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Abstract: To prevent the proliferation of space debris and stabilize the space environment, active
debris removal (ADR) has increasingly gained public concern. Considering the complexity of space
operations and the viability of ADR missions, it would be necessary to schedule the ADR process in
order to remove as much debris as possible. This paper presents an active debris removal mission
planning problem, devoted to generate an optimal debris removal plan to guide the mission process.
According to the problem characteristics, a two-layer time-dependent traveling salesman prob-
lem(TSP) mathematical model is established, involving the debris removal sequence planning and
the transfer trajectory planning. Subsequently, two main novel methods based on machine learning
are proposed for the ADR mission planning problem, including a deep neural networks(DNN)-based
estimation method for approximating the optimal velocity increments of perturbed multiple-impulse
rendezvous and an reinforcement learning(RL)-based method for optimizing the sequence of debris
removal and rendezvous time. Experimental results of different simulation scenarios have verified the
effectiveness and superiority of the proposed method, indicating the good performance for solving
the active debris removal mission planning problem.

Keywords: active space debris removal; mission planning; time-dependent TSP; transfer estimation;
sequence planning; deep neural networks; pointer network; reinforcement learning
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1. Introduction
1.1. Background

In the past 60 years, mankind has been actively exploring and developing near-Earth
space through rockets, satellites, and other kinds of spacecraft. A by-product of this activity
is space debris, which is structural fragments, the upper stages of rockets, or even the
abandoned satellite itself after completing its mission [1]. The debris can stay in orbit for
decades or even hundreds of years, posing a serious threat to both functioning and newly
launched satellites and spacecraft. Kessler and Cour-Palais [2] put forward the “Kessler
syndrome”, which attracted widespread attention. The theory pointed out a dramatic
situation of space debris, when the collision of two large objects of space debris causes an
avalanche-like cascade of mutual collisions, ultimately leading to the formation of a cloud
of debris around the Earth [3]. Research shows that at least five large space debris need to
be removed every year to stabilize the space environment [4,5].

Realizing the huge danger posed by space debris, scholars have proposed the concept
of Active Space Debris Removal (ADR). Various approaches have been developed to remove
space debris: contact approaches, such as through robotic arm [6,7], nets [8,9], tethered
space robots [10,11], and harpoon [12–14], and contactless approaches, such as through
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ion beam assisted transportation [15,16], electrostatic transportation [17,18], laser trans-
portation [19,20], gravity transportation [21,22], and electromagnetic detumbling [23,24].
However, due to the complexity of space mission operations and the scarcity of on-orbit ser-
vicing spacecraft resources, the implementation of the active space debris removal mission
requires continuous and systematic planning measures.

Active space debris removal mission planning problem is a complex optimization
problem, which is used to determine the sequence of debris removal, rendezvous time, and
transfer trajectory between two adjacent debris removal processes.

The combinatorial optimization characteristics of the problem are similar to those
of the traveling salesman problem (TSP) [25] to a degree, but compared with it, ADR
mission planning problem shows greater complexity and difficulty in solving. This can be
summarized in two aspects: first, the calculation of the optimal transfer velocity increment
between two debris is much more complicated than the calculation of the Euclidean distance
between two cities with a fixed location, and it is particularly time-consuming; second,
because space debris runs in different orbits and its spatial location changes with time,
ADR mission planning problem has a larger search space than the classic TSP problem of
the same scale. Thus, effective and efficient planning methods are of crucial significance for
the completion of the ADR missions.

1.2. Literature Review

At present, the methods for solving active space debris removal mission planning
problem can be divided into three main categories: explicit enumeration methods, implicit
enumeration methods, and meta-heuristic methods [26].

(1) Explicit enumeration methods

The explicit enumeration methods are committed to finding the exact global optimal
solution by enumerating all possible combinations. This method is only applicable when
the search space is very small. Zuiani and Vasile [27] presented a simplified ADR mission
planning scenario of five space debris under the preliminary design of low-thrust, many-
revolution transfers. According to different propulsion systems, Braun et al. [28] proposed
four space debris removal modes and the best removal sequence of four to six debris
is obtained through the brute-force approach. However, when the number of debris is
larger than 10, the considerable calculation time of enumerating all feasible combinations
is unacceptable.

(2) Implicit enumeration methods

Implicit enumeration methods are committed to explore the optimization process by
finding those sequences with high probabilities of becoming the optimal solution and prun-
ing other sequences [29]. The tree search algorithm can be regarded as a typical implicit
enumeration method, and the tree nodes represent the space debris involved in orbital
transfers. The pruning strategy is crucial to the tree search algorithm, because excessive
pruning may lose the optimal solution and inadequate pruning will increase the compu-
tational burden [26]. Li et al. [30] proposed a beam search algorithm with the pruning
strategy, in which only the first beam width’s number of nodes was expanded for the next
level, and the others were abandoned. Branch and bound is another effective pruning
strategy. Olympio and Frouvelle [31] studied a space debris removal mission in solar
synchronous orbit with J2 perturbation considered, and designed the branch and prune
algorithm with a pruning strategy to accelerate the removal sequence search process. Barea
et al. [32] divided the ADR mission planning problem into two layers: the upper layer
constructed a linear integer model, and the lower layer constructed a nonlinear mixed
integer model and applied the branch and bound algorithm to search the best removal
sequence. Cerf [26] used the branch and bound algorithm to optimize the debris removal
sequence and transfer trajectory to obtain a optimal debris removal scheme with the min-
imum total propellant consumption. Further considering the mission completion time,
Madakat et al. [33] modeled the problem as a multi-objective time-dependent traveling
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salesman problem (TDTSP) with the objective of minimizing the total mission time and
total propellant consumption, and adopted the branch and bound algorithm to find the
optimal solution for low-Earth-orbit(LEO) space debris removal. Olive et al. [34] further
built the TOPAS platform (Tool for Optimal Planning of ADR Sequence) based on the
branch and bound algorithm, which was applicable to complex ADR scenarios with up to
10 space debris.

However, in most of the cases mentioned above, still only small amount of space
debris removal is scheduled. When it comes to cases of large scale, implicit enumeration
methods may not be efficient and a suitable approach for ADR mission planning of a
complicated characteristic of mixed integer programming is required.

(3) Meta-heuristic methods

The meta-heuristic methods possess a great potential for finding the near-optimal
solution within an acceptable time, and provide another idea for solving the ADR mission
planning problem. In recent research, genetic algorithm (GA) [35], simulated annealing
(SA) [36], Physarum Algorithm [37,38], particle swarm optimization (PSO) [39], and ant
colony optimization (ACO) [40] have been applied to schedule debris removal missions.

