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Abstract: Although deep learning has achieved great success in image classification, large amounts
of labelled data are needed to make full use of the advantages of deep learning. However, annotating
a large number of images is expensive and time-consuming, especially annotating medical images,
which requires professional knowledge. Therefore, semi-supervised learning has shown its potential
for medical image classification. In this paper, we propose a novel pseudo-labelling semi-supervised
learning method for medical image classification. Firstly, we utilize the anti-curriculum strategy for
model training to prevent the model from producing predictions with a high value from the samples
which are similar with existed labeled data. Secondly, to produce more stable and accurate pseudo
labels for unlabeled data, we generate the pseudo labels with ensemble predictions provided by the
model with samples augmented by different augmentations. In addition, we refine the generated
pseudo labels using the prediction of the model at the current epoch in order to make the model learn
from itself and improve the model performance. Comparative experiments on the Chest X-ray14
dataset for a multi-label classification task and the ISIC 2018 dataset for a multi-class classification
task are performed, and the experimental results show the effectiveness of our method.

Keywords: medical image classification; semi-supervised learning; anti-curriculum learning
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1. Introduction

Image classification, which is a basic task in computer vision, has achieved fantastic
improvements due to the developments in deep learning. In addition, deep learning is also
beneficial to cancer classification [1–7]. The key point of the success of deep learning for
image classification is the use of a huge amount of high-quality labelled data. However, it is
expensive and time-consuming to collect such a hand-crafted labelled dataset. In addition,
annotating the medical images requires professional knowledge. Thus, it is difficult to
provide a large labelled medical image dataset for training deep neural networks. The
limitations on the availability of a large quantity of labelled data promote the development
of semi-supervised learning. Recently, semi-supervised learning has shown its potential for
medical image classification [8–10].

Currently, semi-supervised learning methods can be approximately classified into
two categories. The first category contains the consistency-based methods, which train the
model by minimizing the model predictions under small perturbations. Image perturba-
tions, such as adversarial [11] and data augmentations [12,13], are widely used in these
methods. In addition, the MeanTeacher method [14] constructs a teacher model in which
the parameters are updated by an exponential moving average (EMA) with the training
model. Using such a teacher model can be regarded as a kind of model perturbation. As for
the consistency-based methods, the design of perturbation functions plays an important
role in the effectiveness of these methods.
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The other kind of semi-supervised learning methods, i.e., the pseudo-labelling meth-
ods, estimate the pseudo labels for unlabeled data and train the model with these data and
the existing labelled data. There are two challenges for pseudo-labelling methods. The
first one is that the accuracy of the pseudo labels cannot be guaranteed. Therefore, some
researchers have attempted to solve this problem. For instance, Lee et al. [15] annotated
unlabeled data by using the prediction of the model. Mamshad et al. [16] considered the
uncertainty and calibration of the model prediction and proposed a novel framework to
improve the accuracy of pseudo labels. Liu et al. [17] combined the model prediction and
cluster prediction to produce more reliable pseudo labels.

The second challenge is how to avoid confirmation bias. Since the accuracy of the
pseudo labels cannot be guaranteed, training the model with these pseudo-labelled data
could make the model accumulate errors and lead to confirmation bias, and thus degrade
the model performance. Addressing these issues, some researchers have designed the
multi-network architecture [18–21]. However, constructing and training multi-networks
need a large memory cost. Hence, there are also some researchers who have employed
other strategies to avoid confirmation bias. For example, Sohn et al. [13] just generated
pseudo labels for high-confidence samples. Cascante-Bonilla et al. [22] trained the model in
several stages and reinitialized the model at each stage.

In this paper, we propose a simple and effective framework for semi-supervised
medical image classification. We first employ the anti-curriculum strategy to train the
model. Specifically, the model is firstly trained by the existing labelled data and then
produces the prediction for each piece of unlabeled data by using unlabeled data as the
input of the model. Afterwards, we select the unlabeled data to be pseudo labelled by the
prediction. Since the anti-curriculum strategy makes the model learn from hard samples to
easy samples, we select the samples with a low prediction value to be pseudo labelled. We
divide the training process into several stages. At each stage, we select samples for training
by percentage k, which is set as a hyper-parameter.

