Machine Learning Techniques Applied to the Harmonic Analysis of Railway Power Supply
Abstract
:1. Introduction
2. Related Works
3. Materials and Methods
3.1. GMDH
3.2. Training ANN—GMDH
3.3. Modeling the Total Harmonic Distortion with ANN—GMDH
4. Results
- The percentage of training data, pTrain;
- The maximum number of neurons accepted per layer, nMax;
- The maximum number of layers, maxL;
- The m value, which represents the number of previous samples used for prediction;
- A layer’s selection pressure, α.
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Župan, A.; Teklić, A.T.; Filipović-Grčić, B. Modeling of 25 kV Electric Railway System for Power Quality Studies. In Proceedings of the Eurocon 2013, Zagreb, Croatia, 1–4 July 2013. [Google Scholar] [CrossRef]
- Yousefi, S.; Biyouki, M.M.H.; Zaboli, A.; Abyaneh, H.A.; Hosseinian, S.H. Harmonic Elimination of 25 kV AC Electric Railways Utilizing a New Hybrid Filter Structure. AUT J. Electr. Eng. 2017, 49, 3–10. [Google Scholar] [CrossRef]
- Song, K.; Mingli, W.; Yang, S.; Liu, Q.; Agelidis, V.G.; Konstantinou, G. High-Order Harmonic Resonances in Traction Power Supplies: A Review Based on Railway Operational Data, Measurements, and Experience. IEEE Trans. Power Electron. 2020, 35, 2501–2518. [Google Scholar] [CrossRef]
- Kus, V.; Skala, B.; Drabek, P. Complex Design Method of Filtration Station Considering Harmonic Components. Energies 2021, 14, 5872. [Google Scholar] [CrossRef]
- Assefa, S.A.; Kebede, A.B.; Legese, D. Harmonic analysis of traction power supply system: Case study of Addis Ababa light rail transit. IET Electr. Syst. Transp. 2021, 11, 391–404. [Google Scholar] [CrossRef]
- Panoiu, M.; Panoiu, C.; Ghiormez, L. Modelling of the Electric Arc Behavior of the Electric Arc Furnace. In Proceedings of the 5th International Workshop Soft Computing Applications (SOFA), Szeged, Hungary, 22–24 August 2012. [Google Scholar]
- Mageed, H.; Nada, A.S.; Abu-Zaid, S.; Salah Eldeen, R.S. Effects of Waveforms Distortion for Household Appliances on Power Quality. MAPAN-J. Metrol. Soc. India 2019, 34, 559–572. [Google Scholar] [CrossRef]
- De Santis, M.; Silvestri, L.; Vallotto, L.; Bella, G. Environmental and Power Quality Assessment of Railway Traction Power Substations. In Proceedings of the 2022 6th International Conference on Green Energy and Applications (ICGEA), Singapore, 4–6 March 2022; pp. 147–153. [Google Scholar] [CrossRef]
- Salles, R.S.; Rönnberg, S.K. Interharmonic Analysis for Static Frequency Converter Station Supplying a Swedish Catenary System. In Proceedings of the 2022 20th International Conference on Harmonics & Quality of Power (ICHQP), Naples, Italy, 29 May–1 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Brenna, M.; Kaleybar, H.J.; Foiadelli, F.; Zaninelli, D. Modern Power Quality Improvement Devices Applied to Electric Railway Systems. In Proceedings of the 2022 20th International Conference on Harmonics & Quality of Power (ICHQP), Naples, Italy, 29 May–1 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Al-Barashi, M.; Meng, X.; Liu, Z.; Saeed, M.S.R.; Tasiu, I.A.; Wu, S. Enhancing power quality of high-speed railway traction converters by fully integrated T-LCL filter. IET Power Electron. 2022, 1–16. [Google Scholar] [CrossRef]