Murakami and Hokamoto [41] proposed two transfer trajectory selection rules to sim-
plify the transfer trajectory optimization problem, and used GA by encoding the removal
sequence and the transfer time into the chromosome together. Liu et al. [42] was devoted
to developing a preliminary plan for a multi-nanosatellite active debris removal platform
(MnADRP) for LEO missions and a dynamic multi-objective TSP scheme was proposed in
which three optimization objectives, i.e., the debris removal priority, the MnADRP orbital
transfer energy, and the number of required nanosatellites were modeled, respectively.
Chen et al. [43] proposed a GA-based three-stage removal strategy for space debris: the first
stage to develop the mission scenario with multiple spacecraft including one main space-
craft and some following spacecraft for debris removal missions; the second stage to define
the fuel, time, and the quantity of the following spacecraft as the constraints; and the third
stage to establish the mathematical model taking the minimum fuel consumption as the optimal
objective. Missel and Mortari [44] studied the Space Sweeper with Sling-Sat (4S) mission of
debris removal and optimized the combinatory selecting of the debris interaction order,
ejection velocities, and sequence timing by an evolutionary algorithm. Federici et al. [3]
designed an effective coding and mutation operator, and applied SA to optimize the re-
moval sequence and the rendezvous time of ADR missions, which could accomplish the
removal mission planning for 20 space debris. Medioni et al. [45] performed optimization
using SA and a tool to classify the targets in groups gathered by similarities of orbital
elements, with the objective for each mission being not to exceed a total ∆v = 4 km/s, and
for a mission time lower than 3 years, which was proposed for removal target selection.
Carlo et al. [46] proposed TSP and VRP(Vehicle Routing Problem) modeling strategies,
respectively, for LEO ADR missions and designed a bio-inspired incremental automatic
planning and scheduling discrete optimization algorithm based on the Physarum algorithm.
Oriented to the geostationary-orbit(GEO) debris removal mission planning problem, Jing
et al. [47] studied three key sub-problems: mission allocation, sequence planning, and tra-
jectory transfer planning, which were modeled by a hybrid optimal control model and
solved by an improved multi-objective PSO. Mohammadi-Dehabadi et al. [48] designed
a multi-objective PSO algorithm for minimizing the total propellant consumption and
mission completion time and, through their experiments, it was shown that the initial
orbital elements of the spacecraft had a great impact on the propellant consumption and
time cost for ADR missions. Stuart et al. [49] used ACO to generate a preliminary debris
removal sequence and to determine the number of spacecrafts required to clear a debris
set, and re-planned the preliminary scheme by multi-agent coordination via auctions.
Shen et al. [50] used ACO to optimize the sequence planning model for the dynamic ADR
mission planning problem under J2 perturbation, and successfully obtained the optimal
removal sequence of 10 debris. Zhang et al. [51] proposed an improved ACO with the
inner-outer operator, whose effectiveness to select the optimal removal targets from a large
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set of debris (up to 2000) was proved by their experiments. Li and Baoyin [52] combined
the advantage of an evolutionary algorithm and population intelligence algorithm, took
ACO as the framework and added the GA operator, and developed the evolutionary elitist
club algorithm (EECA) to optimize the multi-debris removal mission. Zhu [53] designed
the dynamic sequence planning ant colony optimization algorithm based on the framework
of the ant colony system, introduced the concept of a pheromone tensor to characterize
the dynamic transfer preference between debris targets, and proposed a step-by-step ren-
dezvous sequence planning strategy based on the time discretization method. Unlike the
methods described in refs. [52,53], which added the time dimension into the pheromone
matrix of the ACO by discretizing and fitting time, Zhang et al. [29] directly put the timeline
particles at a certain moment of the corresponding timeline, but not at a series of discrete
time points and solved the time-dependent characteristics of the ADR mission planning
problem through a new structure called the Timeline Club.

As can be seen from the above, the literature may fall into three main drawbacks.
First, most of the ADR mission merely involved several debris and did not discuss the
situation with large-scale debris. Second, in order to simplify the planning problem, some
studies adopted a static and non-time-varying transfer trajectory model, which was far
from the actual situation. Last but not the least, a hierarchical optimization strategy was
often adopted to decompose the ADR mission planning problem where the debris removal
sequence and transfer trajectory were optimized separately. Consequently, the final solution
may not be optimal without a global optimization.

Therefore, this paper develops two novel methods to confront the deficiencies above,
including a method for estimating the optimal velocity increments of perturbed multiple-
impulse rendezvous for actual transfer trajectory planning and a method for optimizing
the sequence of debris removal and transfer trajectory simultaneously.

1.3. Contributions

This paper is devoted to solve the high complexity of the combination optimization
in the active debris removal mission planning problem and proposes an ADR planning
method based on machine learning, which performs well. The main contributions of this
paper are summarized as follows.

(1) A two-layer time-dependent TSP mathematical model is proposed, which clarifies
the structure and characteristics of the ADR mission planning problem. Based on this
model, the solving method is designed subsequently;

(2) A deep neural networks(DNN)-based estimation method for approximating the op-
timal velocity increments of perturbed multiple-impulse rendezvous is proposed,
which overcomes the deficiency of time consumption for optimizing the velocity
increments using conventional methods. Its accuracy is much higher than typical
analytical approximation methods;

(3) An reinforcement learning(RL)-based method for debris removal sequence planning
is introduced for the first time. Unlike traditional intelligence optimization algorithms,
the RL-based method can quickly generate solutions after training and learning, which
is much more appropriate when it comes to large-scale debris removal situation.

The reminder of this paper is outlined as follows: Section 2 first defines the ADR mis-
sion planning problem and then transforms it into a special time-dependent TSP problem
within several criteria and constraints. Based on that, it formally demonstrates a two-layer
time-dependent TSP mathematical model to address the problem. Section 3 describes two
main methods for solving the ADR mission planning problem, including a DNN-based
estimation method for the optimal velocity increments of perturbed multiple-impulse ren-
dezvous and an RL-based planning method for optimizing the sequence of debris removal.
Section 4 first presents the design of two different test scenarios and then evaluates the
performance of the proposed approach. In Section 5, the conclusions are given.
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2. Mathematical Model
2.1. Problem Description

In this work, the problem is referred to as the active space debris removal mission
planning problem, which is devoted to generate an optimal debris removal plan to guide
the mission process.

The active space debris removal mission planning problem mainly involves the opti-
mization of the removal sequence, rendezvous time, and transfer trajectory between two
adjacent debris. According to the problem characteristics, the problem can be decomposed
into two layers, as shown in Figure 1. The outer layer is the debris removal sequence
planning, which optimizes the debris removal sequence and rendezvous time. The inner
layer is the transfer trajectory planning, which optimizes the transfer time and transfer
velocity increment. Note that, although the problem is decomposed into two layers in order
to address it more clearly, the two layers are considered simultaneously by the following
described solving methods.

Debris removal sequennce 

planning

Transfer trajectory 

planning

Outer

Inner

Figure 1. Decomposition of the active space debris removal mission planning problem.

The removal sequence is denoted by the removal order of the space debris targets.
The removal order number is an integer variable while the rendezvous time, transfer time,
and the transfer velocity increment are both real variables. It can be seen that this problem
is a two-layer mixed integer optimization problem, and its difficulty lies in its nested
optimization attribute and mixed integer variable characteristics.

