Numerical Analysis and Structure Optimization of Concentric GST Ring Resonator Mounted over SiO2 Substrate and Cr Ground Layer
Abstract
:1. Introduction
2. Methodology
2.1. Design and Modeling
2.2. Structure Optimization
3. Results and Discussion
- Linear Parametric Optimization
- Nonlinear Parametric Optimization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lønborg, C.; Carreira, C.; Jickells, T.; Álvarez-Salgado, X.A. Impacts of Global Change on Ocean Dissolved Organic Carbon (DOC) Cycling. Front. Mar. Sci. 2020, 7, 466. [Google Scholar] [CrossRef]
- Gamon, J.A.; Huemmrich, K.F.; Wong, C.Y.S.; Ensminger, I.; Garrity, S.; Hollinger, D.Y.; Noormets, A.; Peñuelask, J. A remotely sensed pigment index reveals photosynthetic phenology in evergreen conifers. Proc. Natl. Acad. Sci. USA 2016, 113, 13087–13092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, Y.; Kim, J.; Roh, Y.G.; Park, Q.H. Optical slot antennas and their applications to photonic devices. Nanophotonics 2018, 7, 1617–1636. [Google Scholar] [CrossRef]
- Fang, T.; Gao, X.; Wang, X.; Liu, J. Design of gate-tunable graphene electro-optical reflectors based on an optical slot-antenna coupled cavity. J. Phys. Photonics 2021, 3, 045003. [Google Scholar] [CrossRef]
- Zhou, J.; Leaño, J.L.; Liu, Z.; Jin, D.; Wong, K.L.; Liu, R.S.; Bünzli, J.C.G. Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. Small 2018, 14, 1801882. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, H.; Fu, G.; Liu, G.; Liu, X.; Yuan, W.; Xie, Z.; Tang, C. Colloid templated semiconductor meta-surface for ultra-broadband solar energy absorber. Sol. Energy 2020, 198, 194–201. [Google Scholar] [CrossRef]
- Krumme, J.-P.; Hack, R.A.A.; Raaijmakers, I.J.M.M.; Cazzaniga, A.; Crovetto, A.; Ettlinger, R.B.; Canulescu, S.; Hansen, O.; Pryds, N.; Schou, J.J.; et al. Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on. Thin Solid Films 2011, 3, 1–4. [Google Scholar]
- Jalal, R.; Shihab, S.; Alhadi, M.A.; Rasheed, M. Spectral Numerical Algorithm for Solving Optimal Control Using Boubaker-Turki Operational Matrices. J. Phys. Conf. Ser. 2020, 1660, 012090. [Google Scholar] [CrossRef]
- Rasheed, M.; Mohammed, O.Y.; Shihab, S.; Al-Adili, A. A comparative Analysis of PV Cell Mathematical Model. J. Phys. Conf. Ser. 2021, 1795, 012042. [Google Scholar] [CrossRef]
- Ding, F.; Cui, Y.; Ge, X.; Jin, Y.; He, S. Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 2012, 100, 103506. [Google Scholar] [CrossRef] [Green Version]
- Nuru, Z.Y.; Arendse, C.J.; Muller, T.F.; Khamlich, S.; Maaza, M. Thermal stability of electron beam evaporated AlxO y/Pt/AlxOy multilayer solar absorber coatings. Sol. Energy Mater. Sol. Cells 2014, 120, 473–480. [Google Scholar] [CrossRef]
- Zaversky, F.; Aldaz, L.; Sánchez, M.; Ávila-Marín, A.L.; Roldán, M.I.; Fernández-Reche, J.; Füssel, A.; Beckert, W.; Adler, J. Numerical and experimental evaluation and optimization of ceramic foam as solar absorber—Single-layer vs multi-layer configurations. Appl. Energy 2018, 210, 351–375. [Google Scholar] [CrossRef]
- Patel, S.K.; Udayakumar, A.K.; Mahendran, G.; Vasudevan, B.; Surve, J.; Parmar, J. Highly efficient, perfect, large angular and ultrawideband solar energy absorber for UV to MIR range. Sci. Rep. 2022, 12, 18044. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Surve, J.; Katkar, V.; Parmar, J. Optimization of Metamaterial-Based Solar Energy Absorber for Enhancing Solar Thermal Energy Conversion Using Artificial Intelligence. Adv. Theory Simul. 2022, 5, 2200139. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Prajapati, P.; Taya, S.A. Design of an ultra-wideband solar energy absorber with wide-angle and polarization independent characteristics. Opt. Mater. 2022, 131, 112683. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J.; Katkar, V.; Jadeja, R.; Taya, S.A.; Ahmed, K. Graphene-based metasurface solar absorber design for the visible and near-infrared region with behavior prediction using Polynomial Regression. Optik 2022, 262, 169298. [Google Scholar] [CrossRef]
