Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and Computer-Aided Drug Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Binding Pocket Analysis
2.2. Protein and Ligand Preparation
2.3. Pharmacophore-Based Approach
2.4. ML-Based Approach Screening
2.5. Shape-Based Screening Approach
2.6. Docking-Based Approach
2.7. MD Studies of Protein-Ligand Complex
2.8. Enzyme-Based Inhibitory Assay
3. Results and Discussion
3.1. Binding Site Analysis
3.2. Pharmacophore-Based Approach
3.3. ML-Based Screening
3.4. Shape Screening-Based Approach
3.5. Docking-Based Approach
3.6. Identification of Top Hits
3.7. MD Studies
3.8. Molecular Interaction Studies
3.9. MAO Inhibition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herraiz, T.; González, D.; Ancín-Azpilicueta, C.; Arán, V.J.; Guillén, H. beta-Carboline alkaloids in Peganum harmala and inhibition of human monoamine oxidase (MAO). Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2010, 48, 839–845. [Google Scholar] [CrossRef]
- Duncan, J.; Johnson, S.; Ou, X.M. Monoamine oxidases in major depressive disorder and alcoholism. Drug Discov. Ther. 2012, 6, 112–122. [Google Scholar] [CrossRef]
- Shih, J.C.; Chen, K.; Ridd, M.J. Monoamine oxidase: From genes to behavior. Annu. Rev. Neurosci. 1999, 22, 197–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bortolato, M.; Chen, K.; Shih, J.C. Monoamine oxidase inactivation: From pathophysiology to therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1527–1533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.J.; Swope, D.M. Pharmacotherapy for Parkinson’s disease. Pharmacotherapy 2007, 27, 161s–173s. [Google Scholar] [CrossRef] [PubMed]
- Riederer, P.; Danielczyk, W.; Grünblatt, E. Monoamine oxidase-B inhibition in Alzheimer’s disease. Neurotoxicology 2004, 25, 271–277. [Google Scholar] [CrossRef] [PubMed]
- López-Muñoz, F.; Alamo, C.; Juckel, G.; Assion, H.J. Half a century of antidepressant drugs: On the clinical introduction of monoamine oxidase inhibitors, tricyclics, and tetracyclics. Part I: Monoamine oxidase inhibitors. J. Clin. Psychopharmacol. 2007, 27, 555–559. [Google Scholar] [CrossRef]
- Riederer, P.; Laux, G. MAO-inhibitors in Parkinson’s Disease. Exp. Neurobiol. 2011, 20, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Youdim, M.B.; Bakhle, Y.S. Monoamine oxidase: Isoforms and inhibitors in Parkinson’s disease and depressive illness. Br. J. Pharmacol. 2006, 147 (Suppl. S1), S287–S296. [Google Scholar] [CrossRef] [Green Version]
- Stocchi, F.; Borgohain, R.; Onofrj, M.; Schapira, A.H.; Bhatt, M.; Lucini, V.; Giuliani, R.; Anand, R. A randomized, double-blind, placebo-controlled trial of safinamide as add-on therapy in early Parkinson’s disease patients. Mov. Disord. Off. J. Mov. Disord. Soc. 2012, 27, 106–112. [Google Scholar] [CrossRef]
- Youdim, M.B.; Bar Am, O.; Yogev-Falach, M.; Weinreb, O.; Maruyama, W.; Naoi, M.; Amit, T. Rasagiline: Neurodegeneration, neuroprotection, and mitochondrial permeability transition. J. Neurosci. Res. 2005, 79, 172–179. [Google Scholar] [CrossRef]
- Finberg, J.P.; Gillman, K. Selective inhibitors of monoamine oxidase type B and the “cheese effect”. Int. Rev. Neurobiol. 2011, 100, 169–190. [Google Scholar] [CrossRef]
