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Abstract: In this paper, based on a three-dimensional Bao system, a memristor-based hyper-chaotic
Bao-like system is successfully constructed, and a simulated equivalent circuit is designed, which
is used to verify the chaotic behaviors of the system. Meanwhile, a control method called periodi-
cally intermittent control with variable control width is proposed. The control width sequence in
the proposed method is not only variable, but also monotonically decreasing, and the method can
effectively stabilize most existing nonlinear systems. Moreover, the memristor-based hyper-chaotic
Bao-like system is controlled by combining the proposed method with the Lyapunov stability princi-
ple. Finally, we should that the proposed method can effectively control and stabilize not only the
proposed hyper-chaotic system, but also the Chua’s oscillator.

Keywords: memristor; hyper-chaotic system; hyper-chaotic Bao-like system; intermittent control;
exponential stabilization
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1. Introduction

For decades, the mystery of chaotic phenomena has been explored. Lorenz established
the Lorenz system [1] in 1963 when he studied the phenomenon of atmospheric turbulence.
In 2009, Bao et al. [2] made a mirror transformation of the first two equations of state
in the Lü system equation [3], and the nonlinearity term in the third state equation is
modified by x2, a three-dimensional Bao system with more complex chaotic behaviors is
obtained. Compared with the three-dimensional chaotic system, the hyper-chaotic system
has more complex dynamics, which can be obtained by adding a state feedback controller
to the three-dimensional chaotic system [4,5]. In [4], two linear terms are added as a
linear state feedback controller to a continuous chaotic system to obtain a hyper-chaotic
system, and the basic dynamical behaviors of the hyper-chaotic system are analyzed using
numerical simulations. In [5], two nonlinear terms are added as a nonlinear state feedback
controller to the Lorenz system to construct a hyper-chaotic system, and the simulation
circuit is designed for the hyper-chaotic system.

The memristor was put forward by Chua [6] in 1971, which was physically realized
by Strukov et al. [7] in 2008. Meanwhile, memristor has also been utilized in the fields of
communication engineering, neural networking, and bioengineering, and have yielded
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many pleasant results [8–11]. In recent years, researches on memristors have been of
great interests, and many results [12,13] have emerged. In [12], a memristor model is
constructed, and the chaotic characteristics of the memristor are measured using circuit
simulation. In [13], a novel discrimination method for memristor is proposed, and a
new memristor model is constructed. The necessary condition for the construction of
chaotic systems is nonlinearity, and the memristor has this feature, which can be utilized to
design a new chaotic system. There are many research results about the memristor-based
chaotic system [14–16]. In [14], oscillators with many rich oscillation characteristics and
nonlinear dynamical behaviors are obtained by substituting Chua’s diode for a memristor.
In [15], a new memristor-based hyper-chaotic system is obtained by combining a Hewlett
Packard (HP) memristor with a four-dimensional continuous system, and an equivalent
analog circuit is designed to verify its chaotic behaviors. In [16], a memristor-based chaotic
system is obtained by substituting a memristor for Chua’s diode, and its basic dynamical
properties are analyzed using numerical simulations. Furthermore, its chaotic behaviors are
verified with circuit experimental results. On the basis of [2], a smooth cubic nonlinear flux-
controlled memristor and a linear term as a nonlinear state feedback controller are added
to the equations of the three-dimensional Bao system so that the memristor-based hyper-
chaotic Bao-like system in this paper is obtained. For the hyper-chaotic system, complex
chaotic behaviors are relatively easy to generate due to the existence of a memristor.

