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Abstract: The restricted Boltzmann machine (RBM) has recently been demonstrated as a useful tool to
solve the quantum many-body problems. In this work we propose tanh-FCN, which is a single-layer
fully connected neural network adapted from RBM, to study ab initio quantum chemistry problems.
Our contribution is two-fold: (1) our neural network only uses real numbers to represent the real
electronic wave function, while we obtain comparable precision to RBM for various prototypical
molecules; (2) we show that the knowledge of the Hartree-Fock reference state can be used to
systematically accelerate the convergence of the variational Monte Carlo algorithm as well as to
increase the precision of the final energy.
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1. Introduction

Ab initio electronic structure calculations based on quantum-chemical approaches
(Hartree–Fock theory and post-Hartree–Fock methods) have been successfully applied in
molecular systems [1]. For strongly correlated many-electron systems, the exponentially
growing Hilbert space size limits the application scale of most numerical algorithms. For
example, the full configuration interaction (FCI), which takes the whole Hilbert space
into account, is currently limited within around 24 orbitals and 24 electrons [2]. The
density matrix renormalization group (DMRG) algorithm [3,4] has been used to solve larger
chemical systems of several tens of electrons [5,6]; however, it is essentially limited by the
expressive power of its underlying variational ansatz: the matrix product state (MPS), which
is a special instance of the one-dimensional tensor network state [7]. Therefore, DMRG
could also be extremely difficult to to use to approach even larger systems. The coupled
cluster (CC) [8,9] method expresses the exact wave function in terms of an exponential form
of a variational wave function ansatz, and a higher level of accuracy can be obtained by
considering electronic excitations up to doublets in CCSD or triplets in CCSD(T). In practice,
it is often accurate with a durable computational cost and is thus considered as the “gold
standard” in electronic structure calculations. However, the accuracy of the CC method
is only restricted in studying weakly correlated systems [10]. The multi-configuration
self-consistent field (MCSCF) [11–13] method is crucial for describing molecular systems
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containing nearly degenerate orbitals. It introduces a small number of (active) orbitals;
then, the configuration interaction coefficients and the orbital coefficients are optimized to
minimize the total energy of the MCSCF state. It has been applied to systems with around
50 active orbitals [14], but they are still limited by the exponential complexity that grows
with the system size.

In recent years, the variational Monte Carlo (VMC) method in combination with a
neural network ansatz for the underlying quantum state (wave function) [15], referred to
as the neural network quantum states (NNQS), has been demonstrated to be a scalable and
accurate tool for many-spin systems [16–18] and many-fermion systems [19]. NNQS allow
very flexible choices of the neural network ansatz, and with an appropriate variational
ansatz, it could often achieve comparable or higher accuracy compared to existing methods.
NNQS has also been applied to solve ab-initio quantum chemistry systems in real space
with up to 30 electrons [20–22], as well as in discrete basis after second quantization [23–25].
Up to now, various neural networks have been used, such as the restricted Boltzmann
machine (RBM) [15], the convolutional neural network [16], recurrent neural networks [26]
and the variational auto-encoder [25]. In all of those neural networks, the RBM is a
very special instance in that: (1) it has a very simple structure that contains only a fully
connected dense layer plus a nonlinear activation; (2) with such a simple structure, RBM
can be more expressive than MPS [27]; in fact, it is equivalent to certain two-dimensional
tensor network states [28] and can even represent certain quantum states with volume-
law entanglement [29]. In practice, RBM achieves comparable accuracy to other more
sophisticated neural networks for complicated applications such as frustrated many-spin
systems [30,31].