- Kare, P.; Bhat, J.; Sobhia, M.E. Structure-based design and analysis of MAO-B inhibitors for Parkinson’s disease: Using in silico approaches. Mol. Divers. 2013, 17, 111–122. [Google Scholar] [CrossRef] [PubMed]
- Mladenović, M.; Patsilinakos, A.; Pirolli, A.; Sabatino, M.; Ragno, R. Understanding the Molecular Determinant of Reversible Human Monoamine Oxidase B Inhibitors Containing 2H-Chromen-2-One Core: Structure-Based and Ligand-Based Derived Three-Dimensional Quantitative Structure-Activity Relationships Predictive Models. J. Chem. Inf. Model. 2017, 57, 787–814. [Google Scholar] [CrossRef] [PubMed]
- Pisani, L.; Farina, R.; Nicolotti, O.; Gadaleta, D.; Soto-Otero, R.; Catto, M.; Di Braccio, M.; Mendez-Alvarez, E.; Carotti, A. In silico design of novel 2H-chromen-2-one derivatives as potent and selective MAO-B inhibitors. Eur. J. Med. Chem. 2015, 89, 98–105. [Google Scholar] [CrossRef]
- Ramesh, M.; Dokurugu, Y.M.; Thompson, M.D.; Soliman, M.E. Therapeutic, Molecular and Computational Aspects of Novel Monoamine Oxidase (MAO) Inhibitors. Comb. Chem. High Throughput Screen 2017, 20, 492–509. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Mishra, P. Synthesis, monoamine oxidase inhibitory activity and computational study of novel isoxazole derivatives as potential antiparkinson agents. Comput. Biol. Chem. 2019, 79, 63–72. [Google Scholar] [CrossRef]
- Mubashir, N.; Fatima, R.; Naeem, S. Identification of Novel Phyto-chemicals from Ocimum basilicum for the Treatment of Parkinson’s Disease using In Silico Approach. Curr. Comput. Aided Drug. Des. 2020, 16, 420–434. [Google Scholar] [CrossRef]
- Schrödinger, L. Schrödinger Suite; Schrödinger, LLC: New York, NY, USA, 2016. [Google Scholar]
- Bonivento, D.; Milczek, E.M.; McDonald, G.R.; Binda, C.; Holt, A.; Edmondson, D.E.; Mattevi, A. Potentiation of ligand binding through cooperative effects in monoamine oxidase B. J. Biol. Chem. 2010, 285, 36849–36856. [Google Scholar] [CrossRef] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [Green Version]
- Páll, S.; Abraham, M.J.; Kutzner, C.; Hess, B.; Lindahl, E. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. In Proceedings of the International Conference on Exascale Applications and Software, Stockholm, Sweden, 2–3 April 2014; pp. 3–27. [Google Scholar]
- Binda, C.; Wang, J.; Pisani, L.; Caccia, C.; Carotti, A.; Salvati, P.; Edmondson, D.E.; Mattevi, A. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: Safinamide and coumarin analogs. J. Med. Chem. 2007, 50, 5848–5852. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Shivakumar, D.; Williams, J.; Wu, Y.; Damm, W.; Shelley, J.; Sherman, W. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J. Chem. Theory Comput. 2010, 6, 1509–1519. [Google Scholar] [CrossRef]
- Schrödinger Release 2017-3: LigPrep; Schrödinger, LLC: New York, NY, USA, 2016.
- Salam, N.K.; Nuti, R.; Sherman, W. Novel method for generating structure-based pharmacophores using energetic analysis. J. Chem. Inf. Model. 2009, 49, 2356–2368. [Google Scholar] [CrossRef]
- Schrödinger Release 2017-3: QikProp; Schrödinger, LLC: New York, NY, USA, 2017.