Generally speaking, in order to stabilize a class of nonlinear systems, people will
add a feedback mechanism. Recently, some useful and effective control strategies, such
as impulsive control [17–22] and intermittent control [23–26] have been favored by many
scholars. In [17], Xie et al. analyzed the stability of the Chen hyper-chaotic system using the
three-stage-impulse control method. In [18], Yang et al. designed an impulsive controller
with a time delay to achieve exponential synchronization between the two systems, and the
results of this theory were also applied to secure communication. In [19], Rao et al. con-
structed an epidemic model with delayed impulse, and also gave a new synchronization
method. In [20], Wu et al. utilized a set of adaptive uncertain control matrices for impulsive
control of nonlinear systems, and numerical simulation examples were used to demonstrate
the superiority of the method. In [21], Chen et al. constructed a system and analyzed the
stability of the system by using some inequality principles. In addition, numerical simula-
tion examples were used to demonstrate the validity of the theory. Ref. [23] studied the
exponential stability of a class of nonlinear systems using periodically intermittent control.
Ref. [25] studied the dissipative performance of distributed parameter systems by using a
fuzzy aperiodic intermittent sampling data control method, and in order to save control
cost, the optimal control gain was given. Also, numerical simulation examples were used
to prove the feasibility of the method. Ref. [26] analyzed the stability of a class of systems
with random factors and delays by using intermittent control, and by using numerical
simulation, the effectiveness of the method was proven. As a result of the convenience
and efficiency of intermittent control, it has been applied to many fields such as medicine,
communication engineering, transportation, and so on.

In recent years, intermittent control has been used to study the stability [27–30], and
synchronization of chaotic systems [31–35]. For the former, Ref. [27] studied the stabilization
of delayed dynamical systems by using the dynamic event-triggered intermittent control.
Ref. [28] analyzed the stabilization of complex-valued stochastic networks by using periodic
self-triggered intermittent control. For the latter, in [32], the finite-time synchronization
of uncertain nonlinear systems containing perturbations was realized by using aperiodic
intermittent control. In [35], the prefixed-time synchronization of a class of dynamic
networks with delay was achieved by using local intermittent sampling control, and a
numerical example was used to verify the feasibility of the method.

However, in practical problems, the control width sequence of intermittent control
may change. Whether the former or the latter, the control width sequence is fixed, which
may lead to some limitations in real life. Therefore, in order to remove this limitation,
on the basis of [23], a periodically intermittent control method with variable control width is
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proposed in this paper. In this new method, the control width sequence is not only variable,
but also monotonically decreasing. Therefore, compared with the traditional method, this
new method may have wider practicability. In addition, the proposed method is used to
control the proposed hyper-chaotic system and the Chua’s oscillator in this paper.

In summary, the outstanding contributions of this paper are listed below:

(i) A memristor-based hyper-chaotic Bao-like system is constructed, and its chaotic behavior is
verified by designing an analog circuit;

(ii) A novel control method called periodically intermittent control with variable control width is
proposed, and the proposed hyper-chaotic system is controlled by this method.

This paragraph contains the outline of the remaining part of this paper. In Section 2,
the memristor-based hyper-chaotic Bao-like system is constructed, and its mathematical
model and the circuit implementation are given; in Section 3, the general nonlinear system,
the design of the controller and some lemmas and mathematical knowledge to be used in
this paper are introduced; in Section 4, a method called periodically intermittent control
with variable control width is proposed, and some conditions about the exponential stability
of a classical nonlinear system are obtained; in Section 5, in order to verify the feasibility
of the method, the proposed method is used to stabilize the hyper-chaotic system and the
Chua’s oscillator, and their simulation results are also given. Finally, Section 6 summarizes
this paper.

Notation 1. The maximum eigenvalue, the minimum eigenvalue, and the transpose of square
matrix Q are represented by λH(Q), λh(Q), and QT , respectively. The Euclidean norm of the
vector x is represented by ‖x‖, I denotes the identity matrix.

2. Construction of the New Hyper-Chaotic System

The mathematical model of the Bao system [2] can be described by the following set
of differential equations 

ẋ = a(x− y),
ẏ = xz− cy,
ż = x2 − bz,

(1)

where x, y, and z are the state vectors of the system. Further, a, b, and c are positive
real parameters.

Figure 1 shows the circuit configuration and structure of the Bao chaotic system,
which is implemented in an analog circuit using mainly operational amplifiers, multipliers,
resistors and capacitors.

