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Abstract: A vertex in a graph is referred to as fixed if it is mapped to itself under every automorphism
of the vertices. The fixing number of a graph is the minimum number of vertices, when fixed, that
fixes all of the vertices in the graph. Fixing numbers were first introduced by Laison and Gibbons,
and independently by Erwin and Harary. Fixing numbers have also been referred to as determining
numbers by Boutin. The main motivation is to remove all symmetries from a graph. A very simple
application is in the creation of QR codes where the symbols must be fixed against any rotation. We
determine the fixing number for several families of graphs, including those arising from combinatorial
block designs. We also present several infinite families of graphs with an even stronger condition,
where fixing any vertex in a graph fixes every vertex.

Keywords: fixing number; graph automorphism

MSC: 05C25

1. Introduction

We consider the problem of removing all non-trivial automorphisms from a graph by
fixing a smallest set of vertices. The original motivation for this problem came from the
following problem proposed by Frank Rubin [1] and referenced in [2]:

Professor X, who is visually impaired, keeps their keys on a circular key ring.
Assume there are a variety of handle shapes available that can be distinguished
by touch. We will assume that all keys are symmetrical, so that a rotation of the
key ring about an axis in its plane cannot be detected from an examination of a
single key. What is the minimum number of shapes that Professor X needs to use
in order to keep n keys on the ring and still be able to select the proper key by
touch?

An automorphism of a graph G, with vertex set V(G) and edge set E(G), is a bijection
f : V(G) → V(G) where uv ∈ E(G) ⇔ f (u) f (v) ∈ E(G). A vertex n in a graph G
is referred to as fixed if it is mapped to itself (fixed) under every automorphism of G.
The fixing number of a graph G is the minimum number of vertices, when fixed, that
fixes all of the vertices in G. As a result, all nontrivial automorphisms of the graph are
removed. The determination of fixing numbers is of interest, as it provides insight into
the famous problem of determining the automorphism group of a given graph. Fixing
numbers were first introduced by Gibbons and Laison [3], as well as independently by
Erwin and Harary [4]. Fixing numbers have also been referred to as determining numbers
by Boutin [5]. Fixing/determining numbers have been investigated for several families of
graphs such as complete graphs, paths, and cycles [4], Cayley graphs and Frucht graphs [3],
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Cartesian products [6], and Kneser graphs [7]. Recently, fixing numbers were determined
for cographs and unit interval graphs [8].

A simple application is in the creation of QR codes where the symbols must be fixed
against any rotation. A QR code is an image that stores a URL or other information that
can be read by a camera on a smartphone. An example is given in Figure 1. We note in
Figure 1 there are symbols in each of the corners. A distinct symbol must be placed in the
lower right corner which eliminates the possibility of the QR code being rotated. This way
the camera on a smartphone can be held in any direction and will still be able to orient the
image correctly.

Figure 1. A QR code.

With fixing numbers, we want to eliminate the possibilities of not just rotations,
but also reflections. To do this, we place a blue vertex at the upper left corner and a red
vertex at the upper right corner. The fixing of these two vertices fixes all vertices in the
graph (Figure 2).

Figure 2. Fixing C4 with two vertices.

We next present another application of fixing numbers. The removal of nontrivial
automorphisms from graphs is related to a problem in robotic manipulation. In this
problem, the goal is to determine the orientation of a marked sphere from a single visual
image [9].

In this paper, we investigate point-block incidence graphs which arise from combina-
torial designs. We will use f ix(G) to denote the fixing number of a graph G. We refer to a
vertex as distinguishable if it is fixed under every automorphism of G.

For any undefined notation, readers are referred to the text by West [10].
In this paper, we investigate fixing numbers for point-block incidence graphs. This

includes identification of infinite families of graphs, where fixing any vertex fixes every
vertex, thus removing all nontrivial automorphisms from the graph.