- Birbir, Y.; Nogay, H.S.; Taskin, S. Prediction of current harmonics in induction motors with Artificial Neural Network. In Proceedings of the 2007 International Aegean Conference on Electrical Machines and Power Electronics, Bodrum, Turkey, 10–12 September 2007; pp. 707–711. [Google Scholar] [CrossRef]
- Zouidi, A.; Fnaiech, F.; Al-Haddad, K. A Multi-layer neural network and an adaptive linear combiner for on-line harmonic tracking. In Proceedings of the 2007 IEEE International Symposium on Intelligent Signal Processing, Alcala de Henares, Spain, 3–5 October 2007; pp. 1–6. [Google Scholar] [CrossRef]
- Mazumdar, J.; Harley, R.G.; Lambert, F.C.; Venayagamoorthy, G.K. Neural Network Based Method for Predicting Nonlinear Load Harmonics. IEEE Trans. Power Electron. 2007, 22, 1036–1045. [Google Scholar] [CrossRef]
- Zouidi, A.; Fnaiech, F.; Al-Haddad, K.; Rahmani, S. Adaptive linear combiners a robust neural network technique for on-line harmonic tracking. In Proceedings of the 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008; pp. 530–534. [Google Scholar] [CrossRef]
- Shengqing, L.; Huanyue, Z.; Wenxiang, X.; Weizhou, L. A Harmonic Current Forecasting Method for Microgrid HAPF Based on the EMD-SVR Theory. In Proceedings of the 2013 Third International Conference on Intelligent System Design and Engineering Applications, Hong Kong, China, 16–18 January 2013; pp. 70–72. [Google Scholar] [CrossRef]
- Cao, B.; Chang, L.; Shao, R. A simple approach to current THD prediction for small-scale grid-connected inverters. In Proceedings of the 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), Charlotte, NC, USA, 15–19 March 2015; pp. 3348–3352. [Google Scholar] [CrossRef]
- Braga, D.S.; Jota, P.R.S. Prediction of total harmonic distortion based on harmonic modeling of nonlinear loads using measured data for parameter estimation. In Proceedings of the 2016 17th International Conference on Harmonics and Quality of Power (ICHQP), Belo Horizonte, Brazil, 16–19 October 2016; pp. 454–459. [Google Scholar] [CrossRef]
- Wang, K.; Xie, F.; Zheng, C.; Hang, B. Research on harmonic detection method based on BP neural network used in induction motor controller. In Proceedings of the 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA), Siem Reap, Cambodia, 18–20 June 2017; pp. 578–582. [Google Scholar] [CrossRef]
- Pang, Y.; Li, H. Short-term harmonic forecasting and evaluation affected by electrified railways on the power grid based on stack auto encoder neural network method. In Proceedings of the 2017 2nd International Conference on Power and Renewable Energy (ICPRE), Chengdu, China, 20–23 September 2017; pp. 1071–1076. [Google Scholar] [CrossRef]
- Pang, Y. Short-term harmonic forecasting and evaluation affected by electrified railways on the power grid based on stack auto encoder neural network method and the comparison to BP method. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; pp. 1159–1165. [Google Scholar] [CrossRef]
