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Abstract: This article presents a mathematical and experimental model of a neuronal oscillator with
memristor-based nonlinearity. The mathematical model describes the dynamics of an electronic circuit
implementing the FitzHugh–Nagumo neuron model. A nonlinear component of this circuit is the
Au/Zr/ZrO2(Y)/TiN/Ti memristive device. This device is fabricated on the oxidized silicon substrate
using magnetron sputtering. The circuit with such nonlinearity is described by a three-dimensional
ordinary differential equation system. The effect of the appearance of spontaneous self-oscillations is
investigated. A bifurcation scenario based on supercritical Andronov–Hopf bifurcation is found. The
dependence of the critical point on the system parameters, particularly on the size of the electrode
area, is analyzed. The self-oscillating and excitable modes are experimentally demonstrated.

Keywords: supercritical Andronov–Hopf bifurcation; memristor-based nonlinearity; neuron-like
oscillator; self-oscillation

MSC: 34D45; 34A05

1. Introduction

The development of the so-called memristive technologies has attracted growing
attention in modern electronic engineering and neurotechnologies. Leon Chua was the first
to introduce the term “memristor” in 1971 to describe the missing fourth element of electric
circuits. This element would have to be passive and change its resistance depending on the
history of charge flow [1]. The concept of a memristor was then associated with the effect
of resistive switching in thin-film nanostructures of the metal–dielectric–metal type [2]. It
involved local restructuring of the atomic structure and composition of the dielectric under
the action of an inhomogeneous electric field, gradients of temperature, and concentration.
Memristive behavior was influenced by quite a lot of parameters, in particular, the materials
from which the device is made, as well as the methods for synthesizing memristors.
At the moment, the most popular methods include magnetron sputtering [3,4], atomic
layer deposition [5], and pulsed laser deposition [6]. These memristive structures are
compatible with the CMOS (complementary metal–oxide–semiconductor) process and
are suitable for creating devices of nonvolatile resistive memory (resistive random-access
memory—RRAM) and logical devices [7,8] because after the power is turned off, the
specified resistive state can be stored for a long time. Using memristors paves the way for
the concept of “computing in memory” (logic in memory), i.e., storing the computation
result in the same cell from which it was obtained. This will avoid the bottleneck of the
von Neumann architecture (limiting the bandwidth between the processor and memory
compared to the amount of memory).
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Another point of interest in memristive devices is concerned with the design of
nonlinear electronic circuits for several applications, one of which is to generate robust
random dynamics over a large range of parameter values. Based on these considerations, a
circuit was presented in [9] that indicated unstable behavior over a large range of parameter
values and showed minimal requirements for the shape of the nonlinearity of the memristor.
In [10], artificial Hodgkin–Huxley neurons were described in the form of a circuit for
emulating neural functions, in which the key elements were storage devices that physically
demonstrated the integrate-and-fire function. Thin-film devices with the effect of resistive
switching enabled completely new hardware implementations of electronics characterized
by ultra-low power consumption, high performance of neuromorphic computing, and
compactness, with the possibility of at least partial self-learning on the non-annotated
streaming data. This became a basis for a neuristor circuit demonstrating the mechanism of
spike generation that was presented in [11]. However, this circuit required the use of two
Mott memristors connected in parallel with capacitors, as well as an output RC branch. A
few years later [12] a circuit of a spiking neuron was proposed, which also contained two
nonlinear elements: a memristive and a memcapacitive device. These elements, however,
were already placed in one integrating branch based on capacitors. Also, based on the
memristive structure, a device was implemented for use in prototypes of spiking neural
networks, the results of which provide the basis for autonomous neuromorphic circuits
with uncontrolled learning development [13]. A wealth of nonlinear dynamical modes was
then found in such circuits, including limit cycles that emerged from different bifurcation
scenarios [14,15], complex invariant sets, and chaotic attractors [16–18]. It should also
be noted that attempts to create brain-like architectures based on simple logic elements
(triggers) at the end of the last century were unsuccessful. The application of memristive
devices in combination with the principles of brain operation opens up wide opportunities
for the development of new computing systems [19,20].