For the ground state of molecular systems, the wave function is real. However, if one
uses a real RBM as the variational ansatz for the wave function, then all of the amplitudes
of the wave function will be positive, which means that it may be good for ferromagnetic
states but will be completely wrong for anti-ferromagnetic states. Therefore, even for real
wave functions one would have to use complex RBMs or two RBMs [32] in general. In
this work, we propose a neural network with real numbers that is slightly modified from
the RBM, such that its output can be both positive and negative, and use it as the neural
network ansatz to solve quantum chemistry problems. To accelerate convergence of the
VMC iterations, we explicitly use the Hartree–Fock reference state as the starting point for
the Monte Carlo sampling after a number of VMC iterations such that the wave function
ansatz has become sufficiently close to the ground state. We show that this technique can
generally improve the convergence and the precision of the final result, even when using
other neural networks. Our paper is organized as follows. In Section 2, we present our
neural network ansatz. In Section 3, we present our numerical results demonstrating the
effectiveness of our neural network ansatz and the technique of initializing the Monte Carlo
sampling with the Hartree–Fock reference state. We conclude in Section 4.

2. Methods
2.1. Real Neural Network Ansatz

Before we introduce our model, we first briefly review the RBM used in NNQS.
For a classical many-spin system, one could embed the system into a larger one con-
sisting of visible spins (corresponding to the system) and hidden spins with the total
(classical) Hamiltonian

H =
Nv

∑
j=1

ajxj +
Nh

∑
i=1

bihi + ∑
i,j

Wijhixj, (1)

where xj represents the visible spin and hi the hidden spin. Nv and Nh are the number
of visible and hidden spins, respectively. The coefficients θ = {a, b, W} are variational
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parameters of the Hamiltonian. Since there is no coupling between the hidden spins, one
could explicitly integrate them out and obtain the partition function of the system Z as

Z = ∑
x

p(x), (2)

with x = {x1, x2, . . . , xNv} a particular configuration and p(x) the unnormalized probability
(in case of real coefficients) of x, which can be explicitly written as

p(x) = ∑
h

eH

= e∑Nv
j=1 ajxj ×

Nh

∏
i=1

2 cosh(bi +
Nv

∑
j=1

Wijxj). (3)

When using RBM as a variational ansatz for the wave function of a quantum many-spin
system, p(x) is interpreted as the amplitude (instead of the probability) of the configuration
x. Equation (3) can be seen as a single-layer fully connected neural work that accepts a
configuration (a vector of integers) as input and outputs a scalar. For real coefficients, the
output will always be positive by definition; therefore, one generally has to use complex
coefficients even for real wave functions. In this work, we slightly change Equation (3) as
follows so as to be able to output any real numbers with a real neural network:

p(x) = tanh(
Nv

∑
j=1

ajxj)×
Nh

∏
i=1

2 cosh(bi +
Nv

∑
j=1

Wijxj). (4)

In the following, we will write p(x) as Ψθ(x) to stress its dependence on the variational
parameters and that it is interpreted as a wave function instead of a probability distribution.
We will also refer to our neural network in Equation (4) as tanh-FCN since it contains a fully
connected layer followed by hyperbolic tangent as the activation function. The difference
between RBM and tanh-FCN is demonstrated in Figure 1.

(a)                 tanh-FCN (b)                     RBM

Figure 1. The architectures for (a) our tanh-FCN and (b) RBM. The major difference is that we use
hyperbolic tangent as the activation function such that tanh-FCN could output both positive and
negative numbers even if it only uses real numbers.
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2.2. Variational Monte Carlo

The electronic Hamiltonian Ĥe of a chemical system can be written in a second-
quantized formulation:

Ĥe = ∑
p,q

hp
q a†

paq +
1
2∑

p,q
r,s

gpq
rs a†

pa†
q aras (5)

where hp
q and gpq

rs are one- and two-electron integrals in molecular orbital basis, and a†
p and

aq in the Hamiltonian are the creation and annihilation operators. To treat the fermionic
systems, we first use the Jordan–Wigner transformation to map the electronic Hamiltonian
to a sum of Pauli operators, following Ref. [23], and then use our tanh-FCN in Equation (4)
as the ansatz for the resulting many-spin system. The resulting spin Hamiltonian Ĥ can
generally be written in the following form:

