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Abstract: With the increasing demand for electrical energy and the challenges related to its production,
along with the need to be environmentally friendly to achieve sustainability for future generations,
proton exchange membrane fuel cells (PEMFCs) are emerging as a clean energy source that can
effectively replace conventional energy sources, in various fields of application and especially in the
field of transportation exploiting electric vehicles (EVs). To improve the development and control of
the PEMFCs, the precise determination of its mathematical model remains an essential task. Indeed,
the accuracy of such a model depends on the ability to overcome the constraints associated with the
nonlinearity and the numerous involved unknown parameters. The present paper proposes a new
Dandelion Optimizer (DO) to accurately identify, for the first time, the parameters of the PEMFC
model. The DO addresses the weaknesses of the majority of metaheuristic algorithms related to
the self-adaptation of parameters, the stagnation of convergence to local minima, and the ability
to refer to the whole population. The high ability of the proposed method is investigated using
both steady-state and dynamic situations. The DO-based parameters estimation approach has been
assessed through a specific comparative study with the most recently published techniques including
GWO, GBO, HHO, IAEO, VSDE, and ABCDESC is performed using two typical PEMFC modules,
namely 250 W PEMFC and NedStack PS6. The results obtained proved that the proposed approach
obtained promising achievements and better performances comparatively with well-recognized and
competitive methods.

Keywords: proton exchange membrane fuel cell; key parameters estimation; Hail region desert
tourism; sum of square error; electric circuit model; dandelion optimization algorithm

MSC: 35Q93

1. Introduction
1.1. Motivation

Over the last three decades, global warming has become a major issue for humanity.
Indeed, the main responsibility is committed by the resources of fossil origin which are
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currently ranked as the first sources of energy supply on a worldwide scale and which are
becoming scarcer from one day to the next [1]. As such, developed and even developing
countries are continuously adopting sustainable energy policies to achieve carbon diox-
ide (CO2) emission reductions while ensuring a secure energy supply and a prosperous
economy [2]. As a result, efforts have been intensified to promote the share of renewable
energy to 30% by 2030. Recent studies have concluded that this target can even be exceeded
towards achieving participation of RE in the global energy mix of about 36% if specific
recommendations are properly addressed [3,4]. Among these recommendations, those
related to the energy efficiency directive, improving access to energy, exploiting techno-
logical breakthroughs, consumer-driven societal developments, and the early retirement
of conventional energy facilities, will effectively contribute to the achievement of such
ecological and other goals [5].

Given the importance of the transport sector in the economic development of countries
and its need for rapid economic expansion and urbanization as well as the necessity to
improve people’s livelihoods, the last few decades have been marked by a rapid increase
in its energy consumption. This amounted to about 33% of the world’s total, making
it responsible for 37% of the total carbon dioxide emissions [6]. Faced with the serious
environmental consequences of burning fossil fuels, the search for sustainable alternatives
to provide energy in this sector becomes an urgent necessity. Therefore, one of the most
relevant countermeasures is to shift the energy supply of the transport sector to renewable
and clean energy sources, especially in oil-producing countries that depend mainly on it
for consumption, such as the Kingdom of Saudi Arabia [7].

Within the framework of its Vision 2030 economic plan, the Saudi Commission for
Tourism and National Heritage is working more and more to steadily increase the number
of tourists visiting KSA. Therefore, the newest statistics of the World Tourism Organization
(UNWTO) Tourism Barometer inform readers that KSA’s tourism sector has risen rapidly
to reach 121% compared to pre-COVID-19 pandemic international tourism.

In addition to religious tourism, desert tourism based primarily on electric vehicle (EV)
transportation is a growing industry and a popular and sustainable option for exploring
desert landscapes in the Hail region (HR) while reducing carbon emissions and noise
pollution. Many tour agencies can offer electric vehicle tours, which makes the experience
unique, enjoyable, and environmentally friendly since they can use zero-emission vehicles
(ZEVs) including electric and hydrogen fuel cell vehicles [8].

Compared to combustion engines and electrochemical batteries, fuel cells are emerging
as the most relevant choice in terms of environmental friendliness, durability, energy
efficiency, autonomy and reliability [9–12]. In particular, proton exchange membrane fuel
cells (PEMFCs) could be the leading candidate to power material handling applications
and vehicles in the transportation sector [13].

1.2. Literature Review

Nowadays, PEMFCs are the best choice for future mobility and especially for hydrogen-
powered vehicles. In order to master PEMFCs’ operation and further push their devel-
opment and efficiency, different modeling studies have been developed. A careful in-
vestigation allows for the classification of the analysis of PEMFCs in two main types of
modeling, dynamic modeling, and steady-state modeling [14]. In this context, various
published works have been focused on the PEMFCs modeling, control, and diagnosis to
further advance their development and efficiency.

In [15], a real-time fault diagnostic/characterization of PEMFCs using a new concept
combining a one-dimensional convolutional neural network and AC voltage response.
For more complex applications, a diagnosis technique of faulty components of a 1 kW
PEMFC-based system using energy analysis in [16]. In [17], a new robust estimator for
the diagnosis and reconstruction of fault for a PEMFC air management system has been
suggested under different conditions. The developed observer is able to accurately identify
the state of the system even in case of any defects to achieve a tolerant control of the air
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supply. In [18], the feasibility of a reliable method for the detection of abnormal sensors
during PEMFC operation has been investigated. After their identification, the sensors
identified as faulty are no longer considered in the diagnosis to guarantee the reliability
of the PEMFC state of health monitoring. Particular attention was devoted to humidity
sensors that can generate misleading readings regarding flooding. In [13], Chen et al.
focused on the performance assessment and the thermodynamics–economy–environment
feasibility of a PEMFC-based vehicle under dynamic conditions. In [19], the main objective
has been devoted to the laboratory investigation of the effect of dynamic load cycle and
operational parameters on the PEMFCs lifetime.