2. Methods

We recall a basic structure from combinatorial design theory. For a given a finite set P
of n elements (called points) and integers k, r, λ ≥ 1, a (n, k, λ) balanced incomplete block
design (BIBD) is a set of k-element subsets of P, called blocks, such that any x in X is contained
in exactly r blocks, and any pair of distinct points x and y in X is contained in exactly λ blocks.
Here is an example of a (7, 3, 1)-BIBD: [0, 1, 3], [1, 2, 4], [2, 3, 5], [3, 4, 6], [4, 5, 0], [5, 6, 1], [6, 0, 2].
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A point-block incidence graph is a bipartite graph with a set of point vertices P =
{p1, p2, . . . , pv} and a set of block vertices B = {B1, B2, . . . , Bs}where s is a positive multiple
of n and pi ∈ P is adjacent to Bj ∈ B if and only if pi ∈ Bj.

In this section, we will consider point-block incidence graphs where the blocks are
size 3 and are generated by the cyclic shifts of a single block, with arithmetic performed
modulo n. We will use Gn[ar, as, at] to denote the point-block incidence in a graph with
n = 2v vertices with ‘starter’ block [ar, as, at], where the points are {a1, a2, ..., av} and the
blocks are

{ [(ar+i) mod k, (as+i) mod k, (at+i) mod v] : 0 ≤ i ≤ k− 1}.

Despite their straightforward construction, point-block incidence graphs can differ in
both automorphism groups and fixing numbers.

Point-block incidence graphs generated with a single starter block were investigated
in [11]. We restate the main results below.

In particular, these included circulant graphs. Recall that a circulant graph Cn[A] is a
graph with vertices v1, v2, ..., vn where vi is adjacent to v(i+j)mod n and v(i−j)mod n for each j
in a list A. In our next theorem, we restate a result from [11] showing that certain circulant
graphs are in fact point-block incidence graphs.

Theorem 1 ([11]). Let k ≥ 6. Then G4k+2[0, 1, 2] ∼= C4k+2[1, 2k + 1].

In the next three theorems, we show isomorphisms between different families of
point-block incidence graphs.

Theorem 2 ([11]). Let k ≥ 6. Then, we have the following.

1. G2k[0, a, b] ∼= G2k[i, a + i, b + i] for any 0 ≤ i ≤ k− 1.
2. Gn[0, a, b] ∼= Gn[0, ta, tb] for all 1 ≤ t ≤ k where gcd(n, t) = 1.

where all computations are performed modulo k.

Theorem 3 ([11]). For any k ≥ 6, G2k[0, a, b] ∼= G2k[0, b − a, b] where computations are per-
formed modulo k.

Theorem 4 ([11]). Let ms ≥ 3. Then, G2ms[0, ma, mb] ∼= mG2s[0, a, b].

We next present a class of point-block incidence graphs that all have a fixing number
of 1.

Theorem 5 ([11]). The point-block incidence graph generated with single block [0, 1, 3] with
computations done mod k, when k ≥ 9, has a fixing number of 1. Furthermore, the action of fixing
any vertex fixes all other vertices.

3. Results

We next investigate the fixing number of point-block incidence graphs that arise from
two blocks. These graphs are bi-regular with n point vertices of degree 2k and the block
vertices (vertices corresponding to a block) each have degree k. We note that when working
modulo k, a graph generated by two different starter blocks B1 and B2 is same as the union
of the graph generated by B1 and the graph generated by B2.

In our next theorem, we extend the result from Theorem 5 and present a family of
point-block incidence graphs generated from two different starter blocks that have a fixing
number of 1.



Mathematics 2023, 11, 1322 4 of 9

Theorem 6. Let Gn,k be the point-block incidence graph generated by the starting blocks [0, 1, 2]
and [0, 1, k] modulo n where 3 ≤ k ≤ n− 2. If n ≥ 6, then

f ix(Gn,k) =

{
2 if n is odd, and n = 2k− 1;
1 else.

Proof. Let P = {0, 1, . . . , n− 1} be the set of points, C1 be the set of cyclic shifts of the block
[0, 1, 2], and C2 be the set of cyclic shifts of the block [0, 1, k]. Now, V(Gn,k) = P ∪ C1 ∪ C2.
We begin by arguing that every automorphism of Gn,k fixes P, C1, and C2 setwise. Since the
blocks in C1 and C2 each contain threepoints, and each point is in six blocks, we see that
every vertex in P has degree 6 while every vertex in C1 or C2 has degree 3. Thus, P is fixed
setwise by every automorphism of Gn,k.