One of the intriguing applications of memristor-based electronic circuits focuses
on building biologically plausible models of neurons and neuronal networks [21]. To
a certain extent, memristive nonlinearity operates quite similarly to voltage-dependent
ionic channel dynamics [22,23]. Obviously, direct comparison of electronics implementing
voltage-dependent currents in memristors with ion transport in living neurons is hardly
possible. However, mechanisms of nonlinear dynamics and bifurcation scenarios leading
to signal generation in neurons and memristors are very similar. Another interesting point
in neurodynamics is synaptic plasticity [24]. Synaptic connections between living neurons
represent activity-dependent variables. In particular, in spike-timing-dependent plastic-
ity (STDP), the strength of synaptic connections changes depending on relative times of
spike occurrences at neighboring neurons. The STDP is considered to be responsible for
memory and storing new information and patterns in the brain at the cellular level. Mem-
ristors successfully modeled synaptic plasticity reproducing STDP learning curves [25,26].
Providing a rich variety of neuron-like signals, including spike generation, oscillation,
multistability, and chaotic dynamics, together with effective implementation of synaptic
dynamics and plasticity, today’s memristors are considered to be the best candidates for
use in energy-efficient neuromorphic computing systems.

In experimental fabrication, several types of memristors composed of different materi-
als have been proposed. In this work, we consider the Au/Zr/ZrO2(Y)/TiN/Ti memristive
device [13,16]. Taking a simplified mathematical description of the voltage-current char-
acteristics of this device, we incorporate it into electronic circuit modeling the FitzHugh–
Nagumo (FHN) neuron [27]. Exploring the model and presenting the results in numerical
simulations, we analyzed basic bifurcation scenarios of oscillation appearance. A memris-
tive neuron-like generator based on a metal oxide device was also experimentally imple-
mented. This generator can be both in self-oscillating mode and at rest. For the first time,
to our knowledge, we are conducting an experimental study of such a memristor-based
generator and comparing the results of numerical simulation with experimental data.
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At the moment, few works using a memristor in the FHN circuit have been carried
out. It should be noted that a non-autonomous memristive neural circuit of the third order
Fitzhugh–Nagumo neuron using an emulator of a generalized memristive diode bridge
(MDB) of the first order and an AC voltage source was developed in [28]. Although such a
nonlinear circuit was related to the development of fundamental nonlinear dynamics, it
had little relation to the memristor behavior. Another successful work on the integration
of memristive devices into the FHN neuron generator was presented [29], where it was
demonstrated by the implementation of binary logical operations and the implementation
of binary adders. A comparison was made between the binary summator of the memristive
FHN neuron and the binary summator of the FHN neuron. These reports confirmed the
importance of research in this direction, but they do not take into account the internal
properties of the memristive device itself (the process of ion and electron transport through
filaments [30]).

The interaction between FHN oscillators through the Au/Zr/ZrO2(Y)/TiN/Ti mem-
ristive device of this type was studied in our previous work. It was shown that a memristive
device induces complex dynamics in a small ensemble of oscillators [31–33].

In this work, we present a mathematical model and corresponding electric circuit of a
memristive FHN neuron. We believe that this work is of great importance for the creation
of a biologically plausible oscillator due to the similarity of resistive switching and opening
of ionic channels in the biological neuron.

2. Model
2.1. Memristive Device

We considered the electronic circuit of a modified FitzHugh-Nagumo neuron [27,34]
as a basic model. The activity of ion channels in the FHN model is simulated using a cubic
function. In our work, we replaced the cubic function with a memristive one, thus making
our memristor model the ion channels of a neuron.