In addition to the previously mentioned studies, the accurate extraction of PEMFCs
parameters remains crucial for improving their performance and durability as a promising
technology for clean and efficient energy production. Recently, metaheuristic optimizers
have been considered among the most used methods for tackling global optimization
problems [20–23]. In this context, various optimization approaches have been proposed
to address the PEMFCs parameters estimation issue. In [24], 18 optimization algorithms
have been applied to estimate the parameters of three following practical fuel cells: BCS
500-W PEM, 500 W SR-12PEM, and 250 W PEMFC, under various operating conditions.
Mohamed et al. [25] proposed a modified gorilla troops optimizer (MGTO) to tackle
the drawbacks of the GTO such as the low speed of the convergence to local optima.
The proposed approach has been tested to estimate the parameters of three types of
PEMFCs. Otherwise, a honey badger optimizer (HBO) is used to identify the parameters of
three commercial PEMFC by the minimization of the SSEs. Various metrics such as Sobol
sensitivity and statistical study and computational complexity have been conducted to
confirm the HBO performance [26]. Another recent study [27] has proposed to identify
the PEMFC parameters using the original Bonobo Optimization algorithm (BO) and its
enhanced version named Quasi Oppositional BO (QOBO). Otherwise, Ibrahim et al. [28]
suggested identifying the design parameters of PEMFCs through an optimization algorithm
called Enhanced Bald Eagle Search (EBES), under different pressure and temperature
conditions. In [29], PEMFC parameters estimation based on a hybrid artificial bee colony
differential evolution (ABCDE) optimizer has been suggested. The algorithm was tested,
and the results showed that it can effectively estimate the parameters with high accuracy.
Otherwise, a significant improvement has been applied to the African vulture optimizer [30]
to investigate the parameter value estimation and fitting for NedStackPS6, BCS 500 W,
and SR-12 500 W.

In the literature, the behavior of dandelions has been exploited by researchers, like var-
ious other biological phenomena and behaviors, to propose new optimization algorithms
inspired by nature. A highly developed research has unveiled the first approach inspired
by the behavior of dandelion sowing. This approach is commonly known as the Dandelion
Algorithm (DA) [31]. Within the DA, the evolutionary process involves classifying the
dandelion population into excellent and poor seeds based on their fitness values. Then,
it retains the excellent seeds and assesses them to participate in the evolutionary process
and excludes the poor seeds without any evaluation. From its first proposal, the DA has
been investigated in an application related to the classification of biomedical problems by
optimizing the input weights and output offsets of the extreme learning machine. In the
same study, the major concern was associated with premature convergence to local optima.
To overcome this limitation, a modified version was proposed for mutation-based seed-
ing [32]. Correspondingly, the generation of mutation seeding is ensured upon a probability
model exploiting Levy mutations and Gaussian mutations. The most significant improve-
ment is provided by the evaluation of excellent seeds using the number of evaluations
recorded after classifying seeds, discarding the bad ones, and taking into account only the
excellent ones, which thereby considerably decreases the consumption of evaluations.

Furthermore, the Extreme Learning Machine (ELM) is known as a neural network
algorithm (NNA) that generates, during the training process, input weights and offsets
randomly and without dynamic adjustments [33]. Indeed, with only one parameter to
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set (that materializes the hidden layer nodes), the ELM performs more efficiently and
speedily than the traditional NNA. In order to benefit from its aforementioned strengths,
ELM was proposed to take over the classification process and thus improve the dandelion
DA algorithm (ELMDA) [34]. The fact that ELM’s machine learning classifies dandelions
into excellent and poor seeds according to their fitness and retains only the excellent ones
motivates the evolution of the ELMDA algorithm.

Far from this theory and its applicability, a new concept inspired by the same natural
phenomenon of a dandelion called Dandelion Optimizer (DO) has been investigated in the
present work.

1.3. Contribution

The Dandelion Optimizer (DO) is a recent swarm intelligence bio-inspired optimizer
developed by Zhao et al. [35]. It mimics the process of dandelion seeds’ flight under the
effect of the wind, to cross long distances. Such a process includes three main phases:
ascent, descent, and landing. During the rising phase, the seeds drift along a localized
community or spiral upwards under the effect of the whirlwinds deriving from the top
to the ground. Then, according to the principles of Brownian motion and Levy’s random
walk, the seeds descend along a trajectory and land, respectively. Indeed, the flying seeds
continue their descending by the adjustment of their trajectory in the global space and land
at random to be able to grow again. The choice of the DO has been motivated by the fact
that it has several strengths compared to other metaheuristic algorithms. These include:

• Low computational complexity: The evolution strategy used by the DO requires fewer
computations than most other metaheuristic algorithms;

• Property of self-adaptation: The DO can self-adapt its parameters, allowing it to converge
quickly and accurately to local minima and maximize the solution’s performance;

• Minimization of stagnation of convergence: The DO utilizes a memory-based mecha-
nism to identify stagnation of convergence and then takes steps to move away from a
local minimum and towards a better solution;

• Ability to refer to an entire population: Unlike many other metaheuristic algorithms,
the DO is able to refer to the entire population of solutions to best determine the
optimal solution;

• Decentralized nature: The DO is a decentralized algorithm, meaning its components
are distributed among multiple nodes or machines, making it less prone to failure
than centralized algorithms.