- Yasin, Z.M.; Salim, N.A.; Aziz, N.F.A. Harmonic Distortion Prediction Model of a Grid -Connected Photovoltaic Using Grey Wolf Optimizer—Least Square Support Vector Machine. In Proceedings of the 2019 9th International Conference on Power and Energy Systems (ICPES), Perth, WA, Australia, 10–12 December 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Uddin, M.N.; Amin, M.T. An Improved Neural Network Based Load Invariant Electrical Harmonic Detector. In Proceedings of the 2020 IEEE International Conference for Innovation in Technology (INOCON), Bangluru, India, 6–8 November 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Aljendy, R.; Sultan, H.M.; Al-Sumaiti, A.S.; Diab, A.A.Z. Harmonic Analysis in Distribution Systems Using a Multi-Step Prediction with NARX. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 18–21 October 2020; pp. 2545–2550. [Google Scholar] [CrossRef]
- Yang, J.; Ma, H.; Dou, J.; Guo, R. Harmonic Characteristics Data-Driven THD Prediction Method for LEDs Using MEA-GRNN and Improved-AdaBoost Algorithm. IEEE Access 2021, 9, 31297–31308. [Google Scholar] [CrossRef]
- Rodríguez-Pajarón, P.; Bayo, A.H.; Milanović, J.V. Forecasting voltage harmonic distortion in residential distribution networks using smart meter data. Int. J. Electr. Power Energy Syst. 2022, 136, 107653. [Google Scholar] [CrossRef]
- Zhao, Y.; Milanović, J.V. Probabilistic Harmonic Estimation in Uncertain Transmission Networks Using Sequential ANNs. In Proceedings of the 2022 20th International Conference on Harmonics & Quality of Power (ICHQP), Naples, Italy, 29 May–1 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Gámez Medina, J.M.; de la Torre y Ramos, J.; López Monteagudo, F.E.; Ríos Rodríguez, L.d.C.; Esparza, D.; Rivas, J.M.; Ruvalcaba Arredondo, L.; Romero Moyano, A.A. Power Factor Prediction in Three Phase Electrical Power Systems Using Machine Learning. Sustainability 2022, 14, 9113. [Google Scholar] [CrossRef]
- Eslami, A.; Negnevitsky, M.; Franklin, E.; Lyden, S. Review of AI applications in harmonic analysis in power systems. Renew. Sustain. Energy Rev. 2022, 154, 111897. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, L.; Ren, C. Attention-Bidirectional LSTM Based Short Term Power Load Forecasting. In Proceedings of the 2021 Power System and Green Energy Conference (PSGEC), Shanghai, China, 20–22 August 2021; pp. 171–175. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, X.; Peng, X. Power fluctuation mitigation strategy for microgrids based on an LSTM-based power forecasting method. Appl. Soft Comput. 2022, 127, 109370. [Google Scholar] [CrossRef]
- Ullah, F.M.; Ullah, A.; Khan, N.; Lee, M.Y.; Rho, S.; Baik, S.W. Deep Learning-Assisted Short-Term Power Load Forecasting Using Deep Convolutional LSTM and Stacked GRU. Complexity 2022, 2022, 2993184. [Google Scholar] [CrossRef]
- Ren, C.; Jia, L.; Wang, Z. A CNN-LSTM Hybrid Model Based Short-term Power Load Forecasting. In Proceedings of the 2021 Power System and Green Energy Conference (PSGEC), Shanghai, China, 20–22 August 2021; pp. 182–186. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, J.; Min, J. SSA-LSTM: Short-Term Photovoltaic Power Prediction Based on Feature Matching. Energies 2022, 15, 7806. [Google Scholar] [CrossRef]