The nonlinear scheme of a memristive generator FHN, as shown in Figure 1, can be
described as follows: part (A) corresponds to memristive nonlinearity. In this figure, U is
the voltage and Im is the corresponding current. Part (B) consists of linear resistors R6, R7,
linear inductors L1, L2, and linear capacitance C in parallel with them, as well as power
supplies E1, E2, and a commuted silicon diode D1. The initial condition Vini can be loaded
into the neuron via an analog switch controlled by a periodic Vsyn signal.
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Figure 1. Diagram of the nonlinear circuit based on memristor. The circuit was modified from [27]
by replacing the nonlinear element with the Au/Zr/ZrO2(Y)/TiN/Ti memristor. Modified with
permission from Kazantsev V.B., neural networks; published by 2006 years.
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Here, the nonlinear element is presented by the Au/Zr/ZrO2(Y)/TiN/Ti memristor
fabricated on the oxidized silicon substrate using magnetron sputtering. The details of tech-
nological operations can be found in other works [3,13,16,35–37]. To study the structure of
the element, we used the high-resolution cross-sectional transmission electron microscopy
(XTEM) operating the Jeol JEM-2100F microscope («JEOL» company, Japan) with an ac-
celeration voltage of 200 kV. The cross sections of memristive devices were prepared by
conventional technology using the equipment of Gatan Inc. We also developed a custom
topology to fabricate the array of paired micro-scale (20 × 20 µm2) cross-point memristive
devices (overall 44 devices) with the described thin-film structure on a silicon chip and
mounted the chip in a standard 64-pin package. Electrical measurements and electroform-
ing were carried out at room temperature by using the Agilent B1500A semiconductor
device analyzer («ASTANA» company, Russia). Such chips containing several memristive
devices are necessary for further studies of complex nonlinear effects in ensembles of
oscillators.

Figure 2 shows the result of the cross-sectional transmission electron microscopy
(TEM) of the Au/Zr/ZrO2(Y)/TiN/Ti memristor.
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voltage values when switching the experimental device were Vset = −5 V and Vreset = 6 V. 
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Figure 2. The cross-sectional TEM image of the memristive device structure after electroforming. The
thickness of the ZrO2(Y) layer was 40 nm, the thickness of the top Au electrode was 40 nm, and the
thickness of the bottom TiN/Ti electrode was 40 nm.

After electroforming at negative bias, the memristive device demonstrated bipolar
resistive switching with a resistance window between the high-resistance (HRS) and low-
resistance (LRS) states RHRS/RLRS ≈ 104 at a reading voltage of Ur = −0.5 V (Figure 3). The
voltage values when switching the experimental device were Vset = −5 V and Vreset = 6 V.
Positive voltage induced switching from LRS to HRS (RESET), and negative voltage resulted
in switching from HRS to LRS (SET). Devices on this basis show a good characteristic for
neuromorphic computing, where constant weights are necessary for accurate training and
computations [13].
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2.2. Mathematical Model of a Memristor

The mathematical model of a memristive device used a general definition of a memris-
tor as a dynamical system [37] and operated with the experimentally determined param-
eters and mechanisms of electron and ion transport inside the memristive device with a
current applied to it.

The equation for the output of the memristive device represents the total electronic
current dominating in LRS and HRS, respectively:

jm = xjlin + (1− x)jnonlin

jlin = |u|/ρ

jnonlin = |u|Bexp(b
√
|u| − Eb)

, (1)

As part of a state equation, an internal state variable x ∈ [0, 1] was introduced. This
variable was determined by the fraction of the area of the structure occupied by filaments,
the change of which depends on the migration of oxygen vacancies (effective migration
barrier Em = −34.8) [30], activated by Joule heating (kT = 4.14 × 10−21 Joule) and applied
electric voltage u. The transition between HRS and LRS was determined by the dynamic
contribution to the total current of filaments and, consequently, by the state parameter.
In these equations b = 3.2, B = 2.5 × 1021 are the coefficients determined by quadratic
polynomial interpolation from experimental data of a physical device.

The total current density jm through the memristive device was determined by the
transfer of charge carriers through defect states in the oxide material in the region of the
filament rupture or the rest of the structure. Such a structure consists of a linear component
jlin, which corresponds to ohmic conductivity (ρ = 10−8—Coeff for Ohmic current) through
filaments (conducting pathways in the memristive structure), and a nonlinear component
jnonlin. The nonlinear transfer of charge carriers (effective barrier Eb = 38.6) is described
by the Frenkel–Poole law based on the approximation of current–voltage characteristics
in HRS.

