(α − ψ) Meir–Keeler Contractions in Bipolar Metric Spaces
Abstract
:1. Introduction
2. Preliminaries
- 1.
- if and only if for all ;
- 2.
- for all ;
- 3.
- ;for all and .
- 1.
- A sequence on is called a bisequence on .
- 2.
- If both the sequences and converge, then the bisequence is said to be convergent. If both sequences and converge to the same point , then the bisequence is called biconvergent.
- 3.
- A bisequence on is said to be a Cauchy bisequence if for each there exists a positive integer such that for all .
- 4.
- A bipolar metric space is said to be complete if every Cauchy bisequence is convergent in this space.
- 1.
- If and , then T is called covariant mapping and is denoted by .
- 2.
- If and , then T is called contravariant mapping and is denoted by .
- 1.
- A map is called left continuous at a point if for every there exists a such that whenever .
- 2.
- A map is called right continuous at a point if for every there exists a such that whenever .
- 3.
- A map is called continuous if it is left continuous at each and right continuous at each .
- 4.
- A map is called continuous if and only if it is continuous as a covariant map
- 1.
- ψ is non-decreasing.
- 2.
- for all , where is the iterate of ψ.
3. Results
- 1.
- T is α-orbital admissible,
- 2.
- There exists such that ,
- 3.
- T is continuous,
- 1.
- T is α-orbital admissible,
- 2.
- There exists such that ,
- 3.
- If is a bisequence such that for all n and as , then ,
- 1.
- T is α-orbital admissible,
- 2.
- There exists such that ,
- 3.
- T is orbital continuous,
4. Consequences
5. Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrals. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Bakhtin, I.A. The contraction mapping principle in quasimetric spaces. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Matthews, S.G. Partial metric topology. Ann. N. Y. Acad. Sci. 1994, 728, 183–197. [Google Scholar] [CrossRef]
- Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
- Chatterjea, S.K. Fixed point theorems. C.R. Acad. Bulgare Sci. 1972, 25, 727–730. [Google Scholar] [CrossRef]
- Hardy, G.C.; Rogers, T. A generalization of fixed point theorem of S.Riech. Can. Math. Bull. 1973, 16, 201–206. [Google Scholar] [CrossRef]
- Jaggi, D.S. Some unique fixed point theorems. Indian J. Pure Appl. Math. 1977, 8, 223–230. [Google Scholar]
- Karapinar, E. A note on common fixed point theorems in partial metric spaces. Miskolc Math. Notes 2011, 12, 185–191. [Google Scholar] [CrossRef]
- Karapinar, E.; Erhan, I.M. Fixed point theorems for operators on partial metric spaces. Appl. Math. Lett. 2011, 24, 1894–1899. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E. Fixed point theorems for cyclic weak ϕ-contraction. Appl. Math. Lett. 2011, 24, 822–825. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E. Fixed point theorems in cone Banach spaces. Fixed Point Theory Appl. 2009, 2009, 609281. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E. Some non unique fixed point theorems of Ciric type on cone metric spaces. In Abstract and Applied Analysis; Hindawi: London, UK, 2010; p. 123094. [Google Scholar]
- Karapinar, E. Weak ϕ-contractions on partial metric spaces. J. Comput. Anal. Appl. 2012, 14, 206–210. [Google Scholar]
- Kirk, W.A.; Srinavasan, P.S.; Veeramani, P. Fixed points for mappings satisfying cyclical contractive conditions. Fixed Point Appl. 2003, 4, 79–89. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, P. Fixed ppoint theorems for (α − ψ) contractive types mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
- Karapinar, E.; Kumam, P.; Salimi, P. On α − ψ-Meir-Keeler contractive mappings. Fixed Point Theory Appl. 2013, 2013, 94. [Google Scholar] [CrossRef] [Green Version]
- Popescu, O. Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory Appl. 2014, 2014, 190. [Google Scholar] [CrossRef]
- Mutlu, A.; Gurdal, U. Bipolar metric spaces and some fixed point theorems. J. Nonlinear Sci. Appl. 2016, 9, 5362–5373. [Google Scholar] [CrossRef] [Green Version]
- Murthy, P.P.; Mitrovic, Z.; Dhuri, C.P.; Radenovic, S. The common fixed point theorems in bipolar metric space. Gulf J. Math. 2022, 12, 31–38. [Google Scholar] [CrossRef]
- Mutlu, A.; Gurdal, U.; Ozkan, K. Fixed point results for α − ψ-contractive mappings in bipolar metric space. J. Inequalities Spec. Funct. 2020, 11, 64–75. [Google Scholar]
- Mutlu, A.; Gurdal, U.; Ozkan, K. Fixed point theorems for multivalued mappings on bipolar metric spaces. Fixed Point Theory 2020, 21, 271–280. [Google Scholar] [CrossRef]
- Ramaswamy, R.; Mani, G.; Gnanaprakasam, A.J.; Abdelnaby, O.A.A.; Stojiljković, V.; Radojevic, S.; Radenovic, S. Fixed Points on Covariant and Contravariant Maps with an Application. Mathematics 2022, 10, 4385. [Google Scholar] [CrossRef]
- Mani, G.; Ramaswamy, R.; Gnanaprakasam, A.J.; Stojiljkovic, V.; Fadail, Z.M.; Radenović, S. Application of fixed point results in the setting of F-contraction and simulation function in the setting of bipolar metric space. AIMS Math. 2023, 8, 3269–3285. [Google Scholar] [CrossRef]
- Murthy, P.P.; Dhuri, C.P.; Kumar, S.; Ramaswamy, R.; Alaskar, M.A.S.; Radenovic, S. Common Fixed Point for Meir-Keeler Type Contraction in Bipolar Metric Space. Fractal Fract. 2022, 6, 649. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, M.; Kumar, P.; Ramaswamy, R.; Abdelnaby, O.A.A.; Elsonbaty, A.; Radenović, S. (α − ψ) Meir–Keeler Contractions in Bipolar Metric Spaces. Mathematics 2023, 11, 1310. https://doi.org/10.3390/math11061310
Kumar M, Kumar P, Ramaswamy R, Abdelnaby OAA, Elsonbaty A, Radenović S. (α − ψ) Meir–Keeler Contractions in Bipolar Metric Spaces. Mathematics. 2023; 11(6):1310. https://doi.org/10.3390/math11061310
Chicago/Turabian StyleKumar, Manoj, Pankaj Kumar, Rajagopalan Ramaswamy, Ola A. Ashour Abdelnaby, Amr Elsonbaty, and Stojan Radenović. 2023. "(α − ψ) Meir–Keeler Contractions in Bipolar Metric Spaces" Mathematics 11, no. 6: 1310. https://doi.org/10.3390/math11061310
APA StyleKumar, M., Kumar, P., Ramaswamy, R., Abdelnaby, O. A. A., Elsonbaty, A., & Radenović, S. (2023). (α − ψ) Meir–Keeler Contractions in Bipolar Metric Spaces. Mathematics, 11(6), 1310. https://doi.org/10.3390/math11061310