Figure 1. Circuit implementation diagram of Bao chaotic system.
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According to Kirchhoff’s Current Law (KCL) and Kirchhoff’s Voltage Law (KVL) [36],
the circuit can be described by the following differential equations:

ẋ =
xR3

R1R4C1
− yR3

R2R4C1
,

ẏ =
xzR7R10

R6R8R9C2
− yR7R10

R5R8R9C2
,

ż =
x2R13R16

R12R14R15C3
− zR13R16

R11R14R15C3
.

(2)

By comparing (2) with the parameters in system (1), we can obtain the values of each
component in Figure 1.

It is well known that the necessary condition for the creation of chaotic systems is non-
linearity, and the memristor has this feature. Therefore, in order for the system to generate
more complex chaotic behaviors, a flux-controlled memristor model [37], a linear feedback
term, and a nonlinear feedback term are added to the Bao chaotic system. The mathematical
model of the flux-controlled memristor can be described by a smooth monotonically rising
cubic nonlinear curve equation

q(ϕ) = αϕ + βϕ3, (3)

where α and β are positive constants. Furthermore, q and ϕ represent the charge and flux
of the memristor, respectively.

For convenience, let x = ϕ, f = q, and (3) is rewritten as follows:

f (x) = αx + βx3. (4)

On the basis of (4), a new variable ω as the excitation is introduced into the Bao
chaotic system, so a memristor-based hyper-chaotic Bao-like system is obtained, and the
mathematical model of the hyper-chaotic system can be described by the following set of
differential equations 

ẋ = a(x− y),
ẏ = xz− cy + w,
ż = x2 − bz + xy,
ω̇ = dy + f (x),

(5)

in which x, y, z, and ω are the state vectors of the system. Additionally, a, b, c, and d
are positive real parameters. f (x) is a nonlinear function that represents the relationship
between the flux and the charge of the memristor.

After the transformation of system (5) with (x, y, z, ω)→ (−x,−y,−z,−ω), the equa-
tion of the system remains unchanged, so the system is symmetric about the z axis. In addi-
tion, the dissipation of system (5) can be calculated with the following equation

∇VM =
∂ẋ
∂x

+
∂ẏ
∂y

+
∂ż
∂z

+
∂ω̇

∂ω
= a− b− c < 0, (6)

in which ∇VM is used to denote the dissipativity.
Therefore, from the above results, when the values of system parameters a, b, and c

satisfy (6), the dissipation of system (5) can be guaranteed. In other words, the trajectory of
system (5) will eventually converge to zero.

It is extremely important to obtain and analyze the equilibrium point of a chaotic
system, which can be used to study the stability of the equilibrium point of the system.
Thus, the Jacobi matrix J∗v at the equilibrium point S∗v = (x∗v , y∗v , z∗v , ω∗v) of system (5) is
defined as follows:
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J∗v =


a −a 0 0
z∗v −c 0 1

x∗v + y∗v x∗v −b 0
α + 3β(x∗v)

2 d 0 0

. (7)

To obtain the values of the equilibrium point of the system, let ẋ = ẏ = ż = ω̇ = 0.
Obviously, the equilibrium point S∗v = (0, 0, 0, 0) is the only equilibrium point of the system.
Moreover, the following characteristic equation can be obtained by (7):

(b + λ)
(

λ3 + (c− a)λ3 + (ac + d)λ− (d + α)a
)
= 0. (8)

Therefore, the equilibrium point S∗v = (0, 0, 0, 0) is unstable using the Routh–Hurwitz
criterion.

In order to make system (5) exhibit chaotic dynamics behavior, let the parameters
a = 10, b = 4, c = 22, d = 4, α = 4, and β = 0.5. The chaotic attractor phase di-
agram of the memristor-based hyper-chaotic Bao-like system with the initial condition
x(0) = [x(0), y(0), z(0), ω(0)]T = [10, 10, 10, 10]T is shown in Figure 2, where Figure 2a,
Figure 2b, Figure 2c, and Figure 2d, represent attractor phase diagrams of the x-y-ω plane,
x-y plane, x-z plane, and y-z plane, respectively.
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Figure 2. Chaotic attractor phase diagram for the hyper-chaotic Bao-like system based on memristor
with the initial condition x(0) = [10, 10, 10, 10]T . (a) x-y-ω plane. (b) x-y plane. (c) x-z plane.
(d) y-z plane.