The dynamics of the variable x are described by the following equations:

dx
dt

=


Aexp(−Em − α1u)(1−

(
2x− 1)2p), u < Vset

0, Vset < u < Vreset

−Aexp(−Em + α1u)(1−
(
2x− 1)2p), u > Vreset

, (2)
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The state equations include a window function f (x, p) = (1−
(
2x− 1)2p) previously

introduced by Yu. N. Joglekar and S. J. Wolf [38]. In this function, p is a positive integer
specifying its shape. It takes a zero value of x outside the interval (0, 1).

In the above equations α1 = 30.9, A = 109—coefficients corresponding to experimental
data. Vset = −3 and Vreset = 3 are the threshold voltages for resistive switching.

The I–V curves of the hysteresis type of this device, obtained as a result of numerical
simulation, are shown in Figure 4. Supplying voltage in the form of a rectangular pulse
with values of ±5 V to memristive device (1)–(2) during 2000 ms. The initial state of the
storage device was in HRS, then the device switched to LRS. The obtained characteristics
correspond qualitatively to the experimental Au/Zr/ZrO2(Y)/TiN/Ti device.
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2.3. Memristive Oscillator Model

To model a neuronal oscillator, we took a modified FHN neuron explored mathemati-
cally in [39] and implemented electronically in [34]. The model equations are expressed
as follows: {

du
dt = f (u)− v

dv
dt = ε(g(u)− v)− η

, (3)

where f (u) = γ·Im(u)·d is the nonlinear function as the product of the memristor current
by its load resistance. The current function is the product of the total current density of
the memristive structure multiplied by the area of its electrodes Im(u) = jm·Se; g (u) is a
quasilinear function where g (u) = αu if u ≤ 0 and g (u) = βu if u > 0, where α = 0.5 and
β = 1.5; u is the transmembrane potential (membrane potential) of the FHN neuron; and v is
a “restoring” variable (determines the dynamics of ion current responsible for restoring the
equilibrium potential of the neuron cell). ε is the control parameter (bifurcation parameter)
and η is the recovery parameter. The γ parameter controlling the excitability of the modeled
neuron is also a normalization parameter. The parameter γ is obtained using the least
squares method.
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Then, we replaced (2) with (3). So that we obtained the following three-dimensional
system describing the circuit dynamics:

du
dt = γ·[x |u|ρ + (1− x)|u|Bexp(b

√
|u| − Eb)]·Se·d− v

dv
dt = ε(g(u)− v)− η,

dx
dt =


Aexp(−Em − α1u)(1−

(
2x− 1)2p), u < Vset

0, Vset < u < Vreset

−Aexp(−Em + α1u)(1−
(
2x− 1)2p), u > Vreset

(4)

where the first equation of the system was obtained as follows:

1. The value of the linear and nonlinear components of the current density from (1) is
substituted into the general formula of the current density of the memristive device;

2. The total current density is substituted into the formula for the current strength of the
memristive device Im(u);

3. The resulting current strength is multiplied by the parameters γ and d, a nonlinear
function f (u) is obtained, which is then substituted into the differential Equation (4).

We fixed the following parameter values: γ = 1.138 V−1, η = 0.48, p = 20,
Se = 4 ×10−14 m2, d = 103 Ω.

2.4. Numerical Investigation Methods

Nonlinear differential Equation (4) was solved numerically using the 4-order Runge–
Kutta (RK4). The convergence of this method follows from the theorem: if the numerical
method is stable and approximates the initial differential problem and the initial data with
the order of accuracy O(hp), then it converges on the segment (x0, X] to the solution of the
differential problem with the order O(hp). The full description of the method is given in [40].
The integration procedure was performed with a step of 0.02 and an error of 10−6 in the
application software package for solving MATLAB version R2020b (The MathWorks, USA,
purchased from the official website) technical computing problems [41–43]. Choosing the
initial conditions, we obtained the following results when changing the control parameter.

To study the transition between excitable and oscillatory dynamical modes, we calcu-
lated a one-parameter bifurcation diagram illustrating changes in the oscillation amplitude
depending on control parameters. To do this, we ran simulations from two sets of initial
conditions, one taken close to the fixed point and the other far from it. After a sufficiently
long transient process of 5000 ms, the trajectory of Equation (4) converged to a stationary
mode, either the rest state or the state of periodic oscillations.