Note that the permutation that maps i to (i + 1) mod n gives an automorphism φ of
Gn,k defined as

φ(i) = (i + 1) mod n

φ([a, b, c]) = [φ(a), φ(b), φ(c)].

Since C1 and C2 are defined as the set of cyclic shifts of [0, 1, 2] and [0, 1, k], we see that
φ is a permutation on C1, and on C2. Moreover, i is adjacent to [a, b, c] if and only if i ∈
{a, b, c}. This holds if and only if (i + 1) mod n ∈ {(a+ 1) mod n, (b+ 1) mod n, (c+ 1)
mod n}. Thus, φ is an automorphism of Gn,k. Repeatedly applying φ shows that any i ∈ P
can be mapped to any j ∈ P by an automorphism of Gn,k. The same holds for the elements
of C1, and of C2.

Now, consider the 4-cycles in Gn,k containing the block [a, b, c]. The neighbors of [a, b, c]
are {a, b, c}. Therefore, every 4-cycle containing [a, b, c] has the form

[a, b, c], a, [a, b, x], b, [a, b, c];

[a, b, c], a, [a, c, x], c, [a, b, c]; or

[a, b, c], b, [b, c, x], c, [a, b, c]

where x ∈ P. Of course, these 4-cycles only exist if there are values of x for which [a, b, x],
[a, c, x], or [b, c, x] are vertices of Gn,k. Now, consider the blocks in C1. From our observation
above, it suffices to consider the block [0, 1, 2]. We have blocks [0, 1, n− 1] and [1, 2, 3] in
C1 and blocks [0, 1, k] and [1, 2, k + 1] in C2. These give us four 4-cycles containing [0, 1, 2].
The only other possible blocks that form a 4-cycle with [0, 1, 2] are blocks of the form
[0, 2, x]. Since n ≥ 6, this block must be a cyclic shift of [0, 1, k]. This means either x = 3,
and k = n− 2, or x = n− 1 and k = 3, and these cases are disjoint. Thus, either every
block in C1 lies in exactly four 4-cycles, or every block in C1 lies in exactly five 4-cycles
(depending on the value of k).

For the blocks in C2, it suffices to consider [0, 1, k]. As above, we see [0, 1, 2] and
[0, 1, n − 1] are both blocks in C1, giving us two 4-cycles containing [0, 1, k]. The block
[0, k, x] forms a 4-cycle with [0, 1, k] only if x = k− 1 and k = n− 1 (which is ruled out by
our hypotheses) or x = k + 1 and n = 2k. The block [1, k, x] forms a 4-cycle with [0, 1, k]
only if x = k− 1 and n = 2k− 2, or if x = k + 1 and n = 2k− 1. Note that at most one of
n = 2k, n = 2k− 1, and n = 2k− 2 can be true. Thus, either every block in C2 lies in exactly
two 4-cycles, or every block in C2 lies in exactly three 4-cycles (depending on the value
of k).

Since each block in C1 lies in at least four 4-cycles, and every block in C2 lies in at most
three 4-cycles, we see that no automorphism of Gn,k maps any block in C1 to any block in
C2 (and vice versa). Therefore P, C1, and C2 are fixed setwise by the automorphisms of
Gn,k. With our previous observation about the automorphism φ, we showed that P, C1,
and C2 are the orbits of the automorphism group of Gn,k acting on V(Gn,k). In particular,
this means that f ix(Gn,k) ≥ 1.



Mathematics 2023, 11, 1322 5 of 9

Now, suppose we fix one of the vertices in P, without loss of generality, choose 0. Let

N1 = {[0, 1, 2], [0, 1, n− 1], [0, n− 2, n− 1]}
N2 = {[0, 1, k], [0, k− 1, n− 1], [0, n− k, n− k− 1]}

be the neighbors of 0 in C1 and C2, respectively. Since every automorphism of Gn,k fixes C1
and C2 setwise, every automorphism of Gn,k that fixes 0 fixes N1 and N2 setwise. Let ψ be
an automorphism of Gn,k that fixes 0, and consider ψ restricted to N1. We see that ψ fixes 0,
1, or 3 elements of N1.