The concept of the Lyapunov exponent was first introduced in [38] and can be used to
characterize the motion of the system. When a system contains no less than one positive
Lyapunov exponent, it can be determined whether it is chaotic [39]. The Lyapunov expo-
nents of system (5) can be calculated by using the Wolf method in [38], and Figure 3 shows
the Lyapunov exponential spectrum of the hyper-chaotic system. To show more clearly,
combined with the data analysis in Table 1, the Lyapunov exponents that LE1 = 0.5369,
LE2 = 0.1863, LE3 = −0.0077 ≈ 0, and LE4 = −16.4081 can be obtained respectively. The
Kaplan–Yorke dimension [40] of the hyper-chaotic system is defined as:
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DL = j +

i=j
∑

i=1
LEi∣∣|LEj+1|

∣∣ = 3 +
0.5369 + 0.1863− 0.0077

|| − 16.4081|| = 3.07, (9)

where j represents the largest integer.

0 10 20 30 40 50 60

Time

-25

-20

-15

-10

-5

0

5

10

L
y
a
p
u
n
o
v
 E

x
p
o
n
e
n
ts

LE
1

LE
2

LE
3

LE
4

Figure 3. The Lyapunov exponential spectrum of the memristor-based hyper-chaotic Bao-like system
with the initial condition x(0) = [10, 10, 10, 10]T .

Table 1. Lyapunov exponents.

Time LE1 LE2 LE3 LE4

t = 0.3 8.6789 2.9300 −3.8563 −23.7506
t = 0.6 7.1126 −1.2834 −0.0935 −21.7304

...
...

...
...

...
t = 59.7 0.4827 0.1783 −0.0079 −16.3812
t = 60.0 0.5369 0.1863 −0.0077 −16.4081

In order to verify the chaotic behavior of system (5), the modular circuit of the hyper-
chaotic system is designed, as shown in Figure 4. Additionally, the modular circuit of the
cubic nonlinear flux-controlled memristor is composed of two operational amplifiers, two
multipliers, and five resistors.

Similarly, according to KCL and KVL, the circuit can be described by the following
differential equations

ẋ =
xR3

R1R4C1
− yR3

R2R4C1
,

ẏ =
xzR7R10

R6R8R9C2
− yR7R10

R5R8R9C2
+

ωR7R10

RinR8R9C2
,

ż =
x2R13R16

R12R14R15C3
− zR13R16

R11R14R15C3
+

xyR13R16

R17R14R15C3
,

ω̇ =
x3R20R22R25

R19R21R23R26C4
+

xR20R22R25

R18R21R23R26C4
+

yR25

R24R26C4
.

(10)
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By comparing (10) with the parameters in system (5), we can obtain the values of each
component in Figure 4. Figure 5 shows the phase diagram of the chaotic attractor observed
on the oscilloscope. By comparison, it is basically consistent with the simulation results in
Figure 2.

Figure 4. Circuit implementation diagram of the memristor-based hyper-chaotic Bao-like system.

Remark 1. In the actual circuit, the absolute value of the supply voltage of the operational amplifier
does not exceed 15 v, and the absolute value of the supply voltage of the analog multiplier does
not exceed 10 v. Therefore, in this circuit, the supply voltage of the operational amplifier, and the
analog multiplier is set to ±15 v and ±9 v, respectively. From the chaotic attractor phase diagram
in Figure 2, the dynamic range of the chaotic attractor of system (5) is within ±100. Thus, without
changing the performance of the system, the size of all four state variables of the system are uniformly

compressed to
1

10
of the original size.
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(c)
Figure 5. Chaotic attractor phase diagram for the hyper-chaotic Bao-like system based on memristor
with the initial condition x(0) = [1, 1, 1, 1]T . (a) x-y plane. (b) x-z plane. (c) y-z plane.
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3. Introduction of the Periodically Intermittent Control

The following is a classical nonlinear system:{
ẋ(t) = Bx(t) + Cg(x(t)) + δ(t),
x(t0) = x0,

(11)

where x ∈ Rn is a state vector, B, C ∈ Rn×n are constant matrices, and g : Rn → Rn is a
continuous nonlinear function that satisfies g(0) = 0. Suppose that there is a diagonal
matrix L = diag(b1, b2, · · · , bn) ≥ 0 such that ‖g(x)‖2 ≤ xT Lx for arbitrary x ∈ Rn. δ(t) is
the external input of system (11) which can be described as

δ(t) =

{
Kx(t), $T ≤ t < $T + τ$,
0, $T + τ$ ≤ t < ($ + 1)T.