Then we analyzed how the critical parameter corresponding to oscillation appearance
depended on the electrode area in the memristive nonlinearity.

2.5. Experimental Study of the Generator

The developed neuromorphic oscillator consisted of an analog electronic FHN neuron
containing a memristive arrangement, a DPO 4054 oscilloscope («TEKTRONIX» company,
USA) (Figure 5a), and an Agilent B1500a device analyzer for obtaining and studying the I–V
characteristics of the device (Figure 5b). This neuromorphic oscillator operates as follows.
The analog memristive neuron–like FHN neuron creates a signal in the form of a pulse,
thereby affecting the memory device and thus imitating the reduction and oxidation of
conductive filaments in the oxide (dielectric) layer of the memristive device.

The developed memristive neuron–like generator consists of two blocks. The first
block is an oscillatory generator, or, as it is also called, an R–L generator, based on an
operational amplifier-implemented inductance. The second is the block of excitation pulses
(block of nonlinearity), which includes a storage device Au/Zr/ZrO2(Y)/TiN/Ti and a
resistor representing a load (Figure 5c).
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memristive device. The nonlinearity is set using a memristive device. The capacitor C1 is responsible
for the membrane of the neuron, and the power source V1 is associated with a reversible potential
(an equilibrium potential).

In this circuit, the voltage from the 1.5 V power supply is varied by a sequential
switching on of an alternating resistor (from 0 to 150 kΩ). From the output point of the
generator, the signal comes to the recording device (digital oscilloscope) in the form of an
oscillogram.



Mathematics 2023, 11, 1268 9 of 17

3. Results
3.1. Memristive Neuron Model Dynamics

Numerical exploration of a 3D nonlinear dynamical system (4) reveals the existence
of excitable and oscillatory dynamical modes. In the excitable mode, the model similar to
living neurons possesses a stable fixed point of a node or focus type. For relatively small
perturbations the trajectories converge to the vicinity of the stable point. However, for
large enough perturbation, we obtained a response pulse of sufficiently high amplitude
(Figure 6).
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Analyzing system dynamics in the neighborhood of the stable fixed point, we find its
focus type corresponding to damped oscillation (ε = 0.0003–0.89, see Figure 7).
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The numerically calculated characteristics of the damped oscillations are presented in
Table 1.

Table 1. The parameters obtained in the study of damped oscillations, where ∆ is the decay decrement,
λ is the logarithmic decay decrement, T is the period (second), and V is the frequency (Hz). Also,
in the course of the study, the values of Q–factor, cyclicω0, and natural (second−1) frequency were
obtained.

Parameter u v

∆ 2.11 2.87
λ 0.74 1.06
T 0.0157 0.0159
V 63.61 62.89
Q 4.24 2.97
β 47 66
ω0 399 395
ω 396 389

With decreasing ε, the real part of the fixed–point eigenvalues tends to decrease
followed by increasing transient in the damped oscillation. With the further decrease of the
parameter, we end up with periodic generation mode (ε = 0.00041–0.000003, see Figure 8).

The numerically calculated characteristics of the periodic generation mode oscillations
are presented in Table 2.

Table 2. The parameters obtained during the study of periodic generation, where A is the voltage
amplitude (B), T is the oscillation period (second), V is the frequency (Hz), and ω is the natural
frequency (second−1).

Parameter u v

A 3.97 0.017
T 1.753 1.725
V 0.57 0.58
ω 3.58 3.64
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A stable limit cycle appears in the phase space corresponding to the periodic generation
of neuronal oscillations. Following the numerical simulations, it is likely to correspond to a
supercritical Andronov–Hopf bifurcation with a negative first Lyapunov value. In the next
subsection, we will go into more detail about the bifurcation scenario.

Thus, our model qualitatively demonstrates the key characteristics of the dynamics of
neurons, including excitability and oscillatory dynamics.