In addition, to improve the accuracy of pseudo labels, we generate the pseudo labels by
averaging the predictions for the data with different data augmentation. As the predictions
are produced by the model for the same data, we assume that the predictions for the
data with different data augmentation should be as similar as possible. Averaging the
predictions can make the pseudo labels more stable and accurate according to the majority
rule [12].

According to the anti-curriculum strategy, the pseudo labels are generated by the
model of the last training stage. However, in general, the model performance becomes
better after training for more epochs unless overfitting is reached. A better model can
produce more accurate predictions. Thus, we propose the temporal refinement by linearly
combining the pseudo labels with the current model prediction to make the pseudo labels
more accurate and further improve the performance of the model.

Finally, we test our method on two different medical image datasets and also conduct
ablation studies to investigate the impact of each component. The experimental results
show the effectiveness of our method on both multi-label and multi-class datasets.

The paper is structured as follows. Section 2 presents the related work about semi-
supervised learning and curriculum learning. In Section 3, the details of our proposed
method are described. The experimental results are given and analyzed in Section 4. Finally,
the conclusion is drawn in the last section.

2. Related Work
2.1. Semi-Supervised Learning Methods for Image Classification

As the amount of data continues to increase, annotating data becomes an expensive
and time-consuming task. Therefore, in real life, the amount of unlabeled data is much
greater than that of the labeled data. An effective way to solve this problem is semi-
supervised learning. In the past few years, scholars have proposed many semi-supervised
algorithms, including generative methods [23–26], graph neural networks based meth-
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ods [27–29], consistency-based methods [11–14] and pseudo-labeling methods [15–17]. The
current widely used semi-supervised classification methods are consistency-based methods
and pseudo-labeling methods. Pseudo-labeling methods utilize the model to generate
pseudo labels for unlabeled data and then train the model with these data. Hence, Lee
et al. [15] utilized the model prediction to generate the pseudo labels and then trained
the model with these pseudo labels. Mamshad et al. [16] generated the pseudo labels for
the samples selected by the uncertainty estimation method to improve the accuracy of
the pseudo labels, and reinitialized the model at the beginning of each training stage to
reduce the accumulation of errors. Consistency-based methods train the model to produce
the same predictions by the same samples. For example, Laine et al. [30] perturbed the
input with different regularizations and trained the model to produce the same prediction
with the same input. Furthermore, the MeanTeacher method [14] improves the model
performance with the employment of the EMA model. MixMatch [12] mixes the labeled
data and unlabeled data and augments data several times to produce more stable pre-
dictions and also trains the model to produce the same prediction with the same data.
FixMatch [13] introduces more powerful data augmentation, such as CTAugment [31]
and RandAugment [32], to train the model to produce the same predictions with weakly
augmented data and strongly augmented data. Recently, several methods [33–35] based on
the architecture of FixMatch were proposed to further improve the model performance.

2.2. Semi-Supervised Learning Methods for Medical Image Classification

Since annotating the medical images needs professional knowledge, it is difficult to
obtain enough labeled data for deep learning. Thus, semi-supervised learning has be-
come popular for medical image classification. Diaz-Pinto et al. [8] proposed a generative
adversarial network (GAN)-based architecture, named Deep Convolutional Generative
Adversarial Network (DCGAN), for retinal image synthesis, and trained a semi-supervised
learning method based on the architecture of DCGAN. Liu et al. [10] improved the Mean-
Teacher method [14] by modeling the feature-level correlation. NoTeacher [36] constructs
two student models and trains them with a novel loss based on a probabilistic graphical
model. Graph XNet [37] designs a novel graph-based framework for X-ray semi-supervised
classification. Liu et al. [38] combined self-supervised pre-training and semi-supervised
fine-tuning and achieved great success. ACPL [17] selects the informative unlabeled data
to be pseudo labeled and trains the model with pseudo labels.