The foremost contributions within the present work are:

• To adapt the DO algorithm, and benefit from its high exploitation and exploration abilities
to address, for the first time, the issue of the PEMFC unidentified parameter estimation;

• Conducting a deep comparative study between DO and three recently published
optimizers (Grey wolf optimizer (GWO), Gradient-based optimizer (GBO), and Harris
hawks optimizer (HHO)) simulated under the same hypothesis;

• Comparing the DO performance with three competitive metaheuristic optimizers
from the literature such as (Improved artificial ecosystem optimizer (IAEO), Vortex
search-differential evolution (VSDE), and Artificial bee colony differential evolution
shuffled complex (ABCDESC));

• The experimentation of two commercialized PEMFCs (EMFC 250 W, and NedStack
PS6) has confirmed the superiority of the proposed DO in terms of stability, conver-
gence speed, and absolute accuracy.

As shown in Figure 1, the proposed work design steps and flowchart are illustrated.
Section 2 describes the mathematical modeling and the PEMFC; Section 3 formulates the
investigated issue as an optimization problem; Section 4 discusses and analyses the main
steps of the DO-based PEMFC parameter estimation; Section 5 is devoted to the validation
of the DO, the discussions, and the comparative study with six well-known metaheuristic
algorithms. Finally, the conclusions and future works are involved in Section 6.
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Figure 1. Flowchart illustrating the Research methodology .

2. General Model of PEM Fuel Cells

According to the literature, there are several types of models used to estimate the
voltage–current relationship of the PEMFC. Amphlett’s semi-empirical model is the most
widely used thanks to its simplicity and efficiency [36,37]. In fact, this model presents the
output voltage of a fuel cell as the sum of the thermodynamic Nernst voltage, the activation
polarization, the concentration polarization, and the ohmic polarization (see Figure 2).
Thus, the output voltage of the fuel cell can be written as Equation (1):

O2/Air

H2

Vcell

Vcon

Vact

Rm+Rc

ENernst

Electricity, 

Heat, Gases

Cathode

Anode

E
le

ct
ro

ly
te

2e-

Figure 2. Electrical model of a PEM fuel cell.

Vcell = ENernst −Vact −Vcon −Vohmic (1)
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where Vact is the activation overpotential, Vohmic is ohmic overpotential, Vconc denotes
concentration loss, and ENernst is the theoretical voltage defined as follows [38–42]:

ENernst = 1.229− 0.85× 10−3(T− 298.15) + 4.308× 10−5 × T · ln
(

P∗H2

√
P∗O2

)
(2)

where T corresponds to the cell temperature at Kelvin, P∗H2
and P∗O2

are the partial pressures
of hydrogen and oxygen, which may be calculated according to (3):

P∗H2
= 0.5RHa · Psat

H2O

 1(
RHa ·Psat

H2O
Pa

exp
(

1.635(i/A)
T1.334

)) − 1

 (3)

P∗O2
= RHc · Psat

H2O

 1(
RHc ·Psat

H2O
Pc

exp
(

4.192(i/A)
T1.334

)) − 1

 (4)

where RHc and RHa are the relative humidity at anode and cathode, Pa and Pc are the
anode and cathode inlet pressures in atm, and Psat

H2O is the saturation pressure of water
vapor, obtained, in atm units, by the following formula:

log10(psat
H2O) = 2.95× 10−2 (T− 298.15)− 9.18× 10−5(T− 298.15)2

+1.44× 10−5(T− 298.15)3 − 2.18
(5)

The activation losses Vact can be determined as in (6):

Vact = −
[
ξ1 + ξ2T + ξ3T ln

(
CO2

)
+ ξ4T ln(i)

]
(6)

where ξ1, ξ2, ξ4 and ξ4 represent semi-empirical factors of cell model and CO2
is the oxygen

concentration can be calculated by:

CO2
=

P∗O2

5.08
× 10−6 exp

(
498
T

)
(7)

Next, the formulation for the calculation of ohmic losses used in this model is pre-
sented below:

Vohmic = i(Rm + Rc) (8)

The contact resistance at the terminals of the bipolar plates is denoted by Rc, and Rm
represents the equivalent resistance of the membrane as follows:

Rm =
ρm

A
lm (9)

where lm is the membrane thickness in cm, and ρm is the resistivity of membrane in Ω.cm,
defined as:

ρm =

181.6
[

1 + 0.03×
(

i
A

)
+ 0.062×

(
T

303

)2( i
A

)2.5
]

[λm − 0.634− 3]×
(

i
A

)
exp

[
4.18(T4−303)

T

] (10)

where λm is an adjustable parameter that specifies membrane content the water.
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Finally, the concentration losses can be established mathematically as in (11).

Vcon = −b · ln
(

Jmax − J
Jmax

)
(11)

where J is the current density (A cm−2), and Jmax is the maximum current density generated
by the PEM fuel cell (A cm−2). In the mathematical model of the PEM fuel cell, b is presented
as an unknown coefficient.

In practice, fuel cells are stacked together in series to obtain higher power output.
Depending on the number of cells, the output voltage of the stack Vstack is given by the
following equation:

Vstack = Ncell ·Vcell (12)

where Ncell number of cells in the stack.