Case #1. ψ fixes 0 elements of N1.
In this case, ψ either maps

[0, 1, 2]→ [0, 1, n− 1]→ [0, n− 2, n− 1]→ [0, 1, 2], or

[0, 1, 2]→ [0, n− 2, n− 1]→ [0, 1, n− 1]→ [0, 1, 2].

In the first case, consider the vertex n − 1. Since 0 is fixed, and [0, 1, n − 1] →
[0, n− 2, n− 1] we have ψ(n− 1) ∈ {n− 2, n− 1}. Likewise, since [0, n− 2, n− 1]→ [0, 1, 2]
we have ψ(n− 1) ∈ {1, 2}. However, since n ≥ 6, {1, 2}∩ {n− 2, n− 1} = ∅ and we have a
contradiction. In the second case, we similarly observe that ψ(1) ∈ {1, 2} ∩ {n− 2, n− 1} =
∅ and we have a contradiction. Thus, ψ cannot fix 0 elements in N1.

Case #2: ψ fixes exactly 1 element of N1.
In this case, ψ either maps

[0, 1, 2]→ [0, 1, 2], and [0, 1, n− 1]↔ [0, n− 2, n− 1],

[0, n− 2, n− 1]→ [0, n− 2, n− 1], and [0, 1, 2]↔ [0, 1, n− 1], or

[0, 1, n− 1]→ [0, 1, n− 1], and [0, 1, 2]↔ [0, n− 2, n− 1].

In the first case, since [0, 1, 2] and [0, 1, n− 1]→ [0, n− 2, n− 1] we again see ψ(1) ∈
{1, 2} ∩ {n− 2, n− 1} = ∅, a contradiction. Similarly, in the second case, we see ψ(n− 1) ∈
{1, 2} ∩ {n− 2, n− 1} = ∅, giving a contradiction. Thus, we must be in the third case.

Since [0, 1, n− 1] → [0, 1, n− 1] and [0, n− 2, n− 1] → [0, 1, 2] we have ψ(n− 1) ∈
{1, n− 1} ∩ {1, 2} = {1}. Thus, ψ(n− 1) = 1. This implies that ψ(1) = n− 1. Considering
2 and n− 2, we see that ψ(2) = n− 2 and ψ(n− 2) = 2. Now, consider the blocks in N2.
Since 0 is fixed, and 1 ↔ n− 1, we must have [0, 1, k] ↔ [0, k− 1, n− 1] and k ↔ k− 1.
This implies that [0, n− k, n− k− 1] is fixed. Therefore, ψ(n− k) ∈ {n− k− 1, n− k}.

Now, consider the block [1, 2, 3]. We know that ψ(1) = n− 1, and ψ(2) = n− 2. Thus,
ψ([1, 2, 3]) = [n − 2, n − 1, x] ∈ C1. Therefore, x ∈ {0, n − 3}. However, ψ(0) = 0, so
we must have ψ(3) = n− 3, and ψ(n− 3) = 3. Continuing in this way (i.e., considering
[2, 3, 4], etc.), we see that ψ(i) = (n− i) mod n for all i ∈ P. Therefore, ψ fixes [0, 1, n− 1],
and maps ψ([i, i + 1, i + 2]) = [n − i − 2, n − i − 1, n − i] for all other blocks in C1. We
conclude that ψ is a non-trivial automorphism that fixes 0, provided ψ maps the elements
of C2 to elements of C2.

We know that ψ fixes N2 setwise. Since 1 ↔ n − 1, this means that k ↔ k − 1,
and [0, n− k, n− k + 1] is fixed. This is only possible if n = 2k− 1. We also see that

ψ([i, i + 1, k + i]) = [n− i, n− i− 1, n− i− k]

= [1 + (n− i− 1), 0 + (n− i− 1), k + (n− i− 1)]

where n− i− k = k + (n− i− 1) follows from n = 2k− 1. Thus, ψ is a non-trivial auto-
morphism of Gn,k that fixes 0.