3.2. Bifurcation Analysis

In the bifurcation analysis, we fixed all parameters except for ε and started by cal-
culating the one-parameter bifurcation diagram for the fixed electrode area 50 × 50 µm2

of the memristive device. To detect possible subcritical modes or other attractors, we ran
simulations for three different sets of initial conditions, [u(t = 0), v(t = 0), x(t = 0)], with
the following values: y1 = [0.5, 0.25, 0.2], y2 = [−0.5, 0.004, 0.1], y3 = [2, 1, 0.5]. Transient
time, e.g., estimation time of the transient process, was varied in the interval 100 ms < t <
50,000 ms with integration step h = 0.02. Next, the amplitude per cycle was calculated as
the difference between the maximum and minimum cycle values for one period.

Figure 9 shows the dependence of the amplitude on parameter ε, and corresponding
projections of phase trajectories on the (u, v) plane. Different curves correspond to different
initial conditions. A critical parameter ε corresponds to the appearance of the non-zero
oscillation amplitude.

Mathematics 2023, 11, x FOR PEER REVIEW 13 of 18 
 

 

Figure 8. Results of numerical simulation of the system in the periodic generation mode: (A) time 
series u, (B) time series v, (C) phase portraits, η = 0.48, ε = 0.000024. Detailed information about 
the receipt of these figures is contained in Supplementary Materials.   

The numerically calculated characteristics of the periodic generation mode oscilla-
tions are presented in Table 2. 

Table 2. The parameters obtained during the study of periodic generation, where A is the voltage 
amplitude (B), T is the oscillation period (second), V is the frequency (Hz), and 𝛚 is the natural 
frequency (secondିଵ). 

Parameter u v 
A 3.97 0.017 
T 1.753 1.725 
V 0.57 0.58   𝛚 3.58 3.64 

A stable limit cycle appears in the phase space corresponding to the periodic gener-
ation of neuronal oscillations. Following the numerical simulations, it is likely to corre-
spond to a supercritical Andronov–Hopf bifurcation with a negative first Lyapunov 
value. In the next subsection, we will go into more detail about the bifurcation scenario. 

Thus, our model qualitatively demonstrates the key characteristics of the dynamics 
of neurons, including excitability and oscillatory dynamics. 

3.2. Bifurcation Analysis 
In the bifurcation analysis, we fixed all parameters except for ε and started by calcu-

lating the one-parameter bifurcation diagram for the fixed electrode area 50 × 50 um2 of 
the memristive device. To detect possible subcritical modes or other attractors, we ran 
simulations for three different sets of initial conditions, [u(t = 0), v(t = 0), x(t = 0)], with the 
following values: y1 = [0.5, 0.25, 0.2], y2 = [−0.5, 0.004, 0.1], y3 = [2, 1, 0.5]. Transient time, 
e.g., estimation time of the transient process, was varied in the interval 100 ms < t < 50,000 
ms with integration step h = 0.02. Next, the amplitude per cycle was calculated as the dif-
ference between the maximum and minimum cycle values for one period. 

Figure 9 shows the dependence of the amplitude on parameter ε, and corresponding 
projections of phase trajectories on the (u, v) plane. Different curves correspond to differ-
ent initial conditions. A critical parameter ε corresponds to the appearance of the non-
zero oscillation amplitude. 

 
Figure 9. One−parameter bifurcation diagram for an area of 50 × 50 um2. The arrow shows the in-
creased dependency interval. The blue, orange and yellow dependences are determined by y1, y2, 
and y3 initial conditions, respectively. 

Figure 9. One–parameter bifurcation diagram for an area of 50 × 50 µm2. The arrow shows the
increased dependency interval. The blue, orange and yellow dependences are determined by y1, y2,
and y3 initial conditions, respectively.

At this point, the stable fixed point-of-focus type loses its stability and the stable
limit cycle appears to the left of the critical point. The vicinity of critical ε corresponds
to the neutral stability of the fixed point, and the limit cycle appears from the bifurcation
alone, as illustrated in the phase portraits. In other words, the transient processes last
for a longer time as they get closer to the bifurcation point. That is, trajectories from
different initial conditions for fixed calculation time end up at slightly different amplitude
values, as illustrated in Figure 8. Therefore, numerical simulations eventually illustrate that
Andronov–Hopf bifurcation, in its supercritical mode, takes place in Equation (4).