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Leach, A. The ChEMBL database in 2017. Nucleic Acids Res. 2017, 45, D945–D954. [Google Scholar]
- Yap, C.W. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 2011, 32, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Czub, N.; Pacławski, A. Do AutoML-Based QSAR Models Fulfill OECD Principles for Regulatory Assessment? A 5-HT(1A) Receptor Case. Pharmaceutics 2022, 14, 1415. [Google Scholar] [CrossRef]
- Patel, L.; Shukla, T.; Huang, X.; Ussery, D.W. Machine Learning Methods in Drug Discovery. Molecules 2020, 25, 5277. [Google Scholar] [CrossRef]
- Vamathevan, J.; Clark, D.; Czodrowski, P.; Dunham, I.; Ferran, E.; Lee, G.; Li, B.; Madabhushi, A.; Shah, P.; Spitzer, M. Applications of machine learning in drug discovery and development. Nat. Rev. Drug Discov. 2019, 18, 463–477. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Khuri, N.; Deshmukh, S. Machine Learning for Classification of Inhibitors of Hepatic Drug Transporters. In Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), Orlando, FL, USA, 17–20 December 2018; pp. 181–186. [Google Scholar] [CrossRef]
- Qu, J.; Wu, S.; Zhang, J. Flight Delay Propagation Prediction Based on Deep Learning. Mathematics 2023, 11, 494. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, Y.; Zhang, H.; Peng, Z.; Tang, J. A Novel and Robust Wind Speed Prediction Method Based on Spatial Features of Wind Farm Cluster. Mathematics 2023, 11, 499. [Google Scholar] [CrossRef]
- Aboaoja, F.A.; Zainal, A.; Ali, A.M.; Ghaleb, F.A.; Alsolami, F.J.; Rassam, M.A. Dynamic Extraction of Initial Behavior for Evasive Malware Detection. Mathematics 2023, 11, 416. [Google Scholar] [CrossRef]
- Li, Y.; Tian, Y.; Qin, Z.; Yan, A. Classification of HIV-1 Protease Inhibitors by Machine Learning Methods. ACS Omega 2018, 3, 15837–15849. [Google Scholar] [CrossRef]
- Kawamura, Y.; Takasaki, S.; Mizokami, M. Using decision tree learning to predict the responsiveness of hepatitis C patients to drug treatment. FEBS Open. Bio 2012, 2, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Xia, Z.; Yan, A. Computational models for the classification of mPGES-1 inhibitors with fingerprint descriptors. Mol. Divers. 2017, 21, 661–675. [Google Scholar] [CrossRef]
- Zhang, M.; Xia, Z.; Yan, A. Computer modeling in predicting the bioactivity of human 5-lipoxygenase inhibitors. Mol. Divers. 2017, 21, 235–246. [Google Scholar] [CrossRef]
- Kalafi, E.Y.; Nor, N.A.M.; Taib, N.A.; Ganggayah, M.D.; Town, C.; Dhillon, S.K. Machine Learning and Deep Learning Approaches in Breast Cancer Survival Prediction Using Clinical Data. Folia Biol. 2019, 65, 212–220. [Google Scholar]
- Saini, R.; Agarwal, S.M. EGFRisopred: A machine learning-based classification model for identifying isoform-specific inhibitors against EGFR and HER2. Mol. Divers. 2022, 26, 1531–1543. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Mucherino, A.; Papajorgji, P.J.; Pardalos, P.M. K-nearest neighbor classification. In Data Mining in Agriculture; Springer: Berlin/Heidelberg, Germany, 2009; pp. 83–106. [Google Scholar]
- Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.-F.; Huang, F.-L.; Lin, C.-J. Dual coordinate descent methods for logistic regression and maximum entropy models. Mach. Learn. 2011, 85, 41–75. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.K.; Mitra, S. Multilayer perceptron, fuzzy sets, and classifiaction. IEEE Trans. Neural Netw. 1992, 3, 683–697. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.K. Random decision forests. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- Sastry, G.M.; Dixon, S.L.; Sherman, W. Rapid shape-based ligand alignment and virtual screening method based on atom/feature-pair similarities and volume overlap scoring. J. Chem. Inf. Model. 2011, 51, 2455–2466. [Google Scholar] [CrossRef]
- 2022-3: S.R. MacroModel; Schrödinger, LLC: New York, NY, USA, 2021.