3. Problem Formulation

The mathematical model of Amphlett [36,37] presents the nonlinear characteristics
of the PEMFC stack. Since the implementation of an accurate model is a challenging
task, this model depends on seven key variables. These adjustable variables are those
used in the optimization problem to find the best solution for the objective function.
The objective function defined in this study is the sum of squared errors (SSE). These errors
quantify the difference between the voltage values, which are calculated mathematically,
and those obtained from the voltage data measured in the laboratory from a real PEMFC.
The mathematical description of this objective function is as follows:

Fobj

(
ξi(1:4), λm, Rc, b

)
= min

(
N

∑
j=1

(Vmes(j)−Vest(j))2

)
(13)

Here, Vmes denotes the measured voltage of the PEMFC stack (V), Vest is the esti-
mated voltage of the model (V), N is the number of measured data, and j is the counting
factor. Depending on the type of the fuel cell and its operational state, b represents an
empirical coefficient materializing the mass transport loss coefficient. The parameters of
the PEMFC model are constrained by upper and lower boundaries that define the con-
straints of the problem in terms of inequality (14). The search ranges of ξi, λm, b and Rc are
arranged in Table 1. These variables are those fitted by Dandelion Optimizer and some
well-known algorithms.

ξmin
i ≤ ξi ≤ ξmax

i
λmin

m ≤ λm ≤ λmax
m

bmin ≤ b ≤ bmax

Rmin
c ≤ Rc ≤ Rmax

c

(14)

Table 1. Parameter range of the PEMFC.

Parameter ξ1 ξ2 ξ3 ξ4 λm Rc b

Min −1.19969 1× 10−3 3.6× 10−5 −2.6× 10−4 10 1× 10−4 0.0136
max −0.8532 5× 10−3 9.8× 10−5 −9.54× 10−4 24 8× 10−4 0.5

4. Proposed DO-Based Approach

Having previously explained the general concept of the DO algorithm, the next section
focuses on the mathematical formulation of the three steps crossed by the dandelion seeds
during their lifetime journey, namely the rising, the descending, and the landing.
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4.1. Initialization

Having the same principle as that of the metaheuristic algorithms inspired by nature,
the proposed algorithm is based on the initialization of the population through its evolution
and iterative optimization. Indeed, each seed of dandelion can be considered as a candidate
solution. According to this, the population can be represented by the matrix representation
(Equation (15)):

Pop =


x1,1 x1,2 · · · x1,D
x2,1 x2,2 · · · x2,D

...
...

. . .
...

xNP,1 xNP,2 · · · xNP,D

 (15)

Herein, D is the variable dimension. NP represents the size of the population.
By defining two boundary bands to the treated problem: an upper and a lower one,

denoted Ub and Lb respectively, as shown in these equations:{
Ubj = [ub1, · · · , ubD]
Lbj = [lb1, · · · , lbD]

(16)

Here, j is an integer between 1 and NP. Any candidate solution is necessarily being
generated at random between such boundaries so that each individual Xi,j is expressed
according to Equation (17):

xi,j = Lbj + rand ·
(
Ubj − Lbj

)
(17)

rand is a random number between 0 and 1.
During the initialization process, the algorithm starts by choosing the individual

having the optimal fitness value. After locating it, it is regarded as the initial elite that
approximates the best location for the flourishing of the seed of dandelion. If the minimum
value is chosen, the initial elite xelite can be expressed as: Fbest = min

(
Fobj
(

xi,j
))

xelite = x
(

f ind
(

Fbest == Fobj
(
xi,j
))) (18)

with f ind() being two equal indices.

4.2. Rising Stage

During the rising phase, the dandelion seed rises to a specific height and then moves
away from its parent. Subsequently, depending on moisture factors and wind strength,
the seeds mount to random heights according to two weather conditions.

• Condition 1 :
On clear days without weather fluctuations, the wind speed is characterized by what
can be modeled by a logarithmic distribution according to Equation (19):

lnY = N(µ, σ2)) (19)

Under these conditions, the transmission by seeds is remote randomly because the
distribution is mainly along the y-axis, which triggers the process of DO exploration.
In the search area, the dispersion of dandelion seeds is closely matched to the wind
speed, which influences their height and dispersion. Under this impact, the vortices
above the seeds are continuously adjusted to force them to spiral upward, according
to the following equation:

Xt+1 = Xt + α · vx · vy · ln Y · (Xs − Xt) (20)
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Xt and Xs denote the location of the dandelion seed and that of the search space for
the iteration number t, respectively. As such, the location obtained by random is
expressed by:

Xs = rand(1, dim)(Ub− Lb) + Lb (21)

It is important to mention that lnY is a lognormal distribution obeying the conditions
σ2 = 1 and µ = 0, and so mathematically translated as:

ln Y =

{
1

y
√

2π
exp

[
− 1

2σ2 (ln y)2
]

y ≥ 0

0 y ≺ 0
(22)

α is an adjustment parameter to adapt the search step length, and y is defined as the
normal standard distribution N(0, 1). Accordingly, α is given by:

α = rand() ∗
(

1
T2 t2 − 2

T
t + 1

)
(23)

It was shown in [35] that the parameter α behaves as a function of the number of
iterations as a random fluctuation in the range [0, 1] that decreases nonlinearly toward
0. When defining vx and vy as the dandelion lift parameter coefficients under the
effect of the whirlwind action, the force calculation on the variable dimension obeys:

r = 1
eθ

vx = r ∗ cos θ
uy = r ∗ sin θ

(24)

where θ denotes a random angle in the interval [−π, π].
• Condition 2:

During rainy days, the air resistance is increased due to the high humidity, and there-
fore the buoyancy of dandelion seeds and their height in space are restricted, which
involves the need to process it in their local proximities, according to the following
equation Equation (25):

Xt+1 = Xt ∗ k (25)

where k defines the parameter responsible for setting the local search domain of a
given dandelion and which is assessed by Equation (26):{

q =
(

1
T2−2T+1 t2 − 2

T2−2T+1 t + 1 + 1
T2−2T+1

)
k = 1− rand() ∗ q

(26)