2.3. Curriculum and Anti-Curriculum Learning

Curriculum learning is first proposed by Bengio et al. [39], the basic idea of which
is to make the model learn from easy samples to hard samples. For instance, in image
classification, the model is trained by the images which are easy to first be recognized.
On the contrary, anti-curriculum learning focuses on hard samples first and then easy
samples. Most previous works based on curriculum learning are designed for supervised
learning [40,41]. Recently, Cascante-Bonilla et al. [22] proposed a novel pseudo-labeling
method based on a curriculum learning strategy and proved the effectiveness of curriculum
learning. Liu et al. [17] utilized the anti-curriculum learning strategy for semi-supervised
medical image classification and achieved a state-of-the-art result.

3. The Proposed Method

This section shows the details of our proposed method. We firstly trained the model
with the existing labeled data. Then, we selected samples to be pseudo labeled and added
them into the labeled dataset according to the anti-curriculum learning strategy. Next,
we reinitialized the model and trained it with the labeled dataset expanded by the se-
lected samples. Afterwards, we repeated these actions until all the data were added into
the labeled dataset. Finally, we trained the model with all the data with pseudo labels.
The procedure of our method is described in Algorithm 1. The rest of this section first
describes the anti-curriculum learning strategy, then presents the details of the genera-
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tion of pseudo labels, and finally introduces the temporal refinement of pseudo labels.

Algorithm 1 Anti-curriculum learning based semi-supervised learning method

1 Input training model θ, EMA model θema, labeled dataset DL, unlabeled dataset DU , selected
dataset DS, percentage k, training stage t

2 Initialize DS = DL, t = 1, θ, θema
3 θ ← train with DS
4 θema ← update with θ

5 do
6 DS ← sort (θema(DU)) and select top-k samples to be pseudo labeled by anti-curriculum

learning strategy
7 DS = DS ∪ DL
8 reinitialize θ, θema
9 θ ← train with DS
10 θema ← update with θ

11 t = t + 1
12 k = k ∗ t
13 While DS 6= DL ∪ DU
14 end

3.1. Anti-Curriculum Learning Strategy

Curriculum learning has shown its effectiveness in supervised learning [42]. Cascante-
Bonilla et al. [22] further verified its effectiveness in semi-supervised learning. However,
according to the idea of curriculum learning, we trained the model by the labeled data
first and then chose the samples which were easily recognized to further train the model.
Since the difficulty level of samples was determined by the model which was trained by
the labeled data, the samples which were similar to the labeled data may be selected. As
a result, the model was trained by similar samples and was easy to be overfitted. Thus,
we utilized the anti-curriculum learning strategy to train the model and improve the
model generalization.

Inspired by the method in [22], we selected samples by percentage, that is, at each
training stage, we chose k ∗ t samples to train the model. Here, k was a percentage, which
was set to be 20%, and t was the current training stage. Let DL and DU mean the labeled
dataset and unlabeled dataset, respectively. We firstly trained the model on DL and then
put the data in DU to the model to obtain the predictions of each unlabeled sample. Next,
we sorted the samples by the maximum probability predictions produced by the model
from small to large. In addition, the EMA model was employed to produce the sample
predictions, for the purpose of improving the quality of the prediction. Afterwards, we
annotated the top-k samples and added them to the labeled data to generate the selected
dataset DS. Then, we reinitialized the model and trained it with the data in DS. Finally,
at the last training stage, all the data were added to the labeled data and then the model
was retrained by these data. Therefore, at the last training stage, DS = DL ∪ DU. The
anti-curriculum learning strategy is illustrated in Figure 1.
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3.2. The Generation of Pseudo Labels

The accuracy of pseudo labels plays an important role in model training. The inaccu-
rate labels make the model learn negative information and accumulate errors, which may
greatly degrade the model performance. Thus, it is meaningful to improve the accurate of
pseudo labels.