Ĥ = ∑
i

ci

N

∏
j=1

σ
vi,j
j , (6)

where N = Nv is the number of spins, ci is a real coefficient, and σ
vi,j
j is a single spin Pauli

operator acting on the j-th spin (vi,j ∈ {0, 1, 2, 3} and σ0 = I, σ1 = σx, σ2 = σy, σ3 = σz).
Given the wave function ansatz Ψθ(x), the corresponding energy can be computed as

E(θ) =
〈Ψθ |Ĥ|Ψθ〉
〈Ψθ |Ψθ〉

=
∑x Eloc(x)|Ψθ(x)|2

∑y|Ψθ(y)|2
, (7)

where the “local energy” Eloc(x) for a configuration x is defined as

Eloc(x) = ∑
x′

Ψθ(x′)
Ψθ(x)

Hx′x, (8)

with Hx′x = 〈x′|Ĥ|x〉. The VMC algorithm evaluates Equation (7) approximately using
Monte Carlo sampling, namely,

Ẽ(θ) = 〈Eloc〉, (9)

where the average is over a set of samples {x1, x2, . . . , xNs} (Ns is the total number of
samples), generated from the probability distribution |Ψθ(x)|2. Ẽ(θ) will converge to E(θ)
if Ns is large enough. In this work, we use the Metropolis–Hastings sampling algorithm to
generate samples [33]. A configuration x is updated using the SWAP operation between
nearest-neighbor pairs of spins to preserve the electron-number conservation. We also use
the natural gradient of Equation (9) for the stochastic gradient descent algorithm in VMC,
namely, the parameters are updated as

θk+1 = θk − αS−1F, (10)

where k is the number of iterations, α is the learning rate (α is dependent on k in general),
S is the stochastic reconfiguration matrix [34,35], and F is the gradient of Equation (9).
Concretely, S and F are computed by

Sij(k) = 〈O∗i Oj〉 − 〈O∗i 〉〈Oj〉, (11)

and

Fi(k) = 〈ElocO∗i 〉 − 〈Eloc〉〈O∗i 〉 (12)
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respectively, with Oi(x) defined as

Oi(x) =
1

Ψθ(x)
∂Ψθ(x)

∂θi
. (13)

In general, S can be non-invertible, and a simple regularization is to add a small shift
to the diagonals of S, namely, using Sreg = S + εI instead of S in Equation (10), with ε
a small number. The calculation of S can become the bottleneck in case the number of
parameters is too large. This issue could be leveraged by representing S as a matrix function
instead of building it explicitly [36], or by freezing a large portion of S during each iteration
similar to DMRG [37]. Here, this is not a significant concern because we use at most about
1000 parameters to specify the network. To further enhance the stability of the algorithm,
we add the contribution of an L2 regularization term when evaluating the gradient in
Equation (10), that is, instead of directly choosing F as the gradient of Ẽ(θ), F is chosen
as the gradient of the function Ẽ(θ) + λ||θ||2 instead where || · ||2 means the square of
the Euclidean norm. In this work, we choose ε = 0.02 and λ = 10−3 for our numerical
simulations if not particularly specified.

3. Results
3.1. Training Details

In this work, we use the Adam optimizer [38] for the VMC iterations, with an ini-
tial learning rate of α = 0.001, and the decay rates for the first- and second-moment are
β1 = 0.9, β2 = 0.99, respectively. For the Metropolis–Hastings sampling, we will use
a fixed Ns = 4× 104 for our numerical simulations if not particularly specified (in prin-
ciple, one should use a larger Ns for larger systems; however, in this work we focus on
molecular systems with at most 30 qubits). We will also use a thermalization step of
Nth = 2× 104 (namely, throwing away Nth samples starting from the initial state). To avoid
auto-correlation between successive samples we will only pick one out of every 10Nv
samples. In addition, for each simulation we run 8 Markov chains, and the energy is chosen
to be the lowest of them. Since the energy will always contain some small fluctuations
when Ns is not large enough, the final energy is evaluated by averaging over the energies
of the last 20 VMC iterations.