Typically, adjusting the rendezvous time between spacecraft and debris with the
removal sequence determined has a relatively small impact on the overall fulfillment
of the mission. However, if the removal sequence is changed, the overall propulsion
consumption may be greatly affected, or even exceed the maximum spacecraft loading
capacity. Therefore, the debris removal sequence planning focuses more on the rendezvous
order for spacecraft and debris, making it similar to the TSP problem to a certain degree.
Variously, the classic TSP problem is a static target visiting sequence planning problem
with a fixed city location, while the debris removal sequence planning is a time-dependent
rendezvous sequence planning problem for moving targets, typically a time-dependent TSP
problem (TD-TSP) [54], as shown in Figure 2. In the moving target rendezvous problem,
the traveler can stay with the target for a period of time, or he can set out immediately for
the next target.
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Figure 2. A static target visiting sequence and a time-dependent rendezvous sequence for moving targets.

Although we focus more on the debris removal sequence, it cannot be optimized
regardless of the rendezvous time. Otherwise, only the static debris removal sequence
is obtained, which has no practical significance. However, since the rendezvous time
is a continuous real variable, it is impractical to search its optimization space entirely.
Thus, a time discretization strategy is adopted. As shown in Figure 3, the rendezvous
time between spacecraft and space debris is no longer a continuous value in the time
interval, but only the time point represented by each discrete spot after discretization.
Obviously, the search space of the time-dependent sequence planning problem has been
greatly reduced, laying a foundation for the efficient solution of the problem.

V0

Vn

V1

Y0

X0

W0

Wn

W1
W2

X1

X2

Xn

Y1
Yn

Z0

Z1

Zn

Figure 3. A time-dependent moving target rendezvous sequence with time discretization.

As for the inner layer, i.e., the transfer trajectory planning, perturbed multiple-impulse
transfer is involved. For the transfer trajectory planning problem where the rendezvous
between two targets is caused by two impulses, if the initial and terminal conditions are
given, the transfer velocity increment is a certain value, which can be directly solved by the
Lambert algorithm. However, for the problem of perturbed multiple-impulse rendezvous,
the transfer velocity increment is no longer a fixed value, and the optimal value needs to
be obtained through optimization. The perturbation in this paper is referred to as the J2
perturbation [30], which is caused by the Earth’s oblateness. J2 perturbation will affect
the right ascension of the ascending node (RAAN) of the orbit for both the spacecraft and
debris and add the complexity of solving the inner problem.

2.2. A Two-Layer TD-TSP Mathematical Model

Based on the analysis above, the mathematical model of the active space debris
removal mission planning problem is constructed as a two-layer TD-TSP model.

(1) Decision variable

The main variables to be considered include the debris removal sequence, rendezvous
time, and the relevant impulse parameters of spacecraft transfer. According to the two-
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layer attribute of the problem, the outer and inner decision variables can be designed,
respectively.

The outer variable is defined in Equation (1).

X =
[
S1, S2, . . . , SN , Tmt

1 , Tmt
2 , . . . , Tmt

N , Tdp
1 , Tdp

2 , . . . , Tdp
N

]
(1)

where N represents the number of space debris, Si represents the removal order for debris i,
Tmt

i represents the rendezvous time between the spacecraft and debris i, and Tdp
i represents

the departure time of the spacecraft from debris i.
The inner design variables include two types, respectively representing the impulse

time and impulse vector, and are defined in Equations (2) and (3).

X1 = Tip
i i = 1, 2, . . . , n (2)

X2 = ∆vi i = 1, 2, . . . , n− 2 (3)

where n is the number of the involved impulses. ∆vi =
[
∆vix, ∆viy, ∆viz

]
points to the three

components of the vector.

(2) Constraints

Similarly, the constraints will also be described in two layers.
(i) Outer constraints {

∀Si, Sj ∈ [1, N] | Si 6= Sj
}

(4)

Equation (4) indicates that the value of the debris removal sequence is a positive
integer within [1, N], and the same debris cannot be removed repeatedly.

Tmt
i+1 > Tdp

i (5)

Equation (5) restricts that the rendezvous time between the spacecraft and the next
debris must be later than the departure time from the previous debris.

Tdp
i − Tmt

i ≥ ∆tmin (6)

Equation (6) means that the waiting time of the spacecraft should be longer than
the minimum operating time, that is, the spacecraft needs to stay in the target orbit for a
sufficient time to achieve debris removal operation.

(ii) Inner constraints

Tip
i ≤ Tip

i+1 i = 1, 2, . . . , n (7)

Equation (7) indicates that the impulses should be applied in sequence and the
(i + 1)th impulse should be later than the ith impulse.{

‖rce − rte‖ ≤ εr
‖vce − vte‖ ≤ εv

(8)

Equation (8) denotes the conditions to judge whether the spacecraft and debris ren-
dezvous, where rce, vce and rte, vte are respectively the position and velocity vector of the
spacecraft and debris, and εr and εv are the maximum allowable position and velocity error
for rendezvous.

(3) Optimization objective
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The active space debris removal mission planning problem aims to complete the space
debris removal mission with the goal of maximizing the utilization efficiency of spacecraft
resource and minimizing the impulse propellant consumption subject to constraints.

Zouter = min f (‖∆V i‖) i = 1, 2, . . . , N − 1 (9)

Equation (9) addresses the sequence optimization objective for the outer layer. ‖∆V i‖
is the optimal impulse velocity increment for the transfer between debris i to debris i + 1.

Zinner = min‖∆V i‖ = min
n

∑
j=1

∥∥∆vij
∥∥ i = 1, 2, . . . , N − 1 (10)

Equation (10) addresses the transfer trajectory optimization objective for the inner
layer, which is to minimize the impulse velocity increment for a certain transfer, related to
the impulse vector.

∥∥∆vij
∥∥ represents the jth impulse velocity increment from debris i to

debris i + 1.
Therefore, the overall optimization objective for the active space debris removal

mission planning problem can be expressed as Equation (11).

Z = min(Zinner, Zouter) = min f

(
n

∑
j=1

∥∥∆vij
∥∥) i = 1, 2, . . . , N − 1 (11)

3. Methods

Figure 4 illustrates the whole framework of the active debris removal mission planning
method based on machine learning, which is composed of two main connected segments,
namely the estimation of transfers and sequence planning. Accordingly, the two main parts
of the method are addressed as follows.

Training database

Terminal 

state of the 

depature 

body

Terminal 

state of the 

rendezvous 

target

Initial state of 

the departure 

body

DNN … DNN

Sequence planning

Initial state 

of the 

rendezvous 

target

Estimation of transfers

Selected rendezvous target and 
departure body

Estimation of the optimal 
velocity incremennts

Environmennt

Value 
Function

Policy

Actor

Critic

actionstate

Figure 4. Framework of the active debris removal mission planning method based on machine learn-
ing.