(12)

So, system (11) can be written as
ẋ(t) = Bx(t) + Cg(x(t)) + Kx(t), $T ≤ t < $T + τk,
ẋ(t) = Bx(t) + Cg(x(t)), $T + τ$ ≤ t < ($ + 1)T,
x(t0) = x0,

(13)

in which K ∈ Rn×n is a constant matrix that represents the control intensity.
{

τ$

}
represents

the control width sequence, satisfying 0 < τ$ ≤ T, $ = 0, 1, 2, · · · , and T > 0 denotes the
period of control. In addition, τ$ also satisfies the following equation

τ$ = τ0 − $d, (14)

in which τ0 = T, and d ≥ 0 represent the variance.
The method in (13) is called periodically intermittent control method.

Remark 2. Let τ0 = ζ, and d = 0, in which ζ ∈ (0, T). Then, system (13) becomes the case
in [23].

In addition, in order to make system (13) stable, the following two lemmas need to
be used.

Lemma 1 ([41]). For any three real matrices φ1, φ2,φ3 ∈ Rn×m, 0 < φ3 = φT
3 , and a scalar µ ≥ 0,

we have the following inequality:

φT
1 φ2 + φT

2 φ1 ≤ µφT
1 φ3φ1 + µ−1φT

2 φ−1
3 φ2. (15)

Lemma 2 ([42]). Let Υ(x) = ΥT(x), Ψ(x) = ΨT(x), and[
Υ(x) Φ(x)

ΦT(x) Ψ(x)

]
> 0, (16)

Therefore, the above linear matrix inequality (LMI) can be rewritten as the following

Ψ(x) > 0, Υ(x)−Φ(x)Ψ−1(x)ΦT(x) > 0.

4. Main Results

This section analyzes the exponential stability of system (13) by constructing a Lyapunov-
like method, and obtains the conditions for judging exponential stability and a corollary
about exponential stability.
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Theorem 1. Suppose there exists a symmetric and positive definite matrix Q > 0, four positive
scalar constants µ1 > 0, µ2 > 0, p1 > 0, and p2 > 0 satisfying the following conditions:

(i) QB + BTQ + QK + KTQ + µ1QCCTQ + µ−1
1 L + p1Q ≤ 0;

(ii) QB + BTQ + µ2QCCTQ + µ−1
2 L− p2Q ≤ 0;

(iii) p1 ≥ p2.

Then the origin of system (13) is determined to be exponentially stable, and moreover

‖x(t)‖ ≤

√
λH(Q)

λh(Q)
‖x0‖exp

{
−p2

t
2T

τl +
p1

2
τl

}
, ∀t > 0. (17)

Proof. The following Lyapunov function needs to be constructed

V(x(t)) = xT(t)Qx(t), (18)

which implies that
λh(Q)‖x(t)‖ ≤ V(x(t)) ≤ λH(Q)‖x(t)‖. (19)

When $T ≤ t < $T + τ$, the state of system (13) can be calculated and estimated by
using Lemma 1 and (18) as follows:

V̇(x) = 2xTQẋ

= 2xTQ(Bx + Cg(x) + Kx)

= 2xTQBx + 2xTQCg(x) + 2xTQKx

= xT
(

QB + BTQ + QK + KTQ
)

x + 2xTQCg(x)

≤ xT
(

QB + BTQ + QK + KTQ
)

x + µ1xTQCCTQx + µ−1
1 xT Lx

= xT
(

QB + BTQ + QK + KTQ + µ1QCCTQ +µ−1
1 L + p1Q

)
x− p1V(x)

