By performing the inverse Elzaki transformation, we obtain

V(℘, ϑ) = V(0) + E−1

[
uß

{
E

∂

∂ϑ

∂V2

∂℘2 −V
∂V
∂℘

}]
,

V(℘, ϑ) = 3sech2

(
℘− 15

2

)
+ E−1

[
uß

{
E

(
∂

∂ϑ

∂V2

∂℘2 −V
∂V
∂℘

)}]
.

(41)

Using the HPM, we now gain access to

∞

∑
k=0

εkVk(℘, ϑ) = 3sech2

(
℘− 15

2

)
+ ε

E−1

ußE

( ∞

∑
k=0

εkVk(℘, ϑ)

)
℘℘ϑ

−
(

∞

∑
k=0

εk Hk(V)

). (42)

In the representation of nonlinear terms, He’s polynomial Hk(V) is used. This equation
states that the nonlinear terms can be expressed through He’s polynomial:

∞

∑
k=0

εk Hk(V) = V
∂V
∂℘

. (43)

The calculation of certain components of He’s polynomials can be performed as follows:

H0(V) = V0
∂V0

∂℘
, H1(V) = V0

∂V1

∂℘
+ V1

∂V0

∂℘
.

By comparing the value of the ε coefficient, we are able to deduce the following:
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ε0 : V0(℘, ϑ) = 3sech2

(
℘− 15

2

)
,

ε1 : V1(℘, ϑ) = E−1

(
ußE

[
∂

∂ϑ

∂V2
0

∂℘2 − H0(V)

])
= 9sech4

(
℘− 15

2

)
tanh

(
℘− 15

2

)
ϑß

Γ(ß + 1)
,

ε2 : V2(℘, ϑ) = E−1

(
ußE

[
∂

∂ϑ

∂V2
1

∂℘2 − H1(V)

])
=

[
189

2
sech6

(
℘− 15

2

)
tanh2

(
℘− 15

2

)
− 27

2

sech6

(
℘− 15

2

)]
ϑ2ß

Γ(2ß + 1)
+

[
135

2
sech4

(
℘− 15

2

)
tanh3

(
℘− 15

2

)
− 63

2
sech4

(
℘− 15

2
tanh

(
℘− 15

2

))]
Γ(ß + 1)ϑ2ß−1

Γ(2ß)
,

...

To fully implement the HPTM solution, we need to persist in our approach:

V(℘, ϑ) = 3sech2

(
℘− 15

2

)
+ 9sech4

(
℘− 15

2

)
tanh

(
℘− 15

2

)
ϑß

Γ(ß + 1)
+

[
189
2

sech6

(
℘− 15

2

)

tanh2

(
℘− 15

2

)
− 27

2
sech6

(
℘− 15

2

)]
ϑ2ß

Γ(2ß + 1)
+

[
135

2
sech4

(
℘− 15

2

)
tanh3

(
℘− 15

2

)
−

63
2

sech4

(
℘− 15

2
tanh

(
℘− 15

2

))]
Γ(ß + 1)ϑ2ß−1

Γ(2ß)
+ · · · .

Now, We Use the ETDM
By utilizing the Elzaki transformation method, we obtain

E

{
∂ßV
∂ϑß

}
= E

(
∂

∂ϑ

∂V2

∂℘2 −V
∂V
∂℘

)
. (44)

By utilizing the differentiation property of the Elzaki transform, it is possible to obtain

1
uß {M(u)− uV(0)} = E

(
∂

∂ϑ

∂V2

∂℘2 −V
∂V
∂℘

)
, (45)

M(u) = uV(0) + ußE

(
∂

∂ϑ

∂V2

∂℘2 −V
∂V
∂℘

)
. (46)

By applying the inverse Elzaki transform to both sides, we obtain

V(℘, ϑ) = V(0) + E−1

[
uß

{
E

(
∂

∂ϑ

∂V2

∂℘2 −V
∂V
∂℘

)}]
,

V(℘, ϑ) =
1

(1 + exp℘)2 + E−1

[
uß

{
E

(
∂

∂ϑ

∂V2

∂℘2 −V
∂V
∂℘

)}]
.

(47)

With the use of the ETDM, an infinite series solution for V(℘, ϑ) can be obtained:

V(℘, ϑ) =
∞

∑
m=0

Vm(℘, ϑ). (48)
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Using the Adomian polynomials, the nonlinear terms are obtained through V ∂V
∂℘ =

∑∞
m=0Am:

∞

∑
m=0

Vm(℘, ϑ) = V(℘, 0) + E−1

[
ußE

[
∂

∂ϑ

∂V2

∂℘2 −
∞

∑
m=0
Am

]]
,

∞

∑
m=0

Vm(℘, ϑ) =
1

(1 + exp℘)2 + E−1

[
ußE

[
∂

∂ϑ

∂V2

∂℘2 −
∞

∑
m=0
Am

]]
.

(49)

The nonlinear terms are determined as follows:

A0 = V0
∂V0

∂℘
, A1 = V0

∂V1

∂℘
+ V1

∂V0

∂℘
.

When comparing both sides, we obtain

V0(℘, ϑ) = 3sech2

(
℘− 15

2

)
,

For m = 0, we have

V1(℘, ϑ) = 9sech4

(
℘− 15

2

)
tanh

(
℘− 15

2

)
ϑß

Γ(ß + 1)
.