3.1. A DNN-Based Estimation Method for Approximating the Optimal Velocity Increments of
Perturbed Multiple-Impulse Rendezvous

The debris removal sequence planning needs to quickly obtain the transfer cost (ve-
locity increment) between any two targets in a given initial and terminal state in order to
evaluate the profit of the removal sequence plan. However, unlike the rendezvous caused
by two impulses, the transfer cost for perturbed multiple-impulse rendezvous is no longer
a fixed value and needs to be optimized. This is usually a time-consuming process. If it
is nested in the sequence planning, optimizing the removal order and transfer trajectory
simultaneously, the calculation time will be unacceptable. Therefore, to solve the ADR
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mission planning problem, a method that can quickly and accurately estimate the optimal
velocity increments of perturbed multiple-impulse rendezvous is demanded.

Previously, researchers basically used analytical methods to roughly estimate the
optimal velocity increment. This kind of method is fast, but its estimation accuracy is not
high under the circumstances of perturbed multiple-impulse rendezvous. Large estimation
errors will directly affect sequence optimization in the outer layer. Thus, a method for
estimating the optimal velocity increments of perturbed multiple-impulse rendezvous
based on deep neural networks (DNN) is proposed.

First of all, the perturbed multiple-impulse rendezvous can be divided into three types
according to the difference variation trend of the right ascension of the ascending node (Ω)
between the departure body and the rendezvous target. They are “Ω-closing rendezvous”,
“Ω-intersecting rendezvous”, and “Ω-separating rendezvous” [53], as illustrated in Figure 5.
The estimation of optimal velocity increments of the three types is implemented separately.
The whole solving framework of the estimation method for perturbed multiple-impulse
rendezvous is depicted in Figure 6.

-

closing

-

intersecting

-

separating
departure 

body

rendezvous 

target

initial terminal initial terminal initial terminal

Figure 5. Variation trend of the right ascension of the ascending node (Ω) between the departure
body and the rendezvous target for three types of perturbed multiple-impulse rendezvous.

Build the 
database

intersecting 

transfers

seperating 

transfers

closing 

transfers

Ω  

Ω  

Ω  

Train 
3

networks

DNN1

DNN2

DNN3

Step 1 Step 2

Step 3

Apply to evaluate a perturbed multiple-impulse transfer

Propagate to Elecf  and Eletf   

Estimate 
using 
DNN2

Estimate 
using 
DNN1

Estimate 
using 
DNN3

Yes

Input Elec0, Elet0,              

No

Output the optimal 
velocity increments

No

Yes

Step 3

Figure 6. Solving framework of the estimation methods for perturbed multiple-impulse rendezvous.

• Step 1: Build a training database.

The database is required to cover three types of the perturbed multiple-impulse ren-
dezvous cases with different parameters and conditions for training. A two-step approach
including an improved differential evolution (DE) [55] algorithm and a sequential quadratic
programming (SQP) algorithm [56] is applied as the optimizer to generate the rendezvous
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solution for each case. More detailed information on the parameters and implementations
for building the database is presented in Section 4.1.

• Step 2: Train the deep neural network.

Three deep neural networks are demanded for training the three types of the perturbed
multiple-impulse rendezvous.

A deep neural network is a complex nonlinear system composed of a large number
of interconnected neurons (nodes) [57]. Each node obtains one or more inputs from other
nodes, and generates an output through an activation function over the weighted sum of
these inputs. Neural networks have many different network structures, and most of them
contain three types of layers: input layer, hidden layer, and output layer. For general regres-
sion problems, the fully connected multi-layer perceptron (MLP) is usually a more suitable
network model [58]. A well-trained MLP with a moderate network size can approximate
any complex nonlinear function. In this paper, MLP is adopted as the architecture for the
three DNNs. The activation process is expressed as Equation (12).

xj = f

(
Nd

∑
i=1

wijxi + bj

)
(12)

where xj represents the output of node j in the current layer, xi represents the output of
node i in the previous layer, wij is the connection weight from node i to node j, bj denotes
the variable bias of node j, Nd is the total number of nodes in the previous layer, and f is
the activation function. In this paper, a Leaky Rectified Linear Unit (Leaky ReLU) [59] is
selected as the hidden-layer activation function because it is easy to calculate and can avoid
the problem of gradient disappearance. The Leaky ReLU is expressed as Equation (13)
and the parameter γ is usually set to 0.01. The output-layer activation function is a linear
function called identity activation function, expressed as Identity(x) = x.

LeakyReLU(x) = max(0, x) + γmin(0, x) (13)

Network training is an iteration process used to adjust the weight vectors continuously,
aiming to minimize the loss function. The mean squared error function is selected as the
loss function for MLP, and is calculated as Equation (14).

Fr =
1
b

b

∑
i=1

(
op(i)− om(i)

)2 (14)

where b is the batch size, set equals to 32, op(i) is the predicted output of the neural network,
and om(i) is the optimal velocity increment. The training adopts a cross-validation method,
where, in each epoch, 90% of the data is used as training samples while the remaining
10% is used for validation. The early stop value is set to 50. Adaptive Moment Estimation
(Adam) [60] is used to optimize the parameters of the network, and three MLPs are built
and trained based on Keras [61] and TensorFlow [62].

• Step 3. Estimate the optimal velocity increments.

Through the well-trained DNNs, based on the orbital elements of the departure body
and rendezvous target, the optimal velocity increments of perturbed multiple-impulse
rendezvous can be approximated. The flow chart is presented in the third step in Figure 6,
where Elec0 and Elet0 are the initial orbit elements of the departure body and rendezvous
target, Elec f and Elet f are the terminal orbit elements, Ωc0, Ωt0, Ωc f , Ωt f are the initial
and terminal right ascension of the ascending node of the departure body and rendezvous
target, respectively, and ∆T is the transfer time.

3.2. An RL-Based Method for Debris Removal Sequence Planning

Through the analysis and modeling above, it can be seen that the space debris removal
sequence planning problem is a time-dependent rendezvous sequence planning problem for
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moving targets and its complicated two-layer optimization characteristics make the search
space huge. When debris number increases sharply, the general optimization algorithms
are no longer able to obtain the optimal solution in an acceptable time. Thus, appealing
to machine learning methods, which are currently emerging vigorously in the classical
optimization field, this paper designs an reinforcement learning-based (RL-based) debris
removal sequence planning algorithm. Next, each module of the algorithm is introduced
step by step.

(1) Improved pointer network

Pointer Network is a variant of the neural network structure proposed by Vinyals et al. [63],
based on the sequence to sequence (seq2seq) network model [64]. It can learn the condi-
tional probability of the output sequence from the input sequence, and can predict the
solution of the combinatorial optimization problem with high accuracy. The pointer net-
work is composed of an encoder and a decoder. Its principle is to map the output into
a series of pointers pointing to the elements of the input sequence according to proba-
bility. Based on the problem characteristics and constraints, two improvement strategy
are designed.