At this stage, the seeds that are undergoing the rising phase are approximated by
Equation (27):

Xt+1 =

{
Xt + α ∗ vx ∗ vy ∗ ln Y ∗ (Xs − Xt) rand(n) ≺ 1.5

Xt ∗ k else
(27)

4.3. Descending Stage

With the careful attention that the DO pays to the process of exploration, the descend-
ing phase is governed in accordance with the following analysis reflected by Equation (28).
The dandelion seeds, being at the end of their rising phase to a certain distance, start the
phase of regular descent according to a moving trajectory approximated by Brown’s motion.
Such normally distributed motion with each change enables individuals to cross, through
the process of iterative updating, growing search communities. In a further phase, the opti-
mizer expands the whole population to promising communities considering the average
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location information after the ascension phase and all this for simulating the stability of the
dandelion descending:

Xt+1 = Xt − α ∗ βt ∗ (Xmean_t − α ∗ βt ∗ Xt) (28)

where βt stands for a randomly generated number derived from the famous standard
normal distribution and represents the Brownian movement. At the ith iteration, Xmean_t
refers to the average population location according to Equation (29):

Xmean_t =
1

pop

pop

∑
i=1

Xi (29)

4.4. Landing Stage

The key to the successful implementation of metaheuristic algorithms is the balance
between the two main search mechanisms, namely exploration and exploitation. In this
context, the DO attempts, during the exploitation, to refine solutions already obtained
during the exploration, to improve its fitness by searching the neighborhood of a promising
region. The dandelion seeds land randomly in an unspecified location. However, as the
iterations proceed, the algorithm converges to a globally optimal solution that pinpoints
the approximate position that ensures the dandelion seeds germinate and continue their life
cycle by borrowing the most relevant information from the actual elite by the search agents
to exploit in their local neighborhoods. Assuming that, for the ith iteration, Xelite identifies
the seed optimal position, the corresponding mathematical expression is as follows:

Xt+1 = Xelite + levy(λ) ∗ α ∗ (Xelite − δ ∗ Xt) (30)

Herein, levy(λ) denotes the Levy flight function given by:

levy(λ) = s× w× σ

|t|
1
β

(31)

The parameter β has been chosen randomly to equal 1.5, while s is fixed at 0.01 [35]. w
and t are numbered in the interval [0, 1]. Accordingly, σ can be mathematically expressed
by:

σ =

 Γ(1 + β)× sin
(

πβ
2

)
Γ
(

1+β
2

)
× β× 2

(
β−1

2

)
 (32)

Based on the previous value of β, σ increase linearly obeys Equation (33):

δ =
2t
T

(33)

4.5. Pseudo Code of the Proposed DO Algorithm

The Pseudo code of the proposed DO algorithm for PEMFC parameters estimation is
summarized by Algorithm 1.
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Algorithm 1 Pseudo-code of the proposed DO optimizer

Input: NP, T, D and measured V-I data
Output:Xbest and Fbest
Initialize the initial dandelion seeds population in random way
Calculate the dandelion seeds fitness values f
Choose Xelite based on the fitness value f
while ( t < T ) do

if (rand() < 1.5) then
Produce adaptive parameters using Equation (23)
Update dandelion seeds by Equation (20)
adaptive parameters using Equation (26)
Update seeds by Equation (25)

Update seeds by Equation (28)
Update seeds by Equation (30)
Arrange dandelion seeds based on fitness values
Update Xelite
if ( felite = f (Xbest)) then

XBest = Xelite , fBest = f (Xelite)

Return XBest and Fbest

5. Validation of Simulation Results
5.1. Identification of PEMFCs’ Stack Parameters, Performance Measures and Comparisons

For a sufficiently rigorous validation, the proposed method is experimentally tested
on two PEMFCs (PEMFC 250 W and NedStack PS6) whose electrical characteristics and
operating conditions are shown in Table 2. The experimental data for the battery voltage
versus the current are shown in [40] for different operating conditions. In addition, the DO
Optimizer is compared with some well-functioning and competitive algorithms such as
Harris Hawks Optimization (HHO), Grey Wolf Optimizer (GWO), and Gradient-based
optimizer (GBO) through various statistical criteria such as accuracy, reliability, robustness,
and stability. For a proper comparison, all of these algorithms were executed according
to the same operating conditions, with the number of populations (N) fixed at 30 and
the maximum number of iterations defined as 100. The best results of each algorithm
are obtained after 30 executions. The simulations were performed using a Matlab 2019b
environment on a laptop computer with an Intel Core i7-3630, 2.4 GHz processor, and 8 GB
of RAM.

To further deepen the comparisons and prove the performance of the DO algorithm,
its achieved results were also compared with those reached by three optimization methods
well-cited in the literature such as improved artificial ecosystem optimizer (IAEO) [38],
hybrid vortex search algorithm (VSDE) [39], and artificial bee colony differential evolution
shuffled complex (ABCDESC) [40].

Table 2. The known parameters of PEMFCs.

Parameters Ncell A(cm2) lm(µm) Jmax(A cm2) PH2(bar) PO2(bar) Pa(atm) Pc(atm) T(K) P(kW)

250 W 24 27 127 0.86 3 5 - - 353.15 0.25
NedSstack 65 240 178 1.2 - - 1 1 343 6

The fitness function convergence curves of the different algorithms are shown for the
two PEMFCs in Figure 3. In this figure, the convergence curve of the proposed DO algo-
rithm reveals that it is much faster than the other three algorithms for the two investigated
stacks. In both examples, the DO algorithm is computationally efficient, as it converges
after a small number of iterations (27 iterations).