Case #3: ψ fixes [0, 1, 2], [0, 1, n− 1], and [0, n− 2, n− 1].
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Here we see ψ(1) ∈ {1, 2} ∩ {1, n − 1} = {1}. Therefore, ψ(1) = 1, ψ(2) = 2,
and ψ(n − 1) = n − 1. It now follows that ψ(n − 2) = n − 2. Now, consider the block
[1, 2, 3]. Since ψ(1) = 1 and ψ(2) = 2 it follows that ψ(3) = 3. Continuing in this way, we
see that ψ(i) = i for all i ∈ P, and hence ψ is the identity automorphism.

This finishes our analysis of the three possible cases for an automorphism ψ of Gn,k that
fixes 0. We see that ψ must be the identity automorphism unless n = 2k− 1. This establishes
f ix(Gn,k) = 1 unless n = 2k− 1. Moreover, if n = 2k− 1 our argument establishes that
there is exactly one non-identity automorphism that fixes 0. Fixing any other vertex of Gn,k
results in only the identity automorphism, so f ix(Gn,k) ≤ 2 when n = 2k− 1. To complete
the proof, we show that f ix(Gn,k) > 1 when n = 2k− 1.

Recall that the stabilizer of an automorpsism is the set of elements that are fixed. Let
n = 2k− 1. We have shown that the stabilizer of 0 contains a non-trivial automorphism.
Therefore, if f ix(Gn,k) = 1, then the stabilizer of a block in C1 must be trivial, or the
stabilizer of a block in C2 must be trivial. Again, from our initial observation, it suffices to
consider the blocks [0, 1, 2] ∈ C1 and [0, 1, k] ∈ C2.

Suppose ψ is an automorphism of Gn,k that fixes [0, 1, 2]. Since ψ fixes the neighbors of
[0, 1, 2] we see that {0, 1, 2} is fixed setwise by ψ. We consider the elements of {0, 1, 2} that
are fixed by ψ. First, note that if ψ(0) = 0, ψ(1) = 1 and ψ(2) = 2, then we have that ψ is
the identity automorphism.

If none of {0, 1, 2} are fixed, then either

0→ 1, 1→ 2, 2→ 0, or

0→ 2, 2→ 1, 1→ 0.

In the first case, [1, 2, 3] → [0, 2, x] for some x 6= 1. This block is not in C1 giving a
contradiction. Likewise, in the second case, [0, 1, n− 1]→ [0, 2, x] for some x 6= 1. Again,
we have a contradiction, as this block is not in C1. Thus, ψ fixes exactly one point in {0, 1, 2}.

Note that if ψ(0) = 0, then we can reuse the argument above for automorphisms
that fix 0. If ψ is not the identity, then ψ(i) = (n − i) mod n for all i ∈ P. However,
this means ψ(1) /∈ {0, 1, 2} giving an immediate contradiction. Likewise, if ψ(2) = 2,
then the same argument implies that ψ(i) = (n− i + 4) mod n for all i ∈ P. Therefore,
ψ(0) /∈ {0, 1, 2} and again we have a contradiction. Therefore, ψ(0) = 2, ψ(1) = 1,
and ψ(2) = 0. Again, our analysis of the automorphisms that fix 0 implies that ψ is the
automorphism that maps ψ(i) = (n− i + 2) mod n for all i ∈ P. Therefore, ψ is a non-
trivial automorphism that fixes [0, 1, 2]. As before, fixing any additional element of P results
in no non-trivial automorphisms.

Now, suppose ψ is an automorphism of Gn,k that fixes [0, 1, k]. Here, the argument is
the same as the argument above for [0, 1, 2]. Any non-identity automorphism ψ that fixes
[0, 1, k] must fix at least one of 0, 1, or k. Again, from our analysis of automorphisms that fix
elements of P, we see that the only possible non-identity automorphism of Gn,k that fixes
[0, 1, k] is the automorphism ψ that maps ψ(i) = (n− i + 1) mod n for all i ∈ P.

Therefore, if n = 2k− 1, f ix(Gn,k) = 2 completing the proof.

In our last theorem, we presented graphs with a fixing number of 1. In the next
theorem, we present graphs where the fixing number is significantly larger being one-
fourth the number of vertices in the graph.