(i) Dynamic information embedding
Dynamic information is embedded into the encoder. The spatial location of the

dynamic space targets is represented by the corresponding six orbital elements, namely,
semi-major axis (a), the inclination (i), eccentricity (e), right ascension of the ascending node
(Ω), argument of perigee (w), and true anomaly (m). At the same time, the debris removal
sequence planning involves the trajectory transfer process, which requires the rendezvous
time between the spacecraft and debris Tmt, and the departure time from the debris Tdp.
Therefore, the input of the improved pointer network can be expressed as Equation (15).

X = (S, T) =
(

a, i, e, Ω, ω, m, Tmt, Tdp
)

(15)

The improved pointer network after embedding dynamic information based on time
variables is shown in Figure 7. At each step, the decoder network produces a vector that
modulates a content-based attention mechanism [63] over the inputs. The output of the
attention mechanism is a softmax distribution, namely the probability distribution. The
size of the arrow in Figure 7 illustrates the probability.

Encoder

Decoder

xi xj xk xlxi xj xi

a

xl

ei w m Ω  Ω  tmt tdp

Figure 7. Improved pointer network with dynamic information.
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(ii) Mask design
Mask refers to a processing method used to avoid the selection of certain elements

by reducing the corresponding decision probability to 0. This is a good way to reduce the
complexity of exploration for the pointer network that relies on the attention mechanism
to calculate the decision probability distribution to guide the decision-making process.
The attention mechanism of the improved pointer network with mask rectification is
depicted as Equation (16).{

ui
j = vT tanh

(
W1ej + W2di

)
j ∈ (1, . . . , n)

p(Ci | C1, . . . , Ci−1, P; θ) = softmax
(

ui
j + log

(
λi

j

)) (16)

where W1 and W2 are the network parameters to be trained, vector ui
j is the pointer of the

input element, p(Ci | C1, . . . , Ci−1, P; θ) represents the probability of the sequence, and λi
j

is the mask vector of the current step whose value is 0 or 1.
To sum up, for step k in the pointer network, the mask assignment rules are set as

follows:

1. On the basis of the mask matrix in step k, the constraint conditions of all decisions
with non-zero mask will be judged, and the illegal decision mask will be assigned 0;

2. Assign 0 to the selected decision mask in step k;
3. Restore the masks that are assigned 0 under the first rule,
4. If k equals to the maximum iteration number K, set all the masks to 0 and finish;

otherwise save the mask matrix, and continue to step k + 1.

(2) An AC framework-based reinforcement learning method

The improved pointer network model applicable to debris removal sequence planning
is described above. However, since the neural network method usually belongs to the
category of supervised learning, it needs to obtain a large amount of training data. Based
on the complex reality of the space debris removal mission, it is difficult to obtain large-
scale realistic data that can cover all kinds of mission scenario information. Under this
circumstance, it is hard to guarantee the problem optimality merely through the pointer
network model. Consequently, this paper uses the Actor-Critic method (AC) [65] to train
the improved pointer network. This method combines the advantages of value-based and
policy gradient optimization. It can interact with the environment by itself and does not
need a large number of training sample data, so it is applicable to the space debris removal
sequence planning problem.

The Actor-Critic structure is composed of two neural networks, namely Actor network
and Critic network. Actor network is a network based on strategy gradient optimization.
It takes the state as the input and action as the output, selects actions based on the value
calculated by the Critic network, and updates the network parameters and the probability
of actions. The Critic network takes the current state and action as the input and the
value as the output. The Critic network evaluates the action of the Actor network, and the
evaluation needs to be fed back to the Actor network.

The loss function of the improved pointer network is defined as Equation (17).

J(θ | X) = Eπ∼pθ(·|X)L(π | X) (17)

where θ represents the parameter of pointer network, X represents the decision state space,
θ(· | X) represents the probability distribution of the pointer network decision strategy
corresponding to the parameter θ, π represents the current decision , L(π | X) represents
the objective value of the current decision, and it is calculated according to Equation (11).

The gradient of the loss function [66] can be defined as Equation (18).

∇θ J(θ | X) = Eπ∼pθ(·|X)[(L(π | X)− b(X))∇θ log pθ(π | X)] (18)
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where b(X) denotes the baseline function of the gradient and pθ(· | X) denotes the prob-
ability of decision π under the corresponding decision probability distribution for the
parameter θ.

For the baseline function, Wang et al. [67] proposed that the network could be built
separately for Actor-Critic outside the pointer network for calculation, but this method
has poor stability, which may cause the training to be unable to converge. Therefore,
the baseline function is set based on the exponential moving average. Comparing with the
simple moving average, the exponential moving average focuses more on the recent data,
and the weight of the data will decline exponentially over time.

The baseline function [68] can be expressed as Equation (19).

bk =

{
L(πk), k = 1
αL(πk) + (1− α)L(πk−1), k > 1

(19)

Based on the improved pointer network, this method introduces a critic network,
which evaluates by mean square error as expressed in Equation (20), and applies stochastic
gradient descent (SGD) for training.

l(θv) =
1
B

B

∑
i=1
‖bθv(xi)− L(πi | xi)‖2

2 (20)

4. Experimental Results and Discussion

The proposed methods for estimating optimal velocity increments of the perturbed
multiple-impulse rendezvous and for planning the debris removal sequence are simulated
respectively as follows.

4.1. Experiments for the Estimation of Transfer Impulse Velocity Increment

Sun-synchronous orbit (SSO) is a significant kind of satellite orbit, in which almost half
of the Earth observation satellites (EOSs) run. With the number of SSO space debris increas-
ing, it will pose a huge danger to the functioning EOSs. Therefore, SSO space debris removal
missions are the main focus. The training database is built by randomly generating the six
orbit elements of the departure body and rendezvous target both near the Sun-synchronous
orbit. The ranges are shown in Table 1. For the SSO orbit, the semi-major axis, inclination, and
eccentricity must satisfy the condition: cosi = −4.7736× 10−15(1− e)2a7/2 [69]. The impulse
solution for each rendezvous sample is obtained by a two-step approach including an im-
proved differential evolution (DE) algorithm [55] and a sequential quadratic programming
(SQP) algorithm [56]. According to Zhu [53], due to the interference of huge numbers of
local optima for the perturbed multiple-impulse rendezvous problem and the stochastic-
ity of evolutionary algorithm, the optimality cannot be guaranteed by running only one
time. Therefore, 100 independent runs are implemented for each rendezvous case and
the best solution of the 100 runs is selected and determined as the satisfactory solution.
The effectiveness of this method to guarantee the high quality of the selected solutions is
verified through simulation experiments by Zhu [53]. The computational time for each case
of one run is about 5 s on average. The relevant parameter settings of the experiment for
estimation of transfer impulse velocity increment are presented in Table 2.

Table 1. The ranges of the six orbital elements.

Parameter a (km) e i (deg) Ω (deg) w (deg) m (deg)

Value 6900 ∼
7300 0 ∼ 0.02 96 ∼ 101 0 ∼ 360 0 ∼ 360 0 ∼ 360
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Table 2. Parameters of the experiment for estimation of transfer impulse velocity increment.