It was proved that the EMA model can effectively improve the performance of the
model [10,14,17]. Therefore, we also used the EMA model to produce more accurate
predictions. The parameters of the EMA model are updated by the training model:

θt
ema = αθt

ema + (1− α)θt (1)

where θt
ema and θt are the parameters of the EMA model and the training model, respectively,

at training iteration t. α is a momentum coefficient. In addition, inspired by the effectiveness
of data augmentations in [12], we averaged the sample predictions with different data
augmentations. Specifically, we augmented the data for T times and generated the pseudo
labels by the average predictions. Here, T is a hyper-parameter. Thus, the pseudo labels y
can be generated by:

y =
1
T ∑T

j=1 θt
ema(x)j (2)

Figure 2 illustrates the generation of pseudo labels in our method.
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3.3. Temporal Refinement of Pseudo Labels

According to the anti-curriculum learning strategy, we generated the pseudo labels
by the last EMA model. It is known that the model performance can be improved with
the training of the model, especially at the early training stage. Therefore, to enhance the
model performance, we proposed the temporal refinement to combine the pseudo labels
with the prediction of current EMA model. The refined labels can be written as:

y′ = (1− β)y + βθt
ema(x) (3)

where y is the pseudo labels and θt
ema(x) represents the predictions of the current EMA

model, and β is the weight used to control the balance of the pseudo labels and the current
predictions. Since the model performance is improved fast at the early training stage, the
parameter β is large at the beginning and decreases with the training stage:

β = max(βmin, βmax − γ ∗ s) (4)
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where βmin and βmax are the minimum value and maximum value of the parameter β,
respectively. γ represents the range of decline and s is the number of training stages. The
temporal refinement procedure can be seen in Figure 3.

Mathematics 2023, 11, x FOR PEER REVIEW 6 of 13 
 

 

3.3. Temporal Refinement of Pseudo Labels 
According to the anti-curriculum learning strategy, we generated the pseudo labels 

by the last EMA model. It is known that the model performance can be improved with the 
training of the model, especially at the early training stage. Therefore, to enhance the 
model performance, we proposed the temporal refinement to combine the pseudo labels 
with the prediction of current EMA model. The refined labels can be written as: 𝑦ᇱ = (1 − 𝛽)𝑦ത + 𝛽𝜃௧ (𝑥) (3) 

where 𝑦ത is the pseudo labels and 𝜃௧ (𝑥) represents the predictions of the current EMA 
model, and 𝛽 is the weight used to control the balance of the pseudo labels and the cur-
rent predictions. Since the model performance is improved fast at the early training stage, 
the parameter 𝛽 is large at the beginning and decreases with the training stage: 𝛽 = max (𝛽, 𝛽௫ − 𝛾 ∗ 𝑠) (4) 

where 𝛽 and 𝛽௫ are the minimum value and maximum value of the parameter 𝛽, 
respectively. 𝛾 represents the range of decline and 𝑠 is the number of training stages. 
The temporal refinement procedure can be seen in Figure 3. 

 
Figure 3. The temporal refinement of pseudo labels. The pseudo labels generated by the EMA model 
at the last training stage and the predictions produced by the EMA model at current training stage 
are linearly combined to generate the current labels to train the model. 

4. Experiments 
This section describes the datasets, the experiments and implementation details, and 

also presents the results with some analysis. 

4.1. Datasets 
The proposed method was evaluated on two different datasets, including Chest X-

ray14 [43] and ISIC2018 [44,45]. Chest X-ray14 contains 112,120 images from 30,805 pa-
tients with 14 categories. As one patient can have different diseases, each image may also 
have multiple labels. Thus, the Chest X-ray14 dataset was designed for multi-label classi-
fication. We utilized the official training and test dataset, which includes 86,524 and 25,596 
images, respectively. In the same way as the previous related work [17], we evaluated our 
method on the dataset with five different rates of labeled data. 

