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Abstract: Based on the traditional control approach, the position-tracking performance of the teleop-
eration system with communication delay is generally asymptotically stable. In practical applications,
the closed-loop system is expected to achieve stable and finite-time convergence performance. A
novel finite-time bilateral control scheme for a telerobotics system with communication delay is
presented in this paper. On the basis of the traditional proportional damping injection control,
this paper proposes and designs a new finite-time control method by introducing the non-integer
power to the position error, velocity, and the combined error with position error and velocity. In
comparison to existing proportional damping injection and finite-time control structures, the pro-
posed method not only achieves the finite-time convergence performance of position tracking, but
it also has the advantages of a simple structure and fewer gain coefficients. The controller also
incorporates the radial basis function (RBF) neural network and adaptive approach to compensate
unknown dynamics and external forces, thus also avoiding the measurement of force signals. The
Lyapunov–Krasovskii function is then defined, and it is demonstrated that the position tracking of
closed-loop teleoperation system has bounded stability and finite-time control performance. The
simulation experiment is also performed, and the results further illustrated the bounded stability
of the system. Moreover, compared to the position tracking errors of other non-finite-time control
methods, it is demonstrated that the proposed finite-time control scheme has a faster convergence
rate and higher convergence precision.

Keywords: teleoperation; finite-time control; proportional damping; adaptive control; time-varying
delay; Lyapunov–Krasovskii function

MSC: 93-10

1. Introduction

The telerobotics system combines the intelligence of the operator and the operation
ability of the robot, it can achieve a variety of operational tasks in a hazardous and danger-
ous environment. Based on these excellent characteristics, teleoperation systems have been
widely used in nuclear radiation, space, deep sea, and complex industrial environments,
and play an important role in these engineering applications [1,2]. In a typical teleoperation
system, the operator controls the movement of the master robot, while the slave robot is
regulated to achieve the position-tracking movement of the master robot [3]. Generally,
two controllers are introduced at the master end and the slave end, respectively, to realize
position-tracking control. This control structure is also defined as the bilateral control. The
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operator can sense the interaction condition between the robot and task environment based
on bilateral control. The position/force signals of the master robot and the slave robot
need to be transmitted to each other’s controller through the communication channel to
achieve position tracking and force feedback. Compared with the unilateral control mode,
the bilateral control mode provides the operator with better telepresence feedback of the
operation force, which improves the operation’s precision and efficiency.

In bilateral control of teleoperation systems, the position/force signals of the master
robot and the slave robot are always transmitted through the communication channel to
each other’s controller to achieve position tracking and force feedback. Nevertheless, the
communication delay cannot be inevitable. This fact creates an inconsistent factor, i.e., the
position signals with time delay will reduce the tracking performance and stability of the
teleoperation system, and may even cause system instability [3]. In general, stability is
regarded as the most fundamental performance for the communication delay teleoperation
system [4]. Currently, passive theory and the Lyapunov method are commonly used to
analyze the stability of a teleoperation system and design an appropriate structure for
position control. For a teleoperation system, communication delay factor can be equivalent
to injecting additional energy. Therefore, the passivity theory is to reduce the energy of the
communication process by designing an effective controller, which can ensure the passivity
of the closed-loop system and maintain the stability of system. The passive theory-based
control methods of the telerobotics system have the scattering method [5,6], the traditional
wave method, and improved wave variable method [7,8]. However, the passivity assump-
tions of the master and slave sides are insufficient for engineering practice conditions. Then,
numerous scholars have employed the Lyapunov theory to analyze the stability of the
time-delay teleoperation system and to develop the control strategy. Some typical control
strategies based on the Lyapunov method include H∞ control [9], adaptive control [10–12],
sliding mode control [13], output feedback control [14], feedforward-feedback position
control [15], and so on. These methods have produced effective position tracking controllers
for teleoperation systems with fixed or time-varying communication delays.

Comparative to other control methods, the proportional damping injection (P+d) is
a control strategy for time-delayed telerobotics with a simple structure and good control
performance. The main component of damping injection control is to utilize damping
terms to eliminate superfluous energy and maintain the stability of the time-delay system.
Proportional plus damping and proportional differential plus damping (PD+d) are often
part of the damping injection controller’s fundamental construction [16]. The Lyapunov—
Krasovskii method is usually employed for the design of damping injection controllers and
the analysis of closed-loop system stability. Some improved damping injection controllers
have been proposed and designed. In [17], a PD controller without speed measurement
is proposed for the teleoperation system, and a first-order filter is designed for speed esti-
mation. For a teleoperation system with passive and nonpassive injected force, Islam [18]
developed a novel PD+d control approach, and symmetric and asymmetric communication
delays were also taken into consideration. In [19–21], three novel P+d-like controllers are
presented to guarantee the position/force-tracking performances for the network teler-
obitics system. In [22], the authors present three strategies that adjust the damping and
stiffness of the bilateral teleoperation system to maintain the stable teleoperation. In [23], a
simplified P+d control with gravity compensation is presented, and the effectiveness of
the controller is also verified by experiments. The gravity torque of the robot is commonly
defined as the known information to construct the controller in the above damping injection
control approach. For practical systems, gravity torque may be difficult to obtain accurately,
and the effect of friction torque and other additional injection forces could weaken the
control performance of the teleoperation system. Adaptive control is a very effective way
to solve the problem of model uncertainty and has been successfully applied in teleop-
eration systems. In addition, adaptive control can contribute to ensure the passivity and
stability of the delay teleoperation system. Scholars have proposed some new damping
injection control methods combining adaptive strategy. In [24], a nonlinear proportional
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plus nonlinear damping (nP+nD) controller based on adaptive environmental force term is
presented. In [25], an adaptive fuzzy logic system is utilized to estimate uncertain torques,
and an improved PD+d controller is proposed. In our previous work [26], the adaptive
method combined with RBF neural network was used to build an improved damping
injection controller. However, the control scheme designed based on the above work only
achieves asymptotic stability of the closed-loop system. It implies that the synchronization
error between the master and slave robots can converge to zero when the time becomes
infinite. The stability performance of finite time can ensure the system converges to a small
neighborhood in a finite time, which has faster convergence speed, higher convergence
accuracy, and better anti-interference ability. It can be seen that finite-time stability has
more engineering application value than asymptotic stability.