Parameter Description Value

ND Population size for DE algorithm 100
GD

max Maximal iteration for DE algorithm 1000
∆Tmax Maximum transfer time 30 days

εr Maximum allowable position error for rendezvous 1 m
εv Maximum allowable velocity error for rendezvous 0.01 m/s

Nr1 The number of the initial training samples for each transfer type 5000
N
′
r1 The number of the terminal training samples for each transfer

type
10,000

Nt1 The number of the testing samples for each transfer type 1000
h1 Hidden layers 2

On the basis of domain knowledge that the optimal velocity increments of perturbed
multiple-impulse rendezvous should be associated with its initial and terminal states, we
list all potential learning features in Table 3.

Table 3. Potential learning features for estimating optimal velocity increments.

Feature Description

ac, at Semi-major axis of the departure body and rendezvous target
ec, et Eccentricities of the departure body and rendezvous target
ic, it Inclinations of the departure body and rendezvous target

∆Ωc0t0 Difference between initial RAAN of the departure body and initial
RAAN of the rendezvous target

∆Ωc f t f Difference between terminal RAAN of the departure body and terminal
RAAN of the rendezvous target

∆Ωc0t f Difference between initial RAAN of the departure body and terminal
RAAN of the rendezvous target

Ω̇c, Ω̇t RAAN variation rates of the departure body and rendezvous target
∆ϕ0, ∆ϕ f Initial and terminal phase differences between the departure body and

rendezvous target
∆T Transfer time

Mean relative error (MRE) is regarded as the evaluation criterion and is calculated as
Equation (21).

εMRE =
1

Nt
·

Nt

∑
i=1

∣∣∆Vi
E − ∆Vi

O

∣∣
∆Vi

O
(21)

where Nt refers to the number of the testing samples; Vi
E and Vi

O represent the estimated
and optimized optimal velocity increments of the multiple-impulse transfer i.

Comparing different combinations of learning features for estimation of the optimal
velocity increment, these three combinations are the most appropriate, with the lowest
MRE, for the three types of perturbed multiple-impulse transfer, as listed in Table 4.

Table 4. Selected learning features for the three types of perturbed multiple-impulse transfer.

Type Feature Combination MRE

Ω—closing ac, at + ec, et + ic, it + ∆Ωc0t0 + ∆Ωc f t f + ∆T 5.98%
Ω—intersecting ac, at + ec, et + ic, it 5.95%
Ω—separating ac, at + ec, et + ic, it + ∆Ωc0t0 + ∆Ωc f t f ++∆Ωc0t f + ∆T 5.51%

Moreover, two typical analytical approximation methods for estimating optimal per-
turbed multiple-impulse transfer are compared with the proposed method. The first
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method [70] is based on the Gauss form of variational equations [71] and the second [72] is
based on the Edelbaum’s method for approximating high-thrust transfers [73]. The com-
parison of the simulated results is presented in Table 5.

Table 5. MREs of the estimation for the two analytical methods and DNN-based method.

Type Ω—Closing Ω—Intersecting Ω—Separating

Edelbaum-based 21.96% 16.38% 22.43%
Gauss-based 20.37% 17.93% 5.95%
DNN-based 2.56% 2.29% 2.64%

The simulation results manifest that the estimation accuracy of the proposed method
is much higher than the analytical estimation methods. With the appropriate features
determined, the training database was expanded to 100,00 and the training process was
restarted. Finally, the estimation error of single rendezvous can be reduced to lower than
3%, which verifies the effectiveness of the proposed estimation method for approximating
the optimal velocity increments of perturbed multiple-impulse rendezvous.

4.2. Experiments for Active Debris Removal Planning

In order to verify the performance of the proposed active debris removal mission
planning method, two experiments are designed, namely, a dynamic TSP scenario based on
moving city targets and the debris removal scenario. The following describes the settings,
simulation results, and comparative analysis of the two experiments.

(1) Dynamic TSP scenario

This scenario requires the traveler to find the best traveling route within a certain
time horizon, so that he can visit all the cities without repetition or omission, and ensure
the shortest total length of the route. It is assumed that there are 15 cities to be visited in
1 h. Table 6 shows the location coordinates of 15 cities at the initial time and the terminal
time. The first city is the starting point, and the best travel route to other cities needs to
be determined. Each city moves straight forward from the initial location to the terminal
location at a constant rate in the time domain. A traveler can choose to stay in a certain
city for a period of time, or he can immediately set out for the next city. The total length of
the travel route refers to the sum of the travel distance between the cities, excluding the
distance the traveler moving with the city.

Table 6. The initial location and the terminal location of 15 cities.

City Initial Location Terminal Location

1 (74, 84) (16, 8)
2 (65, 161) (28, 242)
3 (200, 125) (288, 55)
4 (223, 44) (337, 16)
5 (252, 222) (375, 276)
6 (220, 161) (172, 248)
7 (265, 279) (210, 222)
8 (382, 22) (312, 93)
9 (83, 234) (169, 282)

10 (141, 231) (123, 155)
11 (165, 174) (111, 68)
12 (26, 136) (350, 99)
14 (199, 18) (151, 86)
15 (261, 128) (328, 219)
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In order to learn as much as possible about the empirical knowledge under different
city distribution situations, 1500 sets of cities are sampled respectively from the uniform
distribution at an interval of [0, 1] and a normal distribution whose mean value is 0 and a
standard deviation that lies in the interval of [0.5, 2]. A total of 3000 sets of cities form the
training set. The parameter settings in the training process are listed in Table 7.

Table 7. Parameter settings in the training process for active debris removal planning.

Parameter Description Value

Nr2 The number of the training samples 3000
Nt2 The number of the testing samples 1000
bch Mini batch size 128
αr Learning rate 10−3

α Baseline decay parameter 0.99
L2 L2 norm 1.0
e2 Embedding dimension 128
h2 Hidden unit size 128
td Time discretization interval 3 min

To present the effectiveness of the debris removal sequence planning algorithm based
on the pointer network and reinforcement learning (Ptr-nets+AC algorithm) proposed
in this paper, it is compared with the greedy-based heuristic (GH) algorithm and ant
colony optimization (ACO), which perform well in TSP. The GH is a constructive algorithm
adopting a greedy strategy in which the traveler always chooses the nearest city to visit.
As for the parameters for ACO, the ant colony size NA and maximal iteration GA

max are
set to 100 and 1000 respectively; the local attenuation coefficient ζ and global attenuation
coefficient ρ are both set to 0.9.