- Sun, Q.; Cai, H. “Short-Term Power Load Prediction Based on VMD-SG-LSTM. IEEE Access 2022, 10, 102396–102405. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, X.; Qin, S. Research on power quality disturbance analysis and identification based on LSTM. Energy Rep. 2022, 8 (Suppl. 8), 709–718. [Google Scholar] [CrossRef]
- Chiam, D.H.; Lim, K.H.; Law, K.H. LSTM power quality disturbance classification with wavelets and attention mechanism. Electr. Eng. 2022, 105, 259–266. [Google Scholar] [CrossRef]
- Zhi, Z.; Liu, L.; Liu, D.; Hu, C. Fault Detection of the Harmonic Reducer Based on CNN-LSTM With a Novel Denoising Algorithm. IEEE Sens. J. 2022, 22, 2572–2581. [Google Scholar] [CrossRef]
- De Giorgi, M.; Malvoni, M.; Congedo, P. Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine. Energy 2016, 107, 360–373. [Google Scholar] [CrossRef]
- Xu, W.; Peng, H.; Zeng, X.; Zhou, F.; Tian, X.; Peng, X. A hybrid modelling method for time series forecasting based on a linear regression model and deep learning. Appl. Intell. 2019, 49, 3002–3015. [Google Scholar] [CrossRef]
- Chis, V.; Barbulescu, C.; Kilyeni, S. Simona Dzitac ANN based Short-Term Load Curve Forecasting. Int. J. Comput. Commun. Control 2018, 13, 938–955. [Google Scholar] [CrossRef]
- Panoiu, M.; Ghiormez, L.; Panoiu, C. Adaptive Neuro-Fuzzy System for Current prediction in Electric Arc Furnaces. In Proceedings of the 6th International Workshop Soft Computing Applications SOFA 2014, Timisoara, Romania, 24–26 July 2014; pp. 423–437. [Google Scholar]
- Chaturvedi, D.; Sinha, A.; Malik, O. Short term load forecast using fuzzy logic and wavelet transform integrated generalized neural network. Electr. Power Energy Syst. 2015, 67, 230–237. [Google Scholar] [CrossRef]
- Kandil, N.; Wamkeue, R.; Saad, M.; Georges, S. An efficient approach for short term load forecasting using artificial neural networks. Electr. Power Energy Syst. 2006, 28, 525–530. [Google Scholar] [CrossRef]
- Rahbari, O.; Mayet, C.; Omar, N.; Van Mierlo, J. Battery Aging Prediction Using Input-Time-Delayed Based on an Adaptive Neuro-Fuzzy Inference System and a Group Method of Data Handling Techniques. Appl. Sci. 2018, 8, 1301. [Google Scholar] [CrossRef] [Green Version]
- Osman, D.; Ceylan, Y. GMDH: An R Package for Short Term Forecasting via GMDH-Type Neural Network Algorithms. R J. 2016, 8, 379–386. [Google Scholar]
- Baggini, A. Handbook of Power Quality; University of Bergamo: Bergamo, Italy, 2008; pp. 189–259. [Google Scholar]
- Madala, H.R.; Ivakhnenko, A.G. Inductive Learning Algorithms for Complex System Modeling; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Parsaie, A.; Hamzeh Haghiabi, A.; Saneie, M.; Torabi, H. Applications of soft computing techniques for prediction of energy dissipation on stepped spillways. Neural. Comput. Appl. 2018, 29, 1393–1409. [Google Scholar] [CrossRef]