Tables 3 and 4 contain, respectively, the optimal parameters of the PEMFC 250 W and
NedStack PS6 models estimated by the proposed DO and the other investigated algorithms.



Mathematics 2023, 11, 1298 12 of 21

To examine the superiority of the proposed DO, statistical measures, namely, best, worst,
mean and standard deviation, are performed using the best fitness values obtained by
each of the independent runs. Tables 3 and 4 summarize the values obtained for the
two studied PEMFCs. It is worth highlighting that the proposed DO achieves the best
value (0.158400329 PEMFC 250 W and 2.257565321 NedStack PS6) of the sum of square
errors (SSE) as well as the lowest standard deviation (0.002660149 for PEMFC 250 W and
0.076297062 for NedStack PS6) compared to the other algorithms. The statistical results
show that DO is consistent (in terms of robustness and efficiency) as the mean and standard
deviation of SSE during 30 runs are lower than those obtained by the other algorithms for
the two examined stacks.
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Figure 3. Convergence curve of fitness function: (a) 250 W fuel cell; (b) NedStack PS6 fuel cel.

Table 3. Optimal parameters of PEMFC 250 W.

Parameters DO GWO GBO HHO

ξ1 −0.961592 −0.871596 −0.974457 −0.895253
ξ2 0.00253443 0.00255737 0.00334035 0.00232372
ξ3 3.6× 10−5 5.90919×10−5 9.77117× 10−5 3.60984× 10−5

ξ4 −0.000138245 −0.000141236 −0.000136735 −0.000100082
λm 13.3372 13.3735 13.9459 10.0273
Rc 0.000423201 0.000136504 0.0007994 0.000100273
b 0.0149649 0.0157339 0.0148931 0.0136372

Minimum SSE 0.158400329 0.160086164 0.158527784 0.276840933
Maximum SSE 0.166811864 0.353987785 0.272967021 2.136931329
Average SSE 0.160609673 0.194413051 0.18248663 0.983809404

Std SSE 0.002660149 0.046728642 0.033055337 0.488586136

Table 4. Optimal parameters of NedStack PS6.

Parameters DO GWO GBO HHO

ξ1 −1.10823 −0.981556 −1.19841 −0.8532
ξ2 0.00348488 0.0029638 0.00435526 0.00274411
ξ3 5.23328× 10−5 4.10262× 10−5 9.40149× 10−5 5.17837× 10−5

ξ4 −9.54× 10−5 −9.55047× 10−5 −9.54× 10−5 −9.54× 10−5

λm 23.0714 14.9218 23.95 14.3893
Rc 0.000127527 0.000198012 0.000327086 0.000186993
b 0.0835662 0.0236393 0.0539602 0.0195792
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Table 4. Cont.

Parameters DO GWO GBO HHO

Minimum SSE 2.077565321 2.288386949 2.278642183 2.286126251
Maximum SSE 2.627548699 4.705647651 3.756412117 9.447348766
Average SSE 2.501037792 3.038447633 2.873919639 4.517318823

Std SSE 0.076297062 0.618991833 0.248397126 1.865763408

In order to evaluate the stability of the different algorithms, the boxplots, for the SSE
after 30 repetitions of 100 iterations, are plotted in Figures 4 and 5. The interquartile ranges
increase as one moves from the DO algorithm to the GBO algorithm and then GWO and
HHO. The distribution of outcomes (SSE) built by the DO algorithm is around its median.
Based on these comparisons, it can be concluded that the proposed DO algorithm achieves
better performance in terms of accuracy and robustness compared to the other algorithms.
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Tables 5 and 6 summarize the results of the DO, IAEO, VSDE, and ABCDESC algo-
rithms by illustrating the estimated parameters and SSE metric of the experimented PEMFC
250 W and NedStack PS6 fuel cells. In both case studies, the proposed DO algorithm reaches
the best results with minimum SSE compared with other algorithms.

Table 5. Optimum values of unknown parameters and SSE of PEMFC 250 W.

Parameters DO IAEO [18] VSDE [39] ABCDESC [40]

ξ1 −0.961592 −0.9991 −1.1921 −1.12806
ξ2 0.00253443 0.002825 0.0031990 0.00394667
ξ3 3.6× 10−5 4.47× 10−5 3.799× 10−5 9.777204× 10−5

ξ4 −0.000138245 −0.00017 −0.000187 -0.000174889
λm 13.3372 19.99358 22.817 19.9358326
Rc 4.23201× 10−4 1.000× 10−4 1.202× 10−4 1× 10−4

b 0.0149649 0.0145 0.0290 0.014526
Minimum SSE 0.158400329 0.3360 1.0526 0.33597

Table 6. Optimum values of unknown parameters and SSE of NedStack PS6.

Parameters DO IAEO [18] VSDE [39] ABCDESC [40]

ξ1 −1.10823 −0.9822 −1.1212 −0.9350526
ξ2 0.00348488 0.0035957 0.00033487 0.0035035
ξ3 5.23328× 10−5 9.48× 10−5 4.6787× 10−5 9.793216× 10−5

ξ4 −9.54× 10−5 −9.54× 10−5 −9.5400× 10−5 −9.54× 10−5

λm 23.0714 13.4650 13.0000 13.094707
Rc 1.27527× 10−4 1.00× 10−4 1.00× 10−4 0.0001
b 0.0835662 0.0136 0.0494 0.0136

Minimum SSE 2.077565321 2.1459 2.088 2.079204604

Figures 6 and 7 show the experimental polarization curves and the best polarization
curves obtained through the model of the I–V and I–P characteristics of the two studied
PEMFCs. A closer examination of these graphs shows that the simulation results of
the model with the parameters estimated using the proposed DO are very close to the
experimental results. This further emphasizes the superiority of the DO to achieve a very
accurate model.
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The absolute deviation of each voltage point between the real and estimated data
Div = Vmes −Vest of the two stacks (250 W PEMFC and NedStack PS6) for the best results
of all 30 independent tests is displayed in Tables 7 and 8.