Table 8 presents the best three solutions optimized by the three algorithms in 20 runs.
Through comparative analysis, it can be seen that the proposed Ptr-nets+AC algorithm
obtains the shortest travel route with the shortest running time, and its optimal solution
is (1, 12, 2, 9, 10, 6, 7, 5, 15, 13, 8, 4, 3, 14, 11). ACO can also obtain the optimal travel
path during the 20 runs of optimization, but its shortest travel length is longer than
that generated by the Ptr-nets+AC algorithm, which is caused by the difference in the
visit time decision-making between the two algorithms. The GH algorithm can only get
the suboptimal solution because it cannot realize global optimization according to the
greedy-based searching rule. Accordingly, it is summarized that the designed Ptr-nets+AC
algorithm can not only obtain the optimal travel route with high efficiency, but also has
a great advantage in visit time optimization. Figure 8 illustrates the optimal travel route
generated by the Ptr-nets+AC algorithm.

Table 8. Optimal traveling route for the heuristic algorithm, ant colony optimization, and the Ptr-nets+
AC algorithm.

Algorithm Number Optimal Travel Route Total Length Runtime

Ptr-nets+AC
1 1, 12, 2, 9, 10, 6, 7, 5, 15, 13, 8, 4, 3, 14, 11 864.32 0.003 s
2 1, 12, 2, 9, 10, 6, 7, 5, 15, 13, 8, 4, 3, 14, 11 864.32 0.002 s
3 1, 12, 2, 9, 10, 6, 7, 5, 15, 13, 8, 4, 3, 14, 11 864.32 0.003 s

ACO
1 1, 12, 2, 9, 10, 6, 7, 5, 15, 13, 8, 4, 3, 14, 11 879.89 5.6 s
2 1, 12, 2, 9, 10, 6, 7, 5, 15, 13, 8, 4, 3, 14, 11 879.42 6.2 s
3 1, 12, 2, 9, 10, 6, 7, 5, 15, 13, 8, 4, 3, 14, 11 879.44 5.9s

GH
1 1, 12, 2, 10, 9, 7, 5, 15, 13, 8, 4, 3, 6, 11, 14 950.09 2.3 s
2 1, 12, 2, 10, 9, 7, 5, 15, 13, 8, 4, 3, 6, 11, 14 950.09 3.4 s
3 1, 12, 2, 10, 9, 7, 5, 15, 13, 8, 4, 3, 6, 11, 14 950.09 2.7 s
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Figure 8. The optimal travel route generated by the Ptr-nets+AC algorithm.

(2) Debris removal scenario

In order to further verify the reliability and effectiveness of the proposed ADR mission
planning model and algorithm, a debris removal scenario is set based on the 9th Global Tra-
jectory Optimization Competition (GTOC9) [74]. GTOC9 assumes that a satellite operating
in the sun-synchronous orbit exploded, resulting in a large number of space debris, which
would greatly pollute and destroy the SSO space environment. It is required to generate a
debris removal plan to clean up 123 space debris with the flight cost of the spacecraft being
as low as possible. Table 9 shows the orbital elements of the partial space debris targets
and the complete list of the 123 debris can be found on the GTOC9 website [74].

Twelve debris removal sequences obtained by the NUDT (National University of
Defense Technology) team [70] in GTOC9 are taken as an example to test the performance of
the proposed method. Table 10 presents the 12 selected sequences for removing 123 debris.
The start time of the mission is the time when the spacecraft rendezvouses with the first
debris, and the terminal time is the time when the spacecraft departs from the last debris.

Table 9. The orbital elements of the partial space debris.

Debris Time a e i Ω w m
Number (MJD2000) (m) (rad) (rad) (rad) (rad)

0 21,947.64964 7,165,739.682 0.001487 1.708495 5.425149 0.518965 3.220888
1 22,167.21634 7,119,482.457 0.016819 1.719032 4.030232 2.249735 4.880728
2 21,971.81499 7,159,621.255 0.003793 1.695100 2.928707 4.493324 6.243761
3 22,169.54327 7,110,511.243 0.006666 1.694290 0.623365 3.411909 4.771420
4 22,052.22244 7,102,000.094 0.001830 1.749873 2.622564 2.397072 3.132921
5 21,974.98101 7,173,465.035 0.008501 1.725002 4.716882 2.987324 5.494481
6 22,148.09259 7,058,041.710 0.008723 1.720674 3.574643 4.981435 4.195619
7 22,142.82488 7,059,602.053 0.002493 1.706914 1.455986 4.302093 5.348153
8 22,128.71786 7,134,323.940 0.016272 1.744527 0.132978 5.838210 5.562178
9 22,037.55936 7,147,207.980 0.008008 1.705436 3.378731 1.276019 5.223427
10 22,187.76363 7,162,215.176 0.002402 1.717952 2.604417 1.894280 4.384844
11 22,091.993 7,232,507.650 0.001177 1.706631 3.051655 1.707654 3.357483
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Table 10. Twelve removal sequences for the 123 debris.

Number Start Time Terminal Time Debris Removal Sequence Objective

1 23,517.00 23,811.52 0, 115, 12, 67, 19, 48, 122, 7, 63, 61, 82, 107, 41, 11, 45, 85, 47 24.19
2 23,893.80 24,092.29 58, 28, 90, 51, 72, 69, 10, 66, 73, 64, 52 8.87
3 24,122.30 24,427.74 84, 86, 103, 16, 121, 92, 49, 23, 20, 54, 27, 36 6.55
4 24,461.50 24,660.15 8, 43, 9, 55, 95, 14, 102, 39, 113, 110 8.66
5 24,785.00 24,975.41 83, 75, 22, 35, 119, 24, 108, 37, 112, 104, 32, 114 28.61
6 25,006.00 25,198.32 118, 65, 74, 50, 94, 21, 97, 79, 120 8.19
7 25,281.60 25,454.87 62, 1, 40, 76, 89, 99, 15, 59, 98, 116 16.56
8 25,555.40 25,669.64 117, 91, 93, 70, 18, 105, 88, 46 16.93
9 25,702.40 25,860.22 5, 53, 33, 68, 71, 80, 57, 60, 106 11.71
10 25,912.74 26,055.85 2, 81, 96, 6, 100, 30, 34, 26 7.23
11 26,087.53 26,262.18 87, 29, 101, 31, 38, 25, 4, 77, 13, 3 10.28
12 26,292.26 26,381.58 44, 111, 56, 78, 17, 109, 42 5.02

The optimization objective of this space debris removal experiment is to minimize
the flight cost of the spacecraft completing a sequence of debris removal, calculated as
Equation (22).

F = α

(
N ·mde +

N−1

∑
i=1

mpi

)2

(22)

where α = 2× 10−6 is the weight coefficient, N represents the total number of space debris,
mde is the mass of debris removal equipment, and mpi is the mass of propellant consumed
by the transfer from debris i to debris i + 1, which can be calculated as Equation (23).

mpi = mi −mi+1 −mde

mi+1 = (mi + mde) · exp
(

∆vi
Isp ·g0

)
i = 1, 2, . . . , N − 1

m1 = mdry

(23)

where ∆vi is the velocity increment required for the spacecraft to maneuver from debris
i to debris i + 1, mi is the mass of the spacecraft after the removal of debris i, mdry is
the dry mass of the spacecraft, Isp represents the specific impulse, and g0 represents the
gravitational acceleration at sea level.