- Yu, X.-L.; Zhou, X.-P. A data-driven bond-based peridynamic model derived from group method of data handling neural network with genetic algorithm. Int. J. Numer. Methods Eng. 2022, 123, 5618–5651. [Google Scholar] [CrossRef]
- Moradi, A.; Yaghoobi, J.; Alduraibi, A.; Zare, F.; Kumar, D.; Sharma, R. Modelling and prediction of current harmonics generated by power converters in distribution networks. IET Gener. Transm. Distrib. 2021, 15, 2191–2202. [Google Scholar] [CrossRef]
- Žnidarec, M.; Klaić, Z.; Šljivac, D.; Dumnić, B. Harmonic Distortion Prediction Model of a Grid-Tie Photovoltaic Inverter Using an Artificial Neural Network. Energies 2019, 12, 790. [Google Scholar] [CrossRef] [Green Version]
Model Parameters: α/maxL/nMax | Train | Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MSE | RMSE | Error Mean | Error Std | R | MSE | RMSE | Error Mean | Error Std | R | ||
α = 0, maxL = 4 | 8 | 0.00019 | 0.01372 | 0.00141 | 0.01366 | 0.99938 | 0.00016 | 0.01261 | 0.00119 | 0.01257 | 0.99874 |
12 | 0.00015 | 0.01231 | −0.00192 | 0.01216 | 0.99914 | 0.00011 | 0.01056 | −0.00135 | 0.01049 | 0.99909 | |
16 | 0.00014 | 0.01187 | 0.00454 | 0.01097 | 0.99939 | 0.00010 | 0.00989 | 0.00449 | 0.00882 | 0.99910 | |
20 | 0.00009 | 0.00965 | 0.00027 | 0.00966 | 0.99928 | 0.00008 | 0.00872 | −0.00002 | 0.00873 | 0.99917 | |
24 | 0.00018 | 0.01330 | −0.00224 | 0.01312 | 0.99926 | 0.00012 | 0.01107 | −0.00222 | 0.01087 | 0.99912 | |
α = 0.3, maxL = 4 | 8 | 0.00016 | 0.01265 | −0.00071 | 0.01264 | 0.99915 | 0.00015 | 0.01202 | −0.00018 | 0.01204 | 0.99850 |
12 | 0.00012 | 0.01108 | −0.00174 | 0.01095 | 0.99942 | 0.00013 | 0.01148 | −0.00127 | 0.01143 | 0.99870 | |
16 | 0.00033 | 0.01813 | 0.00027 | 0.01815 | 0.99816 | 0.00036 | 0.01901 | 0.00084 | 0.01902 | 0.99575 | |
20 | 0.00015 | 0.01229 | 0.00047 | 0.01229 | 0.99947 | 0.00017 | 0.01320 | 0.00028 | 0.01322 | 0.99870 | |
24 | 0.00017 | 0.01312 | 0.00212 | 0.01295 | 0.99927 | 0.00013 | 0.01118 | 0.00191 | 0.01104 | 0.99906 | |
α = 0.6, maxL = 4 | 8 | 0.00023 | 0.01509 | 0.00001 | 0.01510 | 0.99897 | 0.00016 | 0.01264 | 0.00099 | 0.01263 | 0.99878 |
12 | 0.00023 | 0.01513 | 0.00221 | 0.01498 | 0.99938 | 0.00017 | 0.01299 | 0.00299 | 0.01266 | 0.99905 | |
16 | 0.00013 | 0.01156 | 0.00104 | 0.01152 | 0.99930 | 0.00012 | 0.01080 | 0.00074 | 0.01079 | 0.99885 | |
20 | 0.00008 | 0.00911 | 0.00224 | 0.00884 | 0.99975 | 0.00008 | 0.00899 | 0.00238 | 0.00868 | 0.99939 | |
24 | 0.00016 | 0.01264 | −0.00106 | 0.01261 | 0.99916 | 0.00016 | 0.01262 | −0.00099 | 0.01260 | 0.99838 | |
α = 0.9, maxL = 4 | 8 | 0.00017 | 0.01304 | 0.00126 | 0.01299 | 0.99941 | 0.00012 | 0.01081 | 0.00189 | 0.01066 | 0.99918 |
12 | 0.00023 | 0.01514 | −0.00012 | 0.01515 | 0.99905 | 0.00018 | 0.01331 | −0.00023 | 0.01333 | 0.99867 | |
16 | 0.00024 | 0.01542 | 0.00074 | 0.01541 | 0.99885 | 0.00018 | 0.01339 | 0.00146 | 0.01333 | 0.99827 | |
20 | 0.00007 | 0.00845 | −0.00140 | 0.00834 | 0.99965 | 0.00008 | 0.00885 | −0.00199 | 0.00863 | 0.99932 | |
24 | 0.00019 | 0.01389 | −0.00100 | 0.01386 | 0.99897 | 0.00017 | 0.01293 | −0.00062 | 0.01294 | 0.99904 | |
α = 0, maxL = 6 | 8 | 0.00018 | 0.01325 | −0.00130 | 0.01319 | 0.99912 | 0.00011 | 0.01070 | −0.00108 | 0.01066 | 0.99908 |