Table 7. Estimated voltage and absolute deviation of the 250 W PEMFC.

N i(A) Vmes(V) Vest(V) Div(V) (Div)2(V)

1 0.2729 23.5410 23.436884 0.1041 0.0108
2 1.2790 21.4756 21.552742 −0.0771 0.0060
3 2.6603 20.3484 20.542713 −0.1943 0.0378
4 3.9734 19.8969 19.913082 −0.0162 2.6186× 10−4

5 5.3547 19.4642 19.385395 0.0788 0.0062
6 6.7190 19.0127 18.934608 0.0781 0.0061
7 8.0321 18.5049 18.470406 0.0345 0.0012
8 10.7265 17.8835 17.792614 0.0909 0.0083
9 13.4720 17.2808 17.135401 0.1457 0.0449
10 16.1664 16.2089 15.996914 0.2120 0.0212
11 17.4966 15.8701 15.988641 −0.1185 0.0141
12 18.8608 15.5312 15.594024 −0.0628 0.0039
13 20.1910 15.1923 15.175456 0.01686 2.8372× 10−4

14 21.5553 14.6282 14.586637 0.0416 0.0017
15 22.9195 13.7450 13.693124 0.0519 0.0027

SSE 0.158400329

Table 8. Estimated voltage and absolute deviation of the NedStack PS6.

N i(A) Vmes(V) Vest(V) Div(V) (Div)2(V)

1 2.25 61.64 62.452443 −0.8124 0.6600
2 6.75 59.57 59.873841 −0.3038 0.0923
3 9.00 58.94 59.140399 −0.2003 0.4877
4 15.75 57.54 57.582298 −0.04229 0.0017
5 20.25 56.80 56.799747 0.0002 6.36× 10−8

6 24.75 56.13 56.122583 0.0074 5.5× 10−5

7 31.50 55.23 55.729928 0.0003 1.37× 10−7

8 36.00 54.66 54,589203 0.0707 0.0050
9 45.00 53.61 53.604175 0.0058 3.39× 10−5

10 51.75 52.86 52,799762 0.0602 0.0036
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Table 8. Cont.

N i(A) Vmes(V) Vest(V) Div(V) (Div)2(V)

11 67.50 51.91 51.48410 0.4258 0.1813
12 72.00 51.22 51.068878 0.1511 0.0228
13 90.00 49.66 49,452415 0.2075 0.04309
14 99.00 49.00 48.659847 0.3401 0.1157
15 105.80 48.15 48.064054 0.0859 0.0073
16 110.30 47.52 47.670360 −0.1503 0.0022
17 117.00 47.10 47.084098 0.0159 0.0002
18 126.00 46.48 46.294582 0.1854 0.0343
19 135.00 45.66 45.500518 0.1594 0.0254
20 141.80 44.85 44.799173 0.0508 0.0025
21 150.80 44.24 44,088817 0.1511 0.0228
22 162.00 42.45 43.069394 −0.6193 0.3836
23 171.00 41.66 42,235973 −0.5759 0.3317
24 182.30 40.68 40.708183 −0.0281 0.0007
25 189.00 40.09 40.102165 −0.0121 0.0001
26 195.80 39.51 39.455396 0.0546 0.0.0030
27 204.80 38.73 38.553613 0.1763 0.0311
28 211.50 38.15 38.696963 0.1837 0.0337
29 220.50 37.38 37.18800 0.1919 0.0368

SSE 2.257565321

The previous results prove the excellent agreement between the measured voltage
data of the two stacks (250 W PEMFC and NedStack PS6) and the model data found by
the DO-based method. This is once again significant proof of the exactitude of the seven
parameter values of the PEMFCs identified by DO.

5.2. Transient Response to Current Changes

The changing of the current level induces a variation of the cell voltage. Indeed, if the
current varies, a time delay is required for the cell voltage to reach its steady-state value.
This delay clearly affects the activation and concentration drops. However, the ohmic
potential is not sensitive to this delay. To provide an approximate representation of this
phenomenon, a first order transfer function cascaded with the activation and concentration
potentials is adopted. In such a situation, Equations (6) and (11) are rewritten as indicated,
respectively, in Equations (34) and (35):

Vact = −
[
ξ1 + ξ2T + ξ3T ln

(
CO2

)
+ ξ4T ln(i)

]
· 1

1 + Tr · s
(34)

Vcon = −b · ln
(

Jmax − J
Jmax

)
· 1

1 + Tr · s
(35)

Herein, Tr represents the transfer function time constant.
The dynamic model is depicted in the diagram of Figure 8. It is worth mentioning

that pressures, thermodynamics and valve handling are not considered in this simplified
dynamic model. As illustrated in the figure, the irreversible voltage losses in the PEMFC
are obtained via the “PEMFC voltage losses model” block, taking into consideration the
response time of the stack. The open circuit voltage is represented by the “PEMFC Nernst
output voltage model” block. It is important to remember that this voltage is determined
by applying Equation (2).
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Figure 8. PEMFC simplified dynamic model.