The Ptr-nets+AC algorithm is adopted to replan the 12 debris removal sequences.
The start time and terminal time of the replanned debris removal mission remain the
same. Similarly, the first debris in the original sequence is regarded as the starting point
for the spacecraft. Due to the large time span of the mission scenario, the time discretiza-
tion interval is set to 5 days. For the 12 debris removal sequences, they are all opti-
mized independently as 20 runs and we take the best solution as the final debris removal
scheme. Table 11 shows the replanned results of the 12 debris removal sequences by the
Ptr-nets+AC algorithm.

We note that the 12 original debris removal sequences were obtained through the
mixed integer genetic algorithm (MIGA) [70]. The relevant parameters of ACO are set
the same as those in the above dynamic TSP scenario. As for the parameters of MIGA,
the population size NM and maximal iteration GM

max is set to 1000; the crossover probability
Pc and mutation probability Pm are set to 0.8 and 0.2, respectively. Consequently, MIGA,
ACO [53], GH and the Ptr-nets+AC algorithm are compared in Figures 9 and 10. Figure 9
presents the comparison of the objective function, i.e., the flight cost of the spacecraft
completing a sequence of debris removal, and Figure 10 illustrates the comparison of the
computational time for the four algorithms.
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Table 11. The 12 replanned debris removal sequences by the Ptr-nets+AC algorithm.

Number Replanned Debris Removal Sequence Initial Cost New Cost

1 0, 115, 12, 67, 122, 7, 63, 19, 107, 82, 61, 48, 45, 11, 41, 47, 85 24.19 13.08
2 58, 66, 28, 51, 72, 69, 10, 73, 52, 64, 30 8.87 4.36
3 84, 86, 103, 16, 121, 92, 49, 20, 23, 27, 54, 36 6.55 3.04
4 8, 43, 9, 55, 95, 14, 102, 39, 110, 113 8.66 5.71
5 83, 75, 22, 35, 119, 24, 108, 37, 112, 104, 114, 32 28.61 20.8
6 118, 65, 94, 74, 50, 21, 97, 79, 120 8.19 4.57
7 62, 1, 76, 40, 89, 99, 15, 98, 59, 116 16.56 10.52
8 117, 91, 93, 70, 18, 105, 88, 46 16.93 12.6
9 5, 106, 53, 33, 60, 57, 80, 68, 71 11.71 7.71
10 2, 6, 81, 96, 100, 30, 34, 26 7.23 4.8
11 87, 101, 29, 31, 38, 25, 4, 77, 13, 3 10.28 7.11
12 44, 111, 56, 78, 17, 109, 42 5.02 3.78
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Figure 9. Comparison of the optimal replanned debris removal plan for MIGA, ACO, GH, and the
Ptr-nets+AC algorithm.

Comparing the results from Table 11 and Figures 9 and 10, it is found that the replanned
flight cost by the Ptr-nets+AC algorithm is lower than that of other methods. The Ptr-
nets+AC algorithm, based on the training and learning mechanism, can better capture
the optimization information in complex environments and guide the generation of better
debris removal schemes, while the MIGA, ACO, and heuristic algorithm still have much
to improve on. Compared with the optimal debris removal sequence obtained by the
Ptr-nets+AC and MIGA algorithm, it can be seen that most of the original debris removal
sequences have been changed and only the 8th and 12th sequences remain the same, which
are also the shortest debris chains among the 12 debris chains. To some extent, it indicates
that MIGA is slightly weak in the larger-scale space debris removal mission planning
problem. MIGA may fall into the local optimal solution easily, while the Ptr-nets+AC
algorithm obtains global information from multiple rounds of training and learning, making
it easier to realize global optimization. Moreover, it is presented that the Ptr-nets+AC
algorithm consumes the minimum running time and can generate a high-quality debris
removal solution almost instantaneously. Although it takes time to train the model, this
method is valuable, especially for the research on large-scale debris removal missions.
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Figure 10. Comparison of the running time for GH, MIGA, ACO, and Ptr-nets+AC algorithm to plan
the 12 space debris removal sequences.

Taking the No. 2 removal sequence as an example, it involves 11 space debris and
10 transfers, which is depicted in both Tables 10 and 11. Figure 11 illustrates how the No.
2 removal sequence is changed after the replanning by the Ptr-nets+AC algorithm and
Figure 12 illustrates the variation of the 10 transfer velocity increments for the removal
sequence optimized by the MIGA and Ptr-nets+AC algorithm. As can be seen from the
two figures, almost half of the removal sequence is rearranged and the velocity increments
of the involved spacecraft transfers vary a lot. The velocity increments of 8 transfers
are reduced by a large margin after the replanning and the total velocity increment is
reduced by 544 m/s, which indicates the good performance of the Ptr-nets+AC algorithm
in planning the active space debris removal missions.

58 647366106972519028 52

58 647366 10697251 9028 52

Original sequence

Replanned sequence

Figure 11. Comparison between the original and replanned solutions for the No. 2 debris removal
sequence generated by the MIGA and Ptr-nets+AC algorithm, respectively.

Furthermore, by analyzing the two unchanged debris removal sequences (the 8th and
12th), the flight cost has also been reduced after replanning by the Ptr-nets+AC algorithm,
which indicates that the Ptr-nets+AC algorithm can further optimize the rendezvous time
between the spacecraft and the debris so as to obtain a better removal scheme. By comparing
and analyzing the experimental results above, the effectiveness and superiority of the active
debris removal mission planning method proposed in this paper are verified.
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Figure 12. Variation of the 10 transfer velocity increments for the No. 2 debris removal sequence
optimized by the MIGA and Ptr-nets+AC algorithm.

5. Conclusions

This paper proposes an active debris removal mission planning problem, devoted to
optimizing the debris removal sequence, rendezvous time, and involved transfer trajectory,
to generate an optimal debris removal plan to guide the mission process. According to
the problem characteristics, the problem is decomposed into two layers. The outer layer is
the debris removal sequence planning, which optimizes the debris removal sequence and
rendezvous time. The inner layer is the transfer trajectory planning, which optimizes the
transfer time and transfer velocity increment. Subsequently, a two-layer time-dependent
TSP mathematical model is established. Two main solving methods for the ADR mission
planning problem are proposed, including a DNN-based estimation method for approx-
imating the optimal velocity increments of perturbed multiple-impulse rendezvous and
an RL-based method for optimizing the sequence of debris removal and rendezvous time.
Experimental results of different simulation scenarios have verified the effectiveness and
superiority of the two proposed methods, respectively, indicating the good performance
for solving the active debris removal mission planning problem.

For future perspectives, multiple spacecraft should be involved for future debris
removal missions since a single spacecraft owns the restricted capability. Then, the mis-
sion allocation and coordination between multiple spacecraft are required to be further
optimized for the ADR mission planning problem, which is worth further research.
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