- Thomas, N.H.; Chen, Z.; Fan, S.; Minnich, A.J. Semiconductor-based Multilayer Selective Solar Absorber for Unconcentrated Solar Thermal Energy Conversion. Sci. Rep. 2017, 7, 5362. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.K.; Surve, J.; Jadeja, R.; Katkar, V.; Parmar, J.; Ahmed, K. Ultra-Wideband, Polarization-Independent, Wide-Angle Multilayer Swastika-Shaped Metamaterial Solar Energy Absorber with Absorption Prediction using Machine Learning. Adv. Theory Simul. 2022, 5, 2100604. [Google Scholar] [CrossRef]
- AL-Rjoub, A.; Rebouta, L.; Costa, P.; Vieira, L.G. Multi-layer solar selective absorber coatings based on W/WSiAlNx /WSiAlOyNx/SiAlOx for high temperature applications. Sol. Energy Mater. Sol. Cells 2018, 186, 300–308. [Google Scholar] [CrossRef]
- Xin, W.; Binzhen, Z.; Wanjun, W.; Junlin, W.; Junping, D. Design and characterization of an ultrabroadband metamaterial microwave absorber. IEEE Photonics J. 2017, 9, 1–13. [Google Scholar] [CrossRef]
- Du John, H.V.; Jose, T.; Jone, A.A.A.; Sagayam, K.M.; Pandey, B.K.; Pandey, D. Polarization Insensitive Circular Ring Resonator Based Perfect Metamaterial Absorber Design and Simulation on a Silicon Substrate. Silicon 2022, 14, 9009–9020. [Google Scholar] [CrossRef]
- Niranjan, K.; Kondaiah, P.; Biswas, A.; Kumar, V.P.; Srinivas, G.; Barshilia, H.C. Spectrally selective solar absorber coating of w/walsin/sion/sio2 with enhanced absorption through gradation of optical constants: Validation by simulation. Coatings 2021, 11, 334. [Google Scholar] [CrossRef]
- Wu, B.; Liu, Z.; Du, G.; Shi, L.; Liu, X.; Liu, M.; Zhan, X. Ultra-broadband electromagnetic wave absorber based on split-ring resonators. J. Opt. Soc. Am. B 2019, 36, 3573. [Google Scholar] [CrossRef]
- IEEE MTT-S International Microwave and RF Conference 2014, IMaRC 2014—Collocated with Intemational Symposium on Microwaves, ISM 2014. 2015, p. 406. Available online: https://www.scimagojr.com/journalsearch.php?q=21100379733&tip=sid&clean=0 (accessed on 12 February 2023).
- Yu, P.; Yang, H.; Chen, X.; Yi, Z.; Yao, W.; Chen, J.; Yi, Y.; Wu, P. Ultra-wideband solar absorber based on refractory titanium metal. Renew. Energy 2020, 158, 227–235. [Google Scholar] [CrossRef]
- Wu, P.; Wei, K.; Xu, D.; Chen, M.; Zeng, Y.; Jian, R. Ultra-wideband and wide-angle perfect solar energy absorber based on titanium and silicon dioxide colloidal nanoarray structure. Nanomaterials 2021, 11, 2040. [Google Scholar] [CrossRef]
- Naveed, M.A.; Bilal, R.M.H.; Baqir, M.A.; Bashir, M.M.; Ali, M.M.; Rahim, A.A. Ultrawideband fractal metamaterial absorber made of nickel operating in the UV to IR spectrum. Opt. Express 2021, 29, 42911–42923. [Google Scholar] [CrossRef]
- Shafique, A.; Naveed, M.A.; Ijaz, S.; Zubair, M.; Mehmood, M.Q.; Massoud, Y. Highly efficient Vanadium Nitride based metasurface absorber/emitter for solar-thermophotovoltaic system. Mater. Today Commun. 2023, 34, 105416. [Google Scholar] [CrossRef]
- Kondaiah, P.; Niranjan, K.; John, S.; Barshilia, H.C. Tantalum carbide based spectrally selective coatings for solar thermal absorber applications. Sol. Energy Mater. Sol. Cells 2019, 198, 26–34. [Google Scholar] [CrossRef]