≤ −p1V(x),

where QB + BTQ + QK + KTQ + µ1QCCTQ + µ−1
1 L + p1Q ≤ 0. Therefore, it can be

obtained that
V(x(t)) ≤ V(x($T))exp(−p1(t− $T)), (20)

where $T ≤ t < $T + τ$.
Similarly, when $T + τ$ ≤ t < ($ + 1)T, then it can be obtained that

V̇(x) = 2xTQẋ

= 2xTQ(Bx + Cg(x))

= 2xTQBx + 2xTQCg(x)

≤ xT
(

QB + BTQ
)

x + µ2xTQCCTQx + µ−1
2 xT Lx

= xT
(

QB + BTQ + µ2QCCTQ + µ−1
2 L− p2Q

)
x + p2V(x)

≤ p2V(x),

where QB + BTQ + µ2QCCTQ + µ−1
2 L− p2Q ≤ 0. Therefore, it can be obtained that

V(x(t)) ≤ V
(
x
(
$T + τ$

))
exp

(
p2
(
t− $T − τ$

))
, (21)

where $T + τ$ ≤ t < ($ + 1)T.
Then, from (20) and (21), the following results can be obtained by using mathematical

induction:
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Case 1: $ = 0
Subcase 1: When 0 ≤ t < τ0, it can be obtained that

V(x(t)) ≤ V(x0)exp(−p1t),

therefore,
V(x(τ0)) ≤ V(x0)exp(−p1τ0).

Subcase 2: When τ0 ≤ t < T, then

V(x(t)) ≤ V(x(τ0))exp{p2(t− τ0)}
≤ V(x0)exp{−p1τ0 + p2(t− τ0)},

therefore,
V(x(T)) ≤ V(x0)exp{−p1τ0 + p2(T − τ0)}.

Case 2: $ = 1
Subcase 1: When T ≤ t < T + τ1, it can be obtained that

V(x(t)) ≤ V(x(T))exp{−p1(t− T)}
≤ V(x0)exp

{
− p1(t− T + τ0) + p2(T − τ0)

}
,

therefore,

V(x(T + τ1)) ≤ V(x0)exp
{
− p1

1

∑
i=0

τi + p2(T − τ0)

}
.

Subcase 2: When T + τ1 ≤ t < 2T, then

V(x(t)) ≤ V(x(T + τ1))exp{p2(t− T − τ1)}
≤ V(x0)exp

{
− p1(τ0 + τ1) + p2(t− τ0 − τ1)

}
,

therefore,

V(x(2T)) ≤ V(x0)exp

{
−p1

1

∑
i=0

τi + p2

(
2T −

1

∑
i=0

τi

)}
.

Similarly, the following results can be obtained by using mathematical induction:
Case l + 1: $ = l
Subcase 1: When lT ≤ t < lT + τl , it can be obtained that

V(x(t)) ≤ V(x(lT))exp{−p1(t− lT)}

≤ V(x0)exp
{
− p1

(
t− lT +

l−1

∑
i=0

τi

)
+ p2

(
lT −

l−1

∑
i=0

τi

)}
.

therefore,

V(x(lT + τl)) ≤ V(x0)exp
{
− p1

(
l

∑
i=0

τi

)
+ p2

(
lT −

l−1

∑
i=0

τi

)}
.

Subcase 2: When lT + τl ≤ t < (l + 1)T, it can be obtained that

V(x(t)) ≤ V(x(lT + τl))exp{p2(t− lT − τl)}

≤ V(x0)exp
{
− p1

(
l

∑
i=0

τi

)
+ p2

(
t−

l

∑
i=0

τi

)}
,
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therefore,

V(x((l + 1)T)) ≤ V(x0)exp
{
− p1

(
l

∑
i=0

τi

)
+ p2

(
(l + 1)T −

l

∑
i=0

τi

)}
.