Next, we analyzed how the value of the bifurcation parameter ε depends on the
electrode area of the memristor. Typical values used in fabrication include the following:
5 × 5, 10 × 10, 15 × 15, 20 × 20, 25 × 25 µm2. Figure 10 illustrates the bifurcation diagram
for the smallest device size. It is quite similar to the previous case, but the critical ε is
shifted to a higher voltage.
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Figure 10. One–parameter bifurcation diagram with a device area of 5 × 5 µm2. The grey, orange
and green dependencies are determined by y1, y2, and y3 initial conditions, respectively.

This model does not belong to type I or type II models of a neuron. It does not have
a saddle point with a well-defined firing threshold and the corresponding node–saddle
bifurcation into the limit cycle, as in type I neuron models. And of course, it does not have
a coexisting point attractor and the limit cycle, as in type II neurons.

Finally, we analyzed how the critical bifurcation parameter ε depends on the electrode
area for all possible sizes. In the two–parameter bifurcation diagram shown in Figure 11,
one can note a nonlinear curve in the (ε, S) plane, delineating regions of excitable and
oscillatory dynamics.
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3.3. Memristive Neural Dynamics Generation

After inspection and regulation, the generator, a memristive device, was connected to
the nonlinearity block. This generator demonstrates both the self–oscillating mode and the
excitable modes (Figure 12).

The signal shown in Figure 12 (black line) was fed to the storage device which was
subsequently switched from HRS to LRS (Figure 3).

The intended switching process is related to the local heating along the current path
that activates the processes of migration of oxygen ions and determines the switching
threshold (as in the case of a dielectric breakdown) [44]. In the SET process (growth of
filaments), oxygen ions migrate to the TiN layer (the reduction of oxide). In the RESET
process, they return to oxidizing the filaments [30].

Time series and I–V characteristics obtained numerically and experimentally have dif-
ferences, however the experiment confirms the resistive switching of our device predicted
by the model. Additionally, our system describes the dynamics close to the experimen-
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tally observed one, in contrast to the first-order memristor model, taking into account the
stochasticity of switching. The submitted work is fundamental to the integration of such
devices into a neuron-like FHN generator, both numerically and experimentally.

1 
 

 
Figure 12. Oscillator self–oscillating mode (black line) and excitable modes (red line).

4. Conclusions

We have investigated a novel mathematical and experimental model of a neuronal
oscillator comprising the modified Fitzhugh–Nagumo neural generator [27] with nonlin-
earity based on the Au/Zr/ZrO2(Y)/TiN/Ti memristor. Bipolar resistive switching cycles
demonstrated the stable operation and a resistance ratio of RHRS/RLRS ≈ 104 at a reading
voltage of Ur = −0.5 V. The I–V curve of a memristive device was modeled when ±5 V was
applied to the device for 2000 ms. This characteristic qualitatively corresponds to the real
structure of Au/Zr/ZrO2(Y)/TiN/Ti.

For an electronic circuit with memristive nonlinearity, we obtained a three-dimensional
nonlinear ordinary differential equation system. Exploring this system in the numerical
simulation we analyzed its two basic dynamical modes of excitable neuron-like dynamics
and quasi-harmonic self–oscillations. We found and numerically illustrated the Andronov–
Hopf bifurcation as the basic bifurcation scenario of the oscillation appearance. The
dependence of the bifurcation parameter points on the memristive device electrode area
size were analyzed.

Stochastic switching of the storage device from a state with high resistance to a state
with low resistance was achieved due to the signal supplied from the generator to the
device. This enables both the self-oscillating and the excitable modes of generation.

As a discussion point, along with many other similar studies in this field, we con-
structed a memristor-based model of a neuronal oscillator. One of its advantages is the
specific nonlinearity determined experimentally for the fabricated Au/Zr/ZrO2(Y)/TiN/Ti
memristor. The other is that the original circuit of the modified FitzHugh–Nagumo neuron
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used in simulations is known to demonstrate computation by spikes with both integrate–
and–fire and resonant–and–fire communication modes [39].

Therefore, we believe that, in further investigations, our model of the memristor-based
neuronal oscillator will be a potential candidate for use in neuromorphic computing based
on spike communication.
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