- Bilal, R.M.H.; Baqir, M.A.; Choudhury, P.K.; Naveed, M.A.; Ali, M.M.; Rahim, A.A. Ultrathin broadband metasurface-based absorber comprised of tungsten nanowires. Results Phys. 2020, 19, 103471. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; He, X.; Zhang, J.; Huang, J.; Chen, D.; Han, Y. Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator. Sensors 2018, 18, 116. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Yan, S.; Ren, Y.; Zhang, X.; Li, T.; Wu, X.; Shen, L.; Hua, E. A mim waveguide structure of a high-performance refractive index and temperature sensor based on fano resonance. Appl. Sci. 2021, 11, 10629. [Google Scholar] [CrossRef]
- Rio, Y.; Rodríguez-Morgade, M.S.; Torres, T. Modulating the electronic properties of porphyrinoids: A voyage from the violet to the infrared regions of the electromagnetic spectrum. Org. Biomol. Chem. 2008, 6, 1877–1894. [Google Scholar] [CrossRef] [PubMed]
- Stauber, T.; Peres, N.M.R.; Geim, A.K. Optical conductivity of graphene in the visible region of the spectrum. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 085432. [Google Scholar] [CrossRef] [Green Version]
- Rio, Y.; Rodriguez-Morgade, M.S.; Torres, T. ChemInform Abstract: Modulating the Electronic Properties of Porphyrinoids: A Voyage from the Violet to the Infrared Regions of the Electromagnetic Spectrum. Org. Biomol. Chem. 2008, 39. [Google Scholar] [CrossRef]
- Amiri, M.; Tofigh, F.; Shariati, N.; Lipman, J.; Abolhasan, M. Wide-angle metamaterial absorber with highly insensitive absorption for TE and TM modes. Sci. Rep. 2020, 10, 13638. [Google Scholar] [CrossRef] [PubMed]
- Volke-Sepulveda, K.; Ley-Koo, E. General construction and connections of vector propagation invariant optical fields: TE and TM modes and polarization states. J. Opt. A Pure Appl. Opt. 2006, 8, 867–877. [Google Scholar] [CrossRef] [Green Version]
- COMSOL Multiphysics®, Version 6.0; COMSOL, Inc.: Stockholm, Sweden, 2021.
- Rakić, A.D.; Djurišić, A.B.; Elazar, J.M.; Majewski, M.L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37, 5271. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Kim, H.S.; Lee, Y.J.; Hong, G.W.; Jung, D.; Kim, J.H. Synthesis of cellulose-L-tyrosine-SiO2/ZrO2 hybrid nanocomposites by sol-gel process and its potential. Int. J. Precis. Eng. Manuf. 2017, 18, 1297–1306. [Google Scholar] [CrossRef]
- Azad, M.M.; Ejaz, M.; Shah, A.u.R.; Afaq, S.K.; Song, J. A bio-based approach to simultaneously improve flame retardancy, thermal stability and mechanical properties of nano-silica filled jute/thermoplastic starch composite. Mater. Chem. Phys. 2022, 289, 126485. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, H.; Li, L.; Cai, Y.; Zeyde, K.; Han, X. Efficient HIE-FDTD method for designing a dual-band anisotropic terahertz absorption structure. Opt. Express 2021, 29, 18611. [Google Scholar] [CrossRef]
- Khare, P.; Wadhvani, R.; Shukla, S. Missing Data Imputation for Solar Radiation Using Generative Adversarial Networks. In Proceedings of International Conference on Computational Intelligence: ICCI 2020; Springer: Singapore, 2022; pp. 1–14. [Google Scholar]
- Li, Y.; Zhang, L.; Torres-Pardo, A.; González-Calbet, J.M.; Ma, Y.; Oleynikov, P.; Terasaki, O.; Asahina, S.; Shima, M.; Cha, D.; et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat. Commun. 2013, 4, 2566. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Hu, M.; Ao, X.; Pei, G. Performance analysis of enhanced radiative cooling of solar cells based on a commercial silicon photovoltaic module. Sol. Energy 2018, 176, 248–255. [Google Scholar] [CrossRef]
- Rana, A.S.; Zubair, M.; Danner, A.; Mehmood, M.Q. Revisiting tantalum based nanostructures for efficient harvesting of solar radiation in STPV systems. Nano Energy 2021, 80, 105520. [Google Scholar] [CrossRef]