ISIC2018 includes 10,015 images with 7 categories. Each image only has one possible 
label, so it is designed for multi-class classification. We followed the dataset partition set-
ting in [17] and used 20% of samples in training set as labeled data and the remaining 80% 
of samples as unlabeled data. 

4.2. Implementation Details 
We trained the DenseNet121 [46] with ImageNet pretrained parameters for both da-

tasets. For the Chest X-ray14 dataset, the Adam algorithm [47] was employed to train our 

Figure 3. The temporal refinement of pseudo labels. The pseudo labels generated by the EMA model
at the last training stage and the predictions produced by the EMA model at current training stage
are linearly combined to generate the current labels to train the model.

4. Experiments

This section describes the datasets, the experiments and implementation details, and
also presents the results with some analysis.

4.1. Datasets

The proposed method was evaluated on two different datasets, including Chest X-
ray14 [43] and ISIC2018 [44,45]. Chest X-ray14 contains 112,120 images from 30,805 patients
with 14 categories. As one patient can have different diseases, each image may also have
multiple labels. Thus, the Chest X-ray14 dataset was designed for multi-label classification.
We utilized the official training and test dataset, which includes 86,524 and 25,596 images,
respectively. In the same way as the previous related work [17], we evaluated our method
on the dataset with five different rates of labeled data.

ISIC2018 includes 10,015 images with 7 categories. Each image only has one possible
label, so it is designed for multi-class classification. We followed the dataset partition
setting in [17] and used 20% of samples in training set as labeled data and the remaining
80% of samples as unlabeled data.

4.2. Implementation Details

We trained the DenseNet121 [46] with ImageNet pretrained parameters for both
datasets. For the Chest X-ray14 dataset, the Adam algorithm [47] was employed to train
our model. The batch size was set to be 8 and the learning rate was set to be 0.03. For the
first training stage, we trained the model with the original labeled data for 20 epochs in all
the cases. Afterwards, we trained the model for 10 epochs at each stage. The images were
randomly cropped and resized to 512 × 512 and the random horizontal flip was used as
data augmentation. For the ISIC2018 dataset, we also used the Adam algorithm [47] for
training. The batch size and the learning rate were set to be 32 and 0.01, respectively. The
model was trained for 40 epochs at the first training stage and 20 epochs at other stages.
The images were cropped and resized to 224 × 224 and the data augmentations were the
same as that for Chest X-ray14. For both datasets, the parameter T was set as 3, βmin and
βmax were 0.1 and 0.4, respectively. The hyper-parameter γ was set to be 0.1.

4.3. Comparison with Other Semi-Supervised Classification Methods

We compared our method with several other semi-supervised classification methods
on the Chest X-ray14 dataset, including Graph XNet [37], UPS [16], SRC-MT [10], No
Teacher [36], S2MTS2 [38] and ACPL [17]. The experimental results on Chest X-ray14 are
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presented in Table 1. Following the settings in [17], we evaluated our method with the rate
of number of labeled data in {2%, 5%, 10%, 15%, 20%} and scored the model performance
by the area under the ROC curve (AUC). As can be seen in Table 1, our method performed
well in all the rates, especially with few labeled data. When using 2% of the labeled data,
our method achieved an AUC of 0.7539, which is higher than that of the state-of-the-art
method ACPL [17] by 0.0057. The results listed in Table 1 verify the effectiveness of our
method for multi-label classification task.

Table 1. Comparison results between our method and other compared methods in AUC on Chest
X-ray14 dataset. The bold represents the best result.