12 | 0.00036 | 0.01909 | 0.00161 | 0.01903 | 0.99835 | 0.00039 | 0.01975 | 0.00118 | 0.01975 | 0.99665 | |
16 | 0.00033 | 0.01804 | 0.00157 | 0.01799 | 0.99745 | 0.00050 | 0.02226 | 0.00313 | 0.02208 | 0.99312 | |
20 | 0.00016 | 0.01247 | −0.00144 | 0.01239 | 0.99900 | 0.00016 | 0.01244 | −0.00032 | 0.01246 | 0.99836 | |
24 | 0.00021 | 0.01441 | 0.00078 | 0.01440 | 0.99919 | 0.00015 | 0.01237 | 0.00035 | 0.01239 | 0.99889 | |
α = 0.3, maxL = 6 | 8 | 0.00020 | 0.01398 | 0.00070 | 0.01397 | 0.99875 | 0.00018 | 0.01336 | 0.00155 | 0.01329 | 0.99834 |
12 | 0.00014 | 0.01177 | 0.00303 | 0.01138 | 0.99908 | 0.00016 | 0.01273 | 0.00312 | 0.01237 | 0.99853 | |
16 | 0.00016 | 0.01599 | −0.00004 | 0.01600 | 0.99808 | 0.00023 | 0.01489 | −0.00282 | 0.01489 | 0.99701 | |
20 | 0.00021 | 0.01463 | 0.00188 | 0.01452 | 0.99886 | 0.03746 | 0.01935 | 0.00131 | 0.01941 | 0.99672 | |
24 | 0.00016 | 0.01278 | 0.00441 | 0.01200 | 0.99918 | 0.00014 | 0.01184 | 0.00437 | 0.01103 | 0.99878 | |
α = 0.6, maxL = 6 | 8 | 0.00015 | 0.01240 | −0.00139 | 0.01233 | 0.99915 | 0.00011 | 0.01052 | −0.00086 | 0.01051 | 0.99903 |
12 | 0.00020 | 0.01401 | 0.00219 | 0.01385 | 0.99921 | 0.00019 | 0.01381 | 0.00194 | 0.01370 | 0.99860 | |
16 | 0.00032 | 0.01778 | 0.00086 | 0.01777 | 0.99790 | 0.00017 | 0.01317 | 0.00138 | 0.01312 | 0.99846 | |
20 | 0.00020 | 0.01400 | −0.00265 | 0.01376 | 0.99864 | 0.00015 | 0.01214 | −0.00255 | 0.01189 | 0.99874 | |
24 | 0.00021 | 0.01444 | −0.00116 | 0.01441 | 0.99849 | 0.00038 | 0.01948 | −0.00001 | 0.01951 | 0.99508 | |
α = 0.9, maxL = 6 | 8 | 0.00016 | 0.01277 | 0.00149 | 0.01269 | 0.99937 | 0.00014 | 0.01177 | 0.00183 | 0.01165 | 0.99884 |
12 | 0.00021 | 0.01435 | −0.00130 | 0.01430 | 0.99921 | 0.00019 | 0.01384 | −0.00120 | 0.01381 | 0.99851 | |
16 | 0.00013 | 0.01127 | 0.00059 | 0.01126 | 0.99965 | 0.00010 | 0.01015 | 0.00129 | 0.01009 | 0.99914 | |
20 | 0.00020 | 0.01425 | −0.00158 | 0.01417 | 0.99916 | 0.00016 | 0.01260 | −0.00126 | 0.01256 | 0.99868 | |
24 | 0.00015 | 0.01205 | 0.00060 | 0.01204 | 0.99944 | 0.00014 | 0.01189 | 0.00103 | 0.01186 | 0.99889 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panoiu, M.; Panoiu, C.; Mezinescu, S.; Militaru, G.; Baciu, I. Machine Learning Techniques Applied to the Harmonic Analysis of Railway Power Supply. Mathematics 2023, 11, 1381. https://doi.org/10.3390/math11061381
Panoiu M, Panoiu C, Mezinescu S, Militaru G, Baciu I. Machine Learning Techniques Applied to the Harmonic Analysis of Railway Power Supply. Mathematics. 2023; 11(6):1381. https://doi.org/10.3390/math11061381
Chicago/Turabian StylePanoiu, Manuela, Caius Panoiu, Sergiu Mezinescu, Gabriel Militaru, and Ioan Baciu. 2023. "Machine Learning Techniques Applied to the Harmonic Analysis of Railway Power Supply" Mathematics 11, no. 6: 1381. https://doi.org/10.3390/math11061381
APA StylePanoiu, M., Panoiu, C., Mezinescu, S., Militaru, G., & Baciu, I. (2023). Machine Learning Techniques Applied to the Harmonic Analysis of Railway Power Supply. Mathematics, 11(6), 1381. https://doi.org/10.3390/math11061381