Theorem 7. (half steps) Let k be even and let G be a connected graph generated by one half step
block [0, a, k

2 ] or two different half step blocks, [0, a, k
2 ] and [0, b, k

2 ], where 1 ≤ a, b < k
2 . G has

fixing number k
2 .

Proof. Suppose G is the connected graph generated from [0, a, k
2 ] (or [0, a, k

2 ] and [0, b, k
2 ]),

where 1 ≤ a, b < k
2 and k > 4. Break up the vertices into k

2 teams (sets of both points and
related blocks) of 2 points and 2 blocks (or of 2 points and 4 blocks) consisting of points that
are across from each other and the blocks in which those points are the middle number:
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{
p, p + k

2 ,
[

p− a, p, p + k
2 − a

]
,
[

p + k
2 − 1, p + k

2 , p− a
]}

or

{p, p + k
2 ,
[

p− a, p, p + k
2 − a

]
,
[

p + k
2 − 1, p + k

2 , p− a
]
,[

p− b, p, p + k
2 − b

]
,
[

p + k
2 − 1, p + k

2 , p− b
]
}

For example, in mod 12 with [0, 1, 6] we have {0, 6, [11, 0, 5], [5, 6, 11]},
{1, 7, [0, 1, 6], [6, 7, 0]}, {2, 8, [1, 2, 7], [7, 8, 1]}, {3, 9, [2, 3, 8], [8, 9, 2]},
{4, 10, [3, 4, 9], [9, 10, 3]}, and {5, 11, [4, 5, 10], [10, 11, 4]}.

We must fix at least one vertex from every set of two points and two blocks. If not, we
can switch the points and switch the blocks in that set:

p→ p + k/2→ p
[p− a, p, p + k/2− a]→ [p + k/2− a, p, p + k/2, p− a]→ [p− a, p, p + k/2− a]
or

p→ p + k/2→ p
[p− a, p, p + k/2− a]→ [p + k/2− a, p, p + k/2, p− a]→ [p− a, p, p + k/2− a]
[p− b, p, p + k/2− b]→ [p + k/2− b, p, p + k/2, p− b]→ [p− a, p, p + k/2− a]

For example, in mod 12 with [0, 1, 6], if the {0, 6, [11, 0, 5], [5, 6, 11]} team is free, we can
switch 0→ 6→ 0 and [11, 0, 5]→ [5, 6, 11]→ [11, 0, 5].

The points we switched have two (or four) other block neighbors, [p, p + a, p + k
2 ] and

[p + k
2 , p + k

2 + a, p] (and [p, p + b, p + k
2 ] and [p + k

2 , p + k
2 + b, p]), but these blocks will

not be affected by switching p and p + k
2 because they are each adjacent to both of these

points. For example, in mod 12 we can switch 0 and 6 without affecting [0, 1, 6] and [6, 7, 0].
Similarly, the blocks we switched have two (or four) other point neighbors, p − a

and p + k/2− a and (and p − b and p + k/2− b), but these points will not be affected
by switching [p− a, p, p + k/2− a] and [p + k/2− a, p + k/2, p− a] (and switching
[p− b, p, p + k/2− b] and [p + k/2− b, p + k/2, p− b]) because the first and third
numbers in these blocks are the same. For example, in mod 12 we can switch [11, 0, 5] and
[5, 6, 11] without affecting 5 and 11.

We can make this switch within one team without disturbing the rest of the graph, so
the graph is not fixed. Then the fixing number is at least k/2. Next, we will will show the
fixing number is at most k/2.

This approach works for point-block incidence graphs with one or two blocks. Suppose
G is connected and generated from [0, a, k/2] and [0, b, k/2]. Fix the points 0, 1, 2, . . . , k/2− 1.
Because of the k/2-step in both block shapes, every block has at least one number between
0 and k/2− 1, so every block is adjacent to at least one of the fixed points.

Following a similar process as before, we will distinguish between neighbors of each
fixed point. However, we will not fix every block neighbor at first.