In addition, when lT ≤ t < lT + τl , it can be obtained that

V(x(t)) ≤ V(x(lT))exp{−p1(t− lT)}

≤ V(x0)exp
{
− p1

(
t− lT +

l−1

∑
i=0

τi

)
+ p2

(
lT −

l−1

∑
i=0

τi

)}

≤ V(x0)exp
{
− p1

(
l−1

∑
i=0

τi

)
+ p2

(
lT −

l−1

∑
i=0

τi

)}

≤ V(x0)exp
{
−p1

(
l−1

∑
i=0

τi

)
+ p2

(
(l + 1)T −

l

∑
i=0

τi

)}
,

when lT + τl ≤ t < (l + 1)T, then it can also be obtained that

V(x(t)) ≤ V(x(lT + τl))exp{p2(t− lT − τl)}

≤ V(x0)exp
{
− p1(

l

∑
i=0

τi) + p2

(
t−

l

∑
i=0

τi

)}

≤ V(x0)exp
{
− p1

(
l

∑
i=0

τi

)
+ p2

(
(l + 1)T −

l

∑
i=0

τi

)}
.

Hence, when lT ≤ t < (l + 1)T, then it can be obtained that

V(x(t)) ≤ V(x0)exp
{
− p1

l−1

∑
i=0

τi + p2

(
(l + 1)T −

l

∑
i=0

τi

)}

= V(x0)exp
{
− p1

l

∑
i=0

τi + p1τl + p2

(
(l + 1)T −

l

∑
i=0

τi

)}
≤ V(x0)exp

{
p2(l + 1)ld− p2(l + 1)T + p1τl

}
= V(x0)exp

{
p2(l + 1)(ld− T) + p1τl

}
.

In addition, when lT ≤ t < (l + 1)T, i.e., t
T ≤ l + 1 ≤ t+T

T

V(x(t)) ≤ V(x0)exp
{

p2(l + 1)(ld− T) + p1τl

}
,

= V(x0)exp
{
− p2(l + 1)τl + p1τl

}
,

≤ V(x0)exp
{
− p2

t
T

τl + p1τl

}
.

(22)

Furthermore, (22) can be roughly estimated by (19), and then it can be obtained that

‖x(t)‖ ≤

√
λH(Q)

λh(Q)
‖x0‖exp

{
−p2

t
2T

τl +
p1

2
τl

}
, ∀t > 0, (23)

which ends the proof.
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Corollary 1. The first and second conditions of Theorem 1 can be written as the following two
LMIs by using Lemma 2[

QB + BTQ + QK + KTQ + µ−1
1 L + p1Q −QC

−CTQ −µ−1
1 I

]
≤ 0, (24)

and [
QB + BTQ + µ−1

2 L− p2Q −QC
−CTQ −µ−1

2 I

]
≤ 0. (25)

5. Numerical Simulation Examples

To enhance the persuasiveness of the method, two numerical simulation cases are
used to illustrate the feasibility of the proposed method.

Example 1. By analyzing of Section 3, system (5) of Section 2 can be described as

·
x = Bx + C f (x), (26)

in which

x =


x
y
z
ω

, B =


10 −10 0 0
0 −22 0 1
0 0 −4 0
0 4 0 0

,

C =


0 0 0 0
1 0 0 0
0 1 1 0
0 0 0 1

, f (x) =


xz
x2

xy
4x + 0.5x3

.

Suppose that x(t) ∈ [−ξ, ξ], where ξ > 0 is a constant, then the following result is obtained

‖ f (x)‖2 = 0.25x6 + 5x4 + 16x2 + x2y2 + x2z2

≤
(
0.25ξ4 + 5ξ2 + 16

)
x2 + ξ2y2 + ξ2z2.

Let x(0) = [5,−2, 3,−3]T , as shown in Figure 6, it can be obtained that |x(t)| ≤ 21, then

L = diag
(

0.25ξ4 + 5ξ2 + 16, ξ2, ξ2, 0
)

.

0 20 40 60 80 100

-25

-20

-15

-10

-5

0

5

10

15

20

x
(t

)

t

Figure 6. Time diagram of state variable x with the initial condition x(0) = [5,−2, 3,−3]T .
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Choosing
K = diag(−2,−2,−2,−2).