Method
Label Percentage

2% 5% 10% 15% 20%

Graph XNet [37] 0.5300 0.5800 0.6300 0.6800 0.7800
UPS [16] 0.6551 0.7318 0.7684 0.7890 0.7992

SRC-MT [10] 0.6695 0.7229 0.7528 0.7776 0.7923
NoTeacher [36] 0.7260 0.7704 0.7761 N/A 0.7949

S2MTS2 [38] 0.7469 0.7896 0.7990 0.8031 0.8106
ACPL [17] 0.7482 0.7920 0.8040 0.8106 0.8177

Ours 0.7539 0.7952 0.8068 0.8123 0.8197

Table 2 shows the performance comparison of the ISIC2018 dataset. Since the ISIC2018
dataset contains a small number of images, we only conducted the experiments by using
20% labeled data, in the same way as the method in [17]. We compared our method
with the self-training-based method [48], GAN-based method [8], TemporalEnsemble [30],
MeanTeacher [14], TCSE [49], SRC-MT [10], ACPL [17] and S2MTS2 [38]. We also scored
the model performance by AUC. As shown in Table 2, our method achieved an AUC of
0.9612, which is higher than those of other compared methods. The result demonstrates that
our method is not only suitable for multi-label classification task, but also for multi-class
classification task.

Table 2. Performance of different methods on ISIC2018 dataset with 20% labeled data for training.
The bold represents the best result.

Method AUC

Self-training [48] 0.9058
SS-DCGAN [8] 0.9128

TCSE [49] 0.9224
TemporalEnsemble [30] 0.9270

MeanTeacher [14] 0.9296
SRC-MT [10] 0.9358

ACPL [17] 0.9436
S2MTS2 [38] 0.9471

Ours 0.9612

4.4. Ablation Study

In this subsection, we conducted ablation studies to investigate the influence of differ-
ent components in our method on Chest X-ray14 dataset with 2% labeled data and ISIC2018
with 20% labeled data. First, we compared the performance of model with curriculum
learning strategy and anti-curriculum learning strategy. As displayed in Table 3, by using
the curriculum learning strategy on the Chest X-ray14 dataset, our method achieved an
AUC of 0.7509, which is 0.003 lower than that of our method with the anti-curriculum
learning strategy. For the ISIC2018 dataset, the result increased from 0.9553 to 0.9612 by
using the anti-curriculum learning strategy instead of curriculum learning strategy. The
experimental results on both datasets show the effectiveness of the anti-curriculum learning
strategy. The model was trained by the original labeled data first, and thus it may select the
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samples which are similar to the labeled data as easy samples. The curriculum learning
strategy makes the model learn from easy samples to hard samples. However, training the
model with similar samples cannot significantly improve the model performance. There-
fore, at the early training stage, the performance of the model with the curriculum learning
strategy was lower than that of model with anti-curriculum learning strategy, which can be
seen in Figures 4 and 5. It may be the reason why the anti-curriculum learning strategy is
more useful.

Table 3. Performance of different learning strategies on Chest X-ray14 dataset with 2% labeled data
and ISIC2018 with 20% labeled data. CL: Curriculum learning; ACL: Anti-curriculum learning. The
bold represents the best result.

Method Chest X-ray14 ISIC2018

Ours with CL strategy 0.7509 0.9553
Ours with ACL strategy 0.7539 0.9612
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Since the label distribution in a medical dataset is often imbalanced, Figure 6 illustrated
the pseudo label distributions of the data selected by the models trained with the curriculum
learning strategy and anti-curriculum learning strategy after the second training stage on
the ISIC2018 dataset, respectively. It can be seen in Figure 6 that the model trained with the
anti-curriculum learning strategy selects fewer data of the majority class and more data of
the minority class, which means the selection of the model trained with anti-curriculum
learning strategy is more balanced.