Let 1 ≤ p < k
2 . Then, p has four neighbors where p is in the first or second place and

two neighbors where p is in the middle:
[p, p + a, p + k/2], [p + k/2, p + k/2 + a, p], [p− a, p, p + k/2− a],
[p, p + b, p + k/2], [p + k/2, p + k/2 + b, p], [p− a, p, p + k/2− b]
We next focus on the [p− a, p, p+ k/2− a] block from the first block design, with p in the

middle. Since p− a and p+k/2−a are k/2 apart, one of them must be between 0 and k/2− 1,
inclusive, so that number x is a fixed point. We can distinguish the block [p− a, p, p+ k/2− a]
as the only vertex adjacent to both p and x. Do this for every p = 0, 1, . . . , k/2− 1. Then, we
have these distinct k/2 blocks: {[i− a, i, i + k/2− a]|0 ≤ i ≤ k/2− 1}. The middle numbers
range from 0 to k/2. The outside numbers (in the first or third places) also contain the
numbers 0, 1, 2, . . . , k/2− 1. This follows from the fact that we already know that each of
these blocks has a number from 0, 1, 2, . . . , k/2− 1 in the first or third place. We cannot
have the same outside number in two different blocks. If two blocks had the same number
in the first place, by the block shape they would be the same block. If two blocks had the
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same number one in the first place and one in the third place, i.e., [p− a, p, p + k/2− a] and
[q− a, q, q + k/2− a] with p− a = q + k/2− a, then we would have p− a = q + k/2− a
and p = q + k/2. However, this is not possible because p and q are both between 0 and
k/2 − 1, inclusive. Therefore, each of the distinct blocks has a different number from
0, 1, 2, ..., k/2− 1 in the first or third place. Because of the k/2-step in this block shape,
the first and third numbers in a block are k/2 apart. Therefore, each distinct block has a
different number from k/2, ..., k− 1 in the first or third place.

Now, we can use the distinct blocks to distinguish the points k/2, ..., k− 1. Each of
these blocks is distinct, and its two point neighbors that are between 0, 1, 2, ..., k/2− 1,
inclusive, are fixed, so we can distinguish its remaining point neighbor from k/2, ..., k− 1.
Then all the points are fixed, so we can distinguish the remaining blocks by their unique
set of point neighbors. The graph is fixed.

Recall that when working mod k a half step block is a block with the form [0, a, k/2].
A double block is a block with the form [0, a, 2a].

Theorem 8. (reflections) Let G be a connected graph generated from a non-double non-half step
block and its reflection. Then fixing a point vertex admits a nontrivial automorphism.

Proof. Suppose G is the graph generated from [0, a, b] and [0, a− b, b] in mod k. Fix a point
p. The following automorphism still exists: the points reflect across p,

p→ p

p + 1→p− 1→ p + 1

p + 2→p− 2→ p + 2

p + 3→p− 3→ p + 3
...

p +
k− 1

2
→ p +

k + 1
2
→ p +

k− 1
2

, if k is odd

p +
k
2
→ p +

k
2

, if k is even

and the blocks map accordingly,

[q, r, s]→ [2p− q, 2p− r, 2p− s]→ [q, r, s].

No block will map to itself, or to another block in its family. Each block maps to a
block in the other family. Therefore, the graph is not fixed.

The above theorem only addresses the point vertices. It is harder to determine how
many block vertices need to be fixed to remove all non-trivial automorphisms. For the
graph generated by the starter blocks [0, 1, 3] and [0, 2, 3] with computations done mod k, it
appears that an analagous result would hold when n = 7, 8 and n ≥ 11. We have found
that when n = 7 the fixing number is 2 where any two vertices can be fixed. When n = 8
the fixing number is 2. When n = 9 or 10 the fixing number is 1. When n ≥ 11 the fixing
number is at least 3.

4. Discussion

This problem could be extended to investigate fixing numbers for point block incidence
graphs with more than two blocks, and blocks of different sizes. However, it would be an
ambitious problem to determine just the fixing numbers for all G2k([a, b, c], [x, y, z]). This
would require determining the currently unknown necessary and sufficient conditions
for when G2k[a, b, c] ∼= G2k[x, y, z] since G2k[a, b, c] ∼= G2k[x, y, z]⇔ G2k([a, b, c], [x, y, z]) ∼=
G2k[a, b, c].
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