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Sharma, T.; Harioudh, M.K.; Kuldeep, J.; Kumar, S.; Banerjee, D.; Ghosh, J.K.; Siddiqi, M.I. Identification of Potential Inhibitors of Cathepsin-B using Shape & Pharmacophore-based Virtual Screening, Molecular Docking and Explicit Water Thermodynamics. Mol. Inform. 2020, 39, e1900023. [Google Scholar] [CrossRef]
- Sharma, T.; Baig, M.H.; Khan, M.I.; Alotaibi, S.S.; Alorabi, M.; Dong, J.J. Computational screening of camostat and related compounds against human TMPRSS2: A potential treatment of COVID-19. Saudi Pharm. J. SPJ Off. Publ. Saudi Pharm. Soc. 2022, 30, 217–224. [Google Scholar] [CrossRef]
- Sharma, T.; Siddiqi, M.I. In silico identification and design of potent peptide inhibitors against PDZ-3 domain of Postsynaptic Density Protein (PSD-95). J. Biomol. Struct. Dyn. 2019, 37, 1241–1253. [Google Scholar] [CrossRef]
- Kalyane, D.; Sanap, G.; Paul, D.; Shenoy, S.; Anup, N.; Polaka, S.; Tambe, V.; Tekade, R.K. Artificial intelligence in the pharmaceutical sector: Current scene and future prospect. In The Future of Pharmaceutical Product Development and Research; Elsevier: Amsterdam, The Netherlands, 2020; pp. 73–107. [Google Scholar]
- Sharma, T.; Saralamma, V.V.G.; Lee, D.C.; Imran, M.A.; Choi, J.; Baig, M.H.; Dong, J.-J. Combining structure-based pharmacophore modeling and machine learning for the identification of novel BTK inhibitors. Int. J. Biol. Macromol. 2022, 222, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Holt, A.; Berry, M.D.; Boulton, A.A. On the binding of monoamine oxidase inhibitors to some sites distinct from the MAO active site, and effects thereby elicited. Neurotoxicology 2004, 25, 251–266. [Google Scholar] [CrossRef] [PubMed]
- Boppana, K.; Dubey, P.K.; Jagarlapudi, S.A.; Vadivelan, S.; Rambabu, G. Knowledge based identification of MAO-B selective inhibitors using pharmacophore and structure based virtual screening models. Eur. J. Med. Chem. 2009, 44, 3584–3590. [Google Scholar] [CrossRef]
- Rodriguez-Perez, R.; Bajorath, J. Multitask machine learning for classifying highly and weakly potent kinase inhibitors. ACS Omega 2019, 4, 4367–4375. [Google Scholar] [CrossRef]
- Dhanabalan, A.K.; Subaraja, M.; Palanichamy, K.; Velmurugan, D.; Gunasekaran, K. Identification of a Chlorogenic Ester as a Monoamine Oxidase (MAO-B) Inhibitor by Integrating “Traditional and Machine Learning” Virtual Screening and In Vitro as well as In Vivo Validation: A Lead against Neurodegenerative Disorders? ACS Chem. Neurosci. 2021, 12, 3690–3707. [Google Scholar] [CrossRef] [PubMed]
- Olotu, F.A.; Joy, M.; Abdelgawad, M.A.; Narayanan, S.E.; Soliman, M.E.; Mathew, B. Revealing the role of fluorine pharmaco-phore in chalcone scaffold for shifting the MAO-B selectivity: Investigation of a detailed molecular dynamics and quan-tum chemical study. J. Biomol. Struct. Dyn. 2021, 39, 6126–6139. [Google Scholar] [CrossRef]