To increase the accuracy of pseudo labels, we augmented data for several times to
generate the pseudo labels and employed temporal refinement to train the model. We
carried out the experiments to inspect the effect of each component. Table 4 reports the
results of our method with and without each component. Our method obtained the AUC
of 0.7495 and 0.9588 without average prediction and temporal refinement on the Chest
X-ray14 dataset and ISIC2018 dataset, respectively. By employing the temporal refinement
in our method, the result increased to 0.7503 and 0.9592, which shows the effectiveness of
temporal refinement. It can also observe an increase by using the average prediction to
generate pseudo labels, with the AUC increasing to 0.7528 and 0.9597. By employing both
components in our method, we achieved the AUC of 0.7539 and 0.9612, which strongly
show the effectiveness of our method.
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Table 4. The effectiveness of different components on Chest X-ray14 dataset with 2% labeled data
and ISIC2018 with 20% labeled data. The bold represents the best result.

Method
Chest X-ray14 ISIC2018

Average Prediction Temporal
Refinement

0.7495 0.9588√
0.7503 0.9592√
0.7528 0.9597√ √
0.7539 0.9612

We can visualize some images with their generated pseudo labels in Figure 7, where
we can see the predictions of our method for thorax disease and skin cancers.



Mathematics 2023, 11, 1306 10 of 13

Mathematics 2023, 11, x FOR PEER REVIEW 10 of 13 
 

 

ray14 dataset and ISIC2018 dataset, respectively. By employing the temporal refinement 
in our method, the result increased to 0.7503 and 0.9592, which shows the effectiveness of 
temporal refinement. It can also observe an increase by using the average prediction to 
generate pseudo labels, with the AUC increasing to 0.7528 and 0.9597. By employing both 
components in our method, we achieved the AUC of 0.7539 and 0.9612, which strongly 
show the effectiveness of our method. 

Table 4. The effectiveness of different components on Chest X-ray14 dataset with 2% labeled data 
and ISIC2018 with 20% labeled data. The bold represents the best result. 

Method 
Chest X-ray14 ISIC2018 

Average Prediction Temporal Refinement 
  0.7495 0.9588 
 √ 0.7503 0.9592 
√  0.7528 0.9597 
√ √ 0.7539 0.9612 

We can visualize some images with their generated pseudo labels in Figure 7, where 
we can see the predictions of our method for thorax disease and skin cancers. 

 
Figure 7. Some images and their corresponding predictions. Top: images from Chest X-ray14 da-
taset. Bottom: images from ISIC2018 dataset. The red classes mean the ground-truth. 

5. Conclusions 
In this paper, we proposed a simple and effective method for medical image classifi-

cation. To avoid confirmation bias and promote the model training, we trained the model 
with the anti-curriculum learning strategy. We also averaged the model predictions of 
samples with different data augmentations to improve the accuracy of pseudo labels. 
Since the model performance improves over time, we designed the temporal refinement 
to linearly combine the pseudo labels generated from the model at the last stage and the 
predictions of the model at the current stage, in order to further improve the model per-
formance and the accuracy of pseudo labels. Our method was evaluated on two different 
medical image datasets for multi-label and multi-class classification task. The experi-
mental results verify the effectiveness of our method. In the future, we would like to eval-
uate our method in general computer vision tasks and other medical image processing 
such as image segmentation and tumor detection. 

Figure 7. Some images and their corresponding predictions. Top: images from Chest X-ray14 dataset.
Bottom: images from ISIC2018 dataset. The red classes mean the ground-truth.

5. Conclusions

In this paper, we proposed a simple and effective method for medical image clas-
sification. To avoid confirmation bias and promote the model training, we trained the
model with the anti-curriculum learning strategy. We also averaged the model predictions
of samples with different data augmentations to improve the accuracy of pseudo labels.
Since the model performance improves over time, we designed the temporal refinement
to linearly combine the pseudo labels generated from the model at the last stage and the
predictions of the model at the current stage, in order to further improve the model per-
formance and the accuracy of pseudo labels. Our method was evaluated on two different
medical image datasets for multi-label and multi-class classification task. The experimental
results verify the effectiveness of our method. In the future, we would like to evaluate
our method in general computer vision tasks and other medical image processing such as
image segmentation and tumor detection.
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