- Kler, A.M.; Zharkov, P.V.; Epishkin, N.O. Parametric optimization of supercritical power plants using gradient methods. Energy 2019, 189, 116230. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Kumar, D.S.; Raja, G.T. Design and Simulation Analysis on TM–Pass GST-Assisted Asymmetric Directional Coupler-Based Polarizer. Silicon 2022, 14, 6351–6362. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Huang, Z.; Liu, X.; Fu, G. Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol. Energy Mater. Sol. Cells 2018, 179, 346–352. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Liu, X.; Wang, Y.; Fu, G. Titanium resonators based ultra-broadband perfect light absorber. Opt. Mater. 2018, 83, 118–123. [Google Scholar] [CrossRef]
- Gao, H.; Peng, W.; Chu, S.; Cui, W.; Liu, Z.; Yu, L.; Jing, Z. Refractory ultra-broadband perfect absorber from visible to near-infrared. Nanomaterials 2018, 8, 1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soydan, M.C.; Ghobadi, A.; Yildirim, D.U.; Erturk, V.B.; Ozbay, E. All Ceramic-Based Metal-Free Ultra-broadband Perfect Absorber. Plasmonics 2019, 14, 1801–1815. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.; Li, Z.-Y. Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photonics Res. 2016, 4, 146. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Chen, X.; Yi, Z.; Tang, Y.; Yang, H.; Zhou, Z.; Duan, T.; Cheng, S.; Zhang, J.; Yi, Y. A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt. Mater. 2019, 97, 109400. [Google Scholar] [CrossRef]
MIM Absorber Design | Overall Absorption Rate | Bandwidth (Absorption > 95%) | Bandwidth (Absorption > 97%) | Angle Insensitive | Polarization Insensitive |
---|---|---|---|---|---|
Ni/SiO2/Ni inspired structure [27] | More than 80% | - | 1700 nm | 0° to 60° | Yes |
Refractory metal VN based structure [28] | - | - | >98% (500 nm) | - | Yes |
W/SiO2/W structure [30] | 85% (visible) | - | Near perfect in UV region | 0° to 60° | Yes |
TiN & TiO2 disk arrays on SiO2 layer [49] | More than 90% | 1110 (>90%) | - | 0° to 40° | Yes |
Ti/Silica/Ti double lattice structure [50] | 91.4% | 1007 (>90%) | - | 0° to 45° | - |
Multilayer structure of SiO2/Ti/SiO2/Ti (elliptical nanodisc of Ti) [51] | 93.26% | 1650 (>90%) | - | 0° to 70° | Yes |
All ceramic structure [52] | More than 90% | 1310 (>90%) | - | 0° to 60° | Yes |
Phase change material based structure [53] | More than 90% | 1000 (>90%) | - | - | Yes |
TiO2/TiN resonator with SiO2 and TiN as a substrate and ground plane [54] | More than 90% | 1264 (>90%) | - | 0° to 45° | - |
Proposed concentric GST ring inspired structure | 95.21% | 2800 nm | 2550 nm | 0° to 60° | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliqab, K.; Han, B.B.; Armghan, A.; Alsharari, M.; Surve, J.; Patel, S.K. Numerical Analysis and Structure Optimization of Concentric GST Ring Resonator Mounted over SiO2 Substrate and Cr Ground Layer. Mathematics 2023, 11, 1257. https://doi.org/10.3390/math11051257
Aliqab K, Han BB, Armghan A, Alsharari M, Surve J, Patel SK. Numerical Analysis and Structure Optimization of Concentric GST Ring Resonator Mounted over SiO2 Substrate and Cr Ground Layer. Mathematics. 2023; 11(5):1257. https://doi.org/10.3390/math11051257
Chicago/Turabian StyleAliqab, Khaled, Bo Bo Han, Ammar Armghan, Meshari Alsharari, Jaymit Surve, and Shobhit K. Patel. 2023. "Numerical Analysis and Structure Optimization of Concentric GST Ring Resonator Mounted over SiO2 Substrate and Cr Ground Layer" Mathematics 11, no. 5: 1257. https://doi.org/10.3390/math11051257
APA StyleAliqab, K., Han, B. B., Armghan, A., Alsharari, M., Surve, J., & Patel, S. K. (2023). Numerical Analysis and Structure Optimization of Concentric GST Ring Resonator Mounted over SiO2 Substrate and Cr Ground Layer. Mathematics, 11(5), 1257. https://doi.org/10.3390/math11051257