Dataset | Inhibitor | Non-Inhibitor | Total |
---|---|---|---|
Training | 1563 | 2257 | 3820 |
Test | 521 | 752 | 1273 |
Name of Model | Logistic Regression | Decision Tree | Random Forest | Support Vector Machine | Multilayer Perceptron | XG-Boost |
---|---|---|---|---|---|---|
Training Accuracy | 0.895 | 0.860 | 0.974 | 0.955 | 0.964 | 0.967 |
Test Accuracy | 0.805 | 0.787 | 0.821 | 0.818 | 0.829 | 0.846 |
Area Under Curve | 0.870 | 0.780 | 0.888 | 0.850 | 0.894 | 0.916 |
Precision | 0.81 | 0.79 | 0.82 | 0.82 | 0.83 | 0.86 |
Recall | 0.81 | 0.79 | 0.82 | 0.82 | 0.83 | 0.85 |
Sr. No | Name of Compound | Code Used | Glide-XP Score | MM/PBSA | QLogPo/w | QLogBB | Mutagenicity |
---|---|---|---|---|---|---|---|
1. | ZINC1028120 | 1 | −10.917 | −29.870 | 4.244 | −0.184 | Non-mutagenic |
2. | KM00699 | 2 | −10.858 | −27.088 | 4.479 | 0.312 | Non-mutagenic |
3. | ZINC4523822 | 3 | −10.614 | −27.841 | 2.836 | −0.937 | Non-mutagenic |
4. | BTB11789 | 4 | −10.223 | −10.391 | 5.404 | 0.312 | Non-mutagenic |
5. | ZINC171676 | 5 | −10.130 | −26.405 | 5.409 | 0.037 | Non-mutagenic |
6. | ZINC52610 | 6 | −9.629 | −28.487 | 5.404 | −0.048 | Non-mutagenic |
7. | ZINC120336 | 7 | −9.45 | −27.406 | 5.357 | 0.212 | Non-mutagenic |
8. | HAN000359 | 8 | −9.259 | −20.451 | 3.134 | −0.184 | Non-mutagenic |
9. | ZINC131390868 | 9 | −9.113 | −10.391 | 5.404 | 0.312 | Non-mutagenic |
10. | ZINC122521 | 10 | −9.092 | −25.666 | 4.747 | 0.485 | Non-mutagenic |
11. | SELEGILINE | Control | −9.102 | −23.017 | 3.192 | 0.636 | Non-mutagenic |
Compounds | IC50 |
---|---|
1 | 0.36 ± 0.02 µM |
2 | 3.67 ± 0.06 µM |
3 | 0.54 ± 0.06 µM |
5 | 13.2 ± 0.15 µM |
6 | 6.82 ± 0.14 µM |
Control | 0.06 ± 0.01 µM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siddiqui, A.J.; Jahan, S.; Siddiqui, M.A.; Khan, A.; Alshahrani, M.M.; Badraoui, R.; Adnan, M. Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and Computer-Aided Drug Design. Mathematics 2023, 11, 1464. https://doi.org/10.3390/math11061464
Siddiqui AJ, Jahan S, Siddiqui MA, Khan A, Alshahrani MM, Badraoui R, Adnan M. Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and Computer-Aided Drug Design. Mathematics. 2023; 11(6):1464. https://doi.org/10.3390/math11061464
Chicago/Turabian StyleSiddiqui, Arif Jamal, Sadaf Jahan, Maqsood Ahmed Siddiqui, Andleeb Khan, Mohammed Merae Alshahrani, Riadh Badraoui, and Mohd Adnan. 2023. "Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and Computer-Aided Drug Design" Mathematics 11, no. 6: 1464. https://doi.org/10.3390/math11061464
APA StyleSiddiqui, A. J., Jahan, S., Siddiqui, M. A., Khan, A., Alshahrani, M. M., Badraoui, R., & Adnan, M. (2023). Targeting Monoamine Oxidase B for the Treatment of Alzheimer’s and Parkinson’s Diseases Using Novel Inhibitors Identified Using an Integrated Approach of Machine Learning and Computer-Aided Drug Design. Mathematics, 11(6), 1464. https://doi.org/10.3390/math11061464