3.2. Effect of Hidden Size

We first study the effect of Nh, which essentially determines the number of parameters
and thus the expressivity of our tanh-FCN (analogously to RBM). The result is shown in
Figure 2, where we have taken the N2 molecule as an example. We can see that by enlarging
Nh, the precision of tanh-FCN can be systematically improved. With Nh = 4Nv = 80, we
can already obtain a final energy that is lower than the CCSD results.

3.3. Potential Energy Surfaces

Now we demonstrate the accuracy of our tanh-FCN by studying the potential energy
surfaces of the two molecules H2 and LiH in the STO-3G basis, as shown in Figure 3(a1,b1).
We can see that for both molecules under different bond lengths, our simulation can reach
lower or very close to the chemical precision, namely error within 1.6× 10−3 Hatree (Ha) or
1 kcal/mol (CCSD results are extremely accurate for these two molecules). To demonstrate
of the effectiveness of our method for weakly correlated systems, we have also studied the
potential energy surfaces of the two inert gas dimers He2 and Ne2 for completeness, which
are shown in Figure 3(c1,d1). We can see that in the later cases our tanh-FCN can converge
extremely well with the FCI results. We note that for Ne2 one may need to use a very large
basis set to faithfully reproduce the actual potential energy surface, while here we have
used the minimal STO-3G basis set due to the limitation of our current implementation.
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Figure 2. Influence of the number of hidden spins in our tanh-FCN on the accuracy of the final energy.
The N2 molecule in the STO-3G basis is used.
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Figure 3. Potential energy surfaces of (a1) H2, (b1) LiH, (c1) He2 and (d1) Ne2. We have used
Nh/Nv = 2 for H2, He2, Ne2 and Nh/Nv = 4 for LiH, which are sufficient for our tanh-FCN to reach
chemical precision. We have also used Ns = 2× 104 for both molecules during the training. (a2),
(b2), (c2) and (d2) show the absolute error with respect to the FCI energy for H2, LiH, He2 and Ne2

respectively. We have used the STO-3G basis set for H2, LiH and Ne2, and the 6-31G basis set (using
a (2e,4o) active space) for He2.

3.4. Final Energies for Several Molecular Systems

We further compare the precision of tanh-FCN with RBM and CCSD for several
small-scale molecules, which are shown in Table 1. For these simulations we have used
Nh/Nv = 2, while the RBM results are taken from Ref. [23]. As a proof of principle demon-
stration, we have mostly used the STO-3G basis set. However, we have also considered the
LiH molecule in a larger basis set (6-31G) as well as in the localized molecular basis set (we
have used the canonical molecular basis set for the rest ones) to show the effectiveness of
our method in more general cases. Unlike DMRG which uses a one-dimensional matrix
product state as the wave function ansatz, our neural network ansatz has an all to all
structure which could represent certain volume-law quantum states [29], therefore it does
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not significantly rely on localized orbitals and it seems that using a localized basis set could
not improve the precision or significantly reduce the computational cost for us. From the
runtime performance point of view, properly selected orbital localization scheme could
reduce the number of Pauli terms in the Hamiltonian thus effectively accelerate the algo-
rithm. However, this improvement is not universally achieved. For example, the number
of Pauli terms for an equi-spaced H12 molecule with R(H-H) = 2.5 Angstrom can be reduce
from 14,905 to 4377 if natural atomic orbitals (NAO) [39] are used, while this number is
increased to 23,109 if the bond length is changed to 0.7 Angstrom. An optimal choice of
orbital localization methods is usually system-specific [40] and requires benchmark for the
neural network ansatz.

These results show that even with a relatively small number of parameters and a real
neural network, we can still obtain the ground state energies of a wide variety of molecules
to very high precision (close to or lower than the CCSD energies). In the meantime, we
note that the energies obtained using tanh-FCN is not as accurate as those obtained using
RBM, however the computational cost of tanh-FCN is at least two times lower than RBM
under with the same Nh and we could relatively easily study larger systems such as CO2
with 30 qubits. It should be noted that the total energy depends on the basis set size and
the basis type, in principle, we should use a large basis set to obtain more reliable results.