For m = 1, we have

V2(℘, ϑ) =

[
189
2

sech6

(
℘− 15

2

)
tanh2

(
℘− 15

2

)
− 27

2
sech6

(
℘− 15

2

)]
ϑ2ß

Γ(2ß + 1)
+

[
135

2
sech4

(
℘− 15

2

)

tanh3

(
℘− 15

2

)
− 63

2
sech4

(
℘− 15

2
tanh

(
℘− 15

2

))]
Γ(ß + 1)ϑ2ß−1

Γ(2ß)
.

As a result, finding the remaining elements ßm of the ETDM for values of m ≥ 3 is
straightforward. Therefore, we can express the solution in series form:

V(℘, ϑ) =
∞

∑
m=0

Vm(℘, ϑ) = V0(℘, ϑ) + V1(℘, ϑ) + · · ·

V(℘, ϑ) = 3sech2

(
℘− 15

2

)
+ 9sech4

(
℘− 15

2

)
tanh

(
℘− 15

2

)
ϑß

Γ(ß + 1)
+

[
189
2

sech6

(
℘− 15

2

)

tanh2

(
℘− 15

2

)
− 27

2
sech6

(
℘− 15

2

)]
ϑ2ß

Γ(2ß + 1)
+

[
135
2

sech4

(
℘− 15

2

)
tanh3

(
℘− 15

2

)
−

63
2

sech4

(
℘− 15

2
tanh

(
℘− 15

2

))]
Γ(ß + 1)ϑ2ß−1

Γ(2ß)
+ · · · .

At ß = 1, we find as the closed type the exact result:

V(℘, ϑ) = 3sech2

(
℘− 15− ϑ

2

)
. (50)

In Figure 2, The solutions for the V(℘, ϑ) surface with regard to ℘ and ϑ are explored
for various values of ß. (a) The surface solution of the function V(℘, ϑ) at the values of
ß = 0.25, (b) ß = 0.50, (c) ß = 0.75, and (d) ß = 1. In Table 1, the exact ETDM and HPTM
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results of V(℘, ϑ) for problem 1 at various fractional orders of ß having different values of
℘ and ϑ.

Figure 2. The solutions for the V(℘, ϑ) surface with regard to ℘ and ϑ are explored for various
values of ß. (a) The surface solution of the function V(℘, ϑ) at the values of ß = 0.25, (b) ß = 0.50,
(c) ß = 0.75, and (d) ß = 1.

Table 1. The exact ETDM and HPTM results of V(℘, ϑ) for problem 1 at various fractional orders of
ß having different values of ℘ and ϑ.

ϑ ℘ ß = 0.6 ß = 0.8 ß = 1 (Approx) ß = 1 (Approx) ß = 1 (Exact)

0.2 0.000004490 0.000004487 0.000004483 0.000004483 0.000004479
0.4 0.000005481 0.000005479 0.000005476 0.000005476 0.000005470

0.01 0.6 0.000006693 0.000006691 0.000006688 0.000006688 0.000006681
0.8 0.000008171 0.000008171 0.000008169 0.000008169 0.000008161
1 0.000009982 0.000009980 0.000009978 0.000009978 0.000009968

0.2 0.000004490 0.000004487 0.000004483 0.000004483 0.000004474
0.4 0.000005482 0.000005478 0.000005476 0.000005476 0.000005465

0.02 0.6 0.000006693 0.000006690 0.000006688 0.000006688 0.000006675
0.8 0.000008177 0.000008172 0.000008169 0.000008169 0.000008153
1 0.000009987 0.000009982 0.000009978 0.000009978 0.000009958

0.2 0.000004489 0.000004485 0.000004483 0.000004483 0.000004470
0.4 0.000005489 0.00000583 0.000005476 0.000005476 0.000005459

0.03 0.6 0.000006693 0.000006690 0.000006688 0.000006688 0.000006668
0.8 0.000008179 0.000008174 0.000008169 0.000008169 0.000008145
1 0.000009989 0.000009982 0.000009978 0.000009978 0.000009948

0.2 0.000004492 0.000004487 0.000004483 0.000004483 0.000004465
0.4 0.000005487 0.000005481 0.000005476 0.000005476 0.000005454

0.04 0.6 0.000006699 0.000006691 0.000006688 0.000006688 0.000006661
0.8 0.000008183 0.000008177 0.000008169 0.000008169 0.000008136
1 0.000009999 0.000009983 0.000009978 0.000009978 0.000009938

0.2 0.000004497 0.000004489 0.000004483 0.000004483 0.000004461
0.4 0.000005490 0.000005479 0.000005476 0.000005476 0.000005448

0.05 0.6 0.000006697 0.000006691 0.000006688 0.000006688 0.000006655
0.8 0.000008191 0.000008185 0.000008169 0.000008169 0.000008128
1 0.000009997 0.000009988 0.000009978 0.000009978 0.000009928
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6. Conclusions

In this study, an effective solution approach is presented for solving nonlinear frac-
tional shock wave equations. The proposed method combines the Elzaki transform, homo-
topy perturbation method, and Adomian decomposition method. The Elzaki transform
is employed to convert the nonlinear fractional shock wave equation into an equivalent
integral equation. Then, the homotopy perturbation method and Adomian decomposition
method are used to approximate the solution of the integral equation. Numerical examples
were included to demonstrate the effectiveness of the proposed approach, and the obtained
results were compared with those obtained by other existing methods. The findings reveal
that the combined method yielded accurate and efficient solutions for nonlinear fractional
shock wave equations. In summary, the proposed approach can be a promising technique
for solving nonlinear fractional shock wave equations and can be used in various scientific
and engineering applications.
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