Suppose that T = 0.4, d = 0.0004, by solving LMIs (24), (25), and inequality p1 ≥ p2,
the following set of feasible solutions are obtained:

µ1 = 45.60, µ2 = 45.60, p1 = 90.85, p2 = 90.75,

and

Q =


50.0651 4.5544 −0.4153 0.8041
4.5544 2.7229 0.0091 −0.2918
−0.4153 0.0091 1.4121 −1.3924
0.8041 −0.2918 −1.3924 2.6683

.

Thus, by the results obtained above, it can be concluded that the validity of Theorem 1 is proven.
Besides, the time response curves of the controlled system with periodically intermittent control with
variable control width are shown in Figure 7.

0 0.2 0.4 0.6 0.8 1

t

-4

-3

-2

-1

0

1

2

3

4

5

6

R
e
s
u
lt

x(t)

y(t)

z(t)

(t)

Figure 7. The time response curves of the controlled system with periodically intermittent control
with variable control width.

Example 2. The following is a classical Chua’s circuit [43]:
ẋ1 = β1(−x1 + x2 − f (x1)),
ẋ2 = x1 − x2 + x3,
ẋ3 = −β2x2,

(27)

with the piecewise linear function f (x1) = g2x1 +
1
2 (g1 − g2)(|x1 + 1| − |x1 − 1|), in which

β1 = 9.2156, β2 = 15.9946, g1 = −1.24905, g2 = −0.75735. Figure 8 shows that Chua’s
oscillator with the initial condition x(0) = [x1(0), x2(0), x3(0)]

T = [2, 0.3,−0.5]T produces a
chaotic phenomenon.
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Figure 8. Chua’s oscillator produces a chaotic phenomenon with the initial condition x(0) =

[2, 0.3,−0.5]T .

Similarly, system (27) is rewritten as the following form:

·
x = Bx + C f (x)

in which

x =

 x1
x2
x3

, B =

−β1 − β1g2 β1 0
1 −1 1
0 −β2 0

,

C =

1 0 0
0 1 0
0 0 1

, f (x) =

 −β1(g1−g2)(|x1+1|−|x1−1|)
2
0
0

.

In addition, it can be obtained that

‖ f (x)‖2 = 0.5β1
2(g1 − g2)

2
[

x2
1 + 1−

∣∣∣x2
1 − 1

∣∣∣]
=

{
β1

2(g1 − g2)
2, x2

1 > 1
β1

2(g1 − g2)
2x2

1, x2
1 6 1

6 β1
2(g1 − g2)

2x2
1.

Let x(0) = [2,−1, 2]T , and it can be obtained that

L = diag
(
(β1(g1 − g2))

2, 0, 0
)

.

Choosing
K = diag(−6,−6,−6).

Suppose that T = 2, d = 0.0008, by solving LMIs (24), (25), and inequality p1 ≥ p2,
the following set of feasible solutions are obtained:

µ1 = 6.60, µ2 = 6.60, p1 = 12.85, p2 = 12.75,

and

Q =

 1.3787 −0.3165 0.4814
−0.3165 2.3103 0.3683
0.4814 0.3683 0.4668

.
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Thus, by the results obtained above, it can be concluded that the validity of Theorem 1 is proven.
Moreover, the time response curves of the controlled Chua’s oscillator with periodically intermittent
control with variable control width is shown in Figure 9. Compared with the results in work [23],
the proposed method reduces the time for the system to reach the stable state, and the value of K is
also reduced.

0 0.5 1 1.5 2

t
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-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3
R

e
s
u

lt

x
1
(t)

x
2
(t)

x
3
(t)

Figure 9. The time response curves of the controlled Chua’s oscillator with periodically intermittent
control with variable control width.

6. Conclusions

In this paper, a memristor-based hyper-chaotic Bao-like system is established based
on the three-dimensional Bao chaotic system, and its analog circuit is also designed, which
is used to verify the chaotic behaviors of the system. Furthermore, the periodically inter-
mittent control method with variable control width is proposed, and the method is used to
control the proposed system and the Chua’s oscillator. Compared with the chaotic system,
the hyper-chaotic system has more complex fundamental dynamics characteristics which
can be used in secure communication. Therefore, our future work is to apply the designed
hyper-chaotic system to secure communication.
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