In order to evaluate the degree of compatibility of the model based on the DO algo-
rithm to the actual behavior of the stack, the NedStack PS6 stack is chosen to simulate
the dynamic response due to changes in load current. Thus, the model based on the GBO
algorithm, which has a better SSE compared to the other two methods (GWO and HHO), is
simulated to perform such a comparison. Table 6 presents the best values of the unknown
parameters obtained by the DO compared to those obtained by the GBO.

The experimental I–V characteristic as well as those obtained using the simulated
BO-based model and the GBO-based model are depicted in Figure 9a. The results obtained
are in full agreement with those shown previously; the plots show a good fit between the
experimental I–V characteristics and those derived from the BO and GBO-based models.
To investigate further, the unknown parameter values obtained are used in the dynamic
model implemented in MATLAB/SIMULINK to examine the dynamic performance of the
PS6 stack in the case where Tr equals 3 s.

To obtain an idea about the dynamic performance of the fuel cell, two load variation
scenarios are applied to the generated model (increase and decrease) as shown in Figure 9b.
The assumed increase and decrease time instants are 30 s and 60 s, respectively. Figure 9c
shows the dynamic responses of the NedStack PS6 battery voltage as a function of load
current variations. It is meaningfully clear that both models exhibit transient responses to
these changes. As the load current increases, the stack voltage decreases until it reaches its
steady-state value, as illustrated by the curves in Figure 9a,c.

On the other hand, when the current decreases, the stack reacts again to this change
and, after a short time, the stack voltage rejoins the value of its steady-state voltage. In both
cases, the performances shown are very satisfactory.

This is also confirmed by Figure 9d where the voltage errors between the real model
and those generated from the BO and GBO-based models. It is shown in this figure that the
voltage error generated by the developed DO model is lower.

In contrast to the optimization algorithms and the difficulties that can be encountered
in their implementation for solving engineering problems, the implementation of the DO
algorithm for extracting the unknown parameters of the PEMFC model allowed us to
achieve the foregoing:

• Regarding the parameter settings, the population size, the mutation rate and the
convergence criteria have been set appropriately for the present problem without any
difficulties to be mentioned;

• For the implementation complexity, the complex operations involved in the whole
process, i.e., the rising, descending, and landing stages, and the steps of generating the
seeds and updating them, etc., the simplicity of the DO has allowed its implementation
to be successful;
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• Concerning memory usage, the dimensionality of the solved optimization problem
did not cause any problems in this respect;

• The convergence speed of the DO has been satisfactory since it runs for a short period
of time and achieves better results than the other tested algorithms.

Overall, with careful consideration and appropriate attention to the processes of the
DO algorithm, its implementation to address the current research problem has achieved
good results. Nevertheless, the concerns that may be raised will obviously be related to the
cases of more complex and challenging problems with higher dimensionalities, requiring a
larger amount of memory, and/or a longer execution period.
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Figure 9. Characteristic and dynamic simulations of the PS6 stack: (a) I–V polarisation; (b) stack load
current changes; (c) stack voltage responses; (d) voltage error.

6. Conclusions and Future Works

The research work presented in this paper deals with the development of a new
optimization approach based on the DO algorithm to effectively address the (theoretical)
problem of identifying the key parameters of the PEMFCs. The objective function presented
aims to minimize the sum of squared deviations between the generated theoretical model
and the experimental measurements of two PEM fuel cells, namely PEMFCs 250 W stack
and NedStack PS6. The seven variables to be approximated are the following: ξ1, ξ2, ξ3,
ξ4, λm, b and Rc. According to the proposed Do features, the results of its performance
analysis are compared with several other programmed meta-heuristic approaches and
others reported from the literature namely GWO, GBO, HHO, IAEO, VSDE, and ABCDESC
under the conditions imposed by the constraints of the variables to be estimated.

The series of conducted tests and experiments showed that the proposed algorithm
obtains better results, in comparison with those obtained by the competitive algorithms.
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Indeed, the DO approach is faster than the other approaches in terms of generated outcomes
for two tested stacks. Otherwise, it also obtained better solutions than the other methods,
which shows the efficiency and robustness of the implemented approach. The superiority
and efficiency of the DO are evident in terms of maximum, minimum, and median for the
tested piles.

Although the performance of the proposed approach is significantly promising as a
valuable tool, used for the first time, for solving the problem of nonlinear fuel cell model
equations and estimating its unknown parameters, future recommendations are mainly
targeted to its improvement and exploitation in this application and other fields related to
renewable energy and power systems.
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PEMFC Proton exchange membrane fuel cell
DO Dandelion optimizer
GWO Grey wolf optimizer
GBO Gradient-based optimizer
HHO Harris Hawks optimizer
IAEO Improved artificial ecosystem optimizer
VSDE Vortex search-differential evolution
ABCDESC Artificial bee colony differential evolution shuffled complex
HR Hail region
CO2 Carbon dioxide
CO Carbon monoxide
H2O Water molecule
H2 Hydrogen gas
O2 Dioxygen gas
RE Renewable energy
KSA Kingdom of Saudi Arabia
UNWTO World Tourism Organization
COVID-19 Coronavirus disease
EV Electric vehicle
ZEVs Zero-emission vehicles
AC Alternative current
GTO Gorilla troops optimizer
MGTO Modified GTO
HBO Honey badger optimizer
SSE Sum of squared errors
BO Bonobo optimizer
QOBO Quasi oppositional bonobo optimizer
EBES Enhanced bald eagle search
DA Dandelion algorithm
ELM Extreme learning machine
NNA Neural network algorithm
ELMD Dandelion algorithm with ELM
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