Table 1. List of molecules and the ground state energies computed using RBM, tanh-FCN, and CCSD.
The FCI energy is also shown as a reference. The column Nv shows the number of qubits. We have
used Nh/Nv = 2 for all of the molecules studied.

Molecule Nv RBM [23] tanh-FCN CCSD FCI

H2 4 −1.1373 −1.1373 −1.1373 −1.1373
Be 10 - −14.4033 −14.4036 −14.4036
C 10 - −37.2184 −37.1412 −37.2187

Li2 20 - −14.6641 −14.6665 −14.6666
LiH 12 −7.8826 −7.8816 −7.8828 −7.8828
NH3 16 −55.5277 −55.5101 −55.5279 −55.5282
H2O 14 −75.0232 −75.0021 −75.0231 −75.0233
C2 20 −74.6892 −74.6134 −74.6744 −74.6908
N2 20 −107.6767 −107.622 −107.6716 −107.6774

CO2 30 - −185.1247 −184.8927 −185.2761

3.5. Effect of Hartree–Fock Re-Initialization

There are generally two ingredients which would affect the effectiveness of the NNQS
algorithm: (1) the expressivity of the underlying neural network ansatz and (2) the ability
to quickly approach the desired parameter regime during the VMC iterations. The former
is dependent on an intelligent choice of the neural network ansatz. The effect of the latter is
more significant for larger systems, and one generally needs to use a knowledged starting
point such as transfer learning [41,42] for the VMC algorithm to guarantee success. For
molecular systems, it is difficult to explore transfer learning since the knowledge for dif-
ferent molecules can hardly be shared. However, for molecular systems the Hartree–Fock
reference state may have a large overlap with the exact ground state and is often used
as a first approximation of the ground state. Here, we show that for quantum chemistry
problems the ability to reach faster the ground state can be improved by using the knowl-
edge of the Hartree–Fock reference state. Concretely, during the VMC iterations, after the
energies have become sufficiently close to the ground state energy, we stop using random
initialization for our Metropolis–Hastings sampling and use the Hartree–Fock reference
state instead (Hartree–Fock re-initialization). The effect of the Hartree–Fock re-initialization
is demonstrated in Figure 4, where we have taken the H2O molecule as our example. To
show the versatility of the Hartree–Fock re-initialization, we demonstrate its effect for RBM
as well. We can see that for both tanh-FCN and RBM, using Hartree–Fock re-initialization
after a number of VMC iterations can greatly accelerate the convergence and reach a lower
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ground state energy than using random initialization throughout the VMC optimization.
We can also see that for the H2O molecule, tanh-FCN is less accurate than RBM using
the same Nh, which is probably due to the fact that under the same Nh, tanh-FCN has a
different expressive power to RBM for H2O.
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(a) tanh-FCN
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Figure 4. Effect of the Hartree–Fock (HF) re-initialization compared to random initialization for
(a) tanh-FCN and (b) RBM. The H2O (STO-3G basis, 14 qubits) molecule is used here. The y-axis is
the absolute error between the VMC energies and the FCI energy. For both methods, we start to use
the HF re-initialization starting from 600-th VMC iteration marked by the vertical dashed lines. The
other parameters used are Ns = 2× 104, Nh/Nv = 1 and λ = 10−4.

4. Conclusions

We propose a fully connected neural network inspired from the restricted Boltzmann
machine to solve quantum chemistry problems. Compared to RBM, our tanh-FCN is able
to output both positive and negative numbers even if the parameters of the network are
purely real. As a result, we can directly study quantum chemistry problems using tanh-
FCN with real numbers. In our numerical simulation, we demonstrate that tanh-FCN can
be used to compute the ground states with high accuracy for a wide range of molecular
systems with up to 30 qubits. In addition, we propose to explicitly use the Hartree–Fock
reference state as the initial state for the Markov chain sampling used during the VMC
algorithm and demonstrate that this technique can significantly accelerate the convergence
and improve the accuracy of the final energy for both tanh-FCN and RBM. Our method
could be used in combination with existing high performance computing devices that
are well optimized for real numbers, such as to provide a scalable solution for large-scale
quantum chemistry problems.
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