The finite-time control method has also been researched and developed by some
scholars for the time-delay teleoperation system. Yang [27] presented an adaptive fuzzy
finite-time control strategy to address the control issue of a teleoperation system with
uncertain dynamics. In [28], an adaptive finite-time control method is proposed to address
the actuator saturation problem. In some work [29–33], several finite-time control structures
are proposed to realize the position tracking control of telerobotics system with the factors
of model parameter uncertainty,varying communication delay, actuator saturation, output
constraints, etc. These finite-time controllers are basically based on the nonsingular terminal
sliding mode (NTSM) and auxiliary variables combined with speed and position errors.
The research work is still relatively insufficient in spite of the development of finite-time
control methods for teleoperation systems. There are still some challenges and problems
that need to be solved.

The first issue is how to simplify the finite-time control scheme to reduce the com-
plexity of controller design. The existing finite-time controller has some disadvantages,
such as the complex design process and many controller gain parameters. What is far
more important is that the impact of communication delay on stability cannot be obtained
in the above finite time approaches. Yang [34] proposed a new continuous nonsmooth
proportional damping injection finite-time control method, which successfully simplified
the finite-time controller for the teleoperation system. However, the author did not consider
the unknown gravity torque, friction torque, and non-zero external force. In our paper,
we expect to reduce the amount of fractional power to simplify the selection constraints
of controller parameters. The second one is how to establish the relationship between
communication delay, controller gain, and fractional power parameters. In this paper, we
expect to use Lyapunov–Krasovskii functional for stability analysis and further establish
this relationship. The last problem is how to deal with the unknown gravity, friction, and
external torques, and the radial basis function (RBF) neural network and adaptive method
are utilized to implement the compensation of unknown dynamics and external forces.

Based on the line of analyzing the existing work and comparing it with our previous
work, the fundamental contributions of this paper are summarized as follows:

• In this paper, a novel simplified finite-time adaptive proportional damping injection
control strategy is proposed for the teleoperation system with asymmetric varying
communication delay. Compared with most of the existing proportional damping
injection control methods (such as [19–25,35] and our previous work in [26]), the
proposed control structure achieves the finite-time tracking performance of the master–
slave robot position, and the method presented above only achieves the asymptotically
stability performance. Compared with the only existing finite-time proportional
damping injection control strategy in [34], the proposed controller is more concise and
has fewer controller gain parameters, which is more convenient to use in the actual
teleoperation system.

• The RBF neural network and the adaptive control method are presented to realize
the estimation and compensation of external forces. Compared with some existing
control methods, such as [18–21,24–26], the proposed method does not require us to
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measure and estimate the external forces. In addition, the unknown dynamics can
also be compensated.

The remainder of this paper is organized as follows. In Section 2, we describe the
dynamic models and properties of the teleoperation system, the definition of the RBF neural
network, and some related mathematical definitions and lemmas. In Section 3, the proposed
adaptive finite-time control method based on the P+d control scheme is proposed and the
stability of the closed-loop system is also discussed. In Section 4, simulation experiments
are implemented to verify the stability and good position-tracking performance of the
system. Finally, this work is concluded in Section 5.

2. Problem Statement

In this section, the dynamic model and some important properties of the teleoperation
system are described first, and then the objectives of the system control, the concepts and
properties of the RBF neural network, and some concepts and lemmas of mathematics and
control theory are also stated later.

2.1. Teleoperation System Dynamics

A typical dynamic model of the telerobotics system is composed of the master robot
dynamic, slave robot dynamic, and a communication model. For the master and slave
robots, if they are assumed to be the manipulators with n rotational degree of freedom
(dof), the dynamic models in joint space can be defined as

Mm(qm)q̈m + Cm(q̇m, qm)q̇m + Gm(qm) + Fm = τm − τh,

Ms(qs)q̈s + Cs(q̇s, qs)q̇s + Gs(qs) + Fs = τs − τe,
(1)

where for j = m, s, qj ∈ Rn, q̇j ∈ Rn, and q̈j ∈ Rn are, respectively, defined as the position,
velocity and acceleration vectors of the master/slave robot at time t ∈ R+. Mj

(
qj
)
∈ Rn×n

is the inertia matrix of the robot, Cj
(
q̇j, qj

)
∈ Rn×n is the coriolis and centrifugal matrix,

Gj
(
qj
)
∈ Rn is the gravitational torque. Fj ∈ Rn is friction and external interference

torques. The torques exerted by the operator and the environmental is τh, τe ∈ Rn. The
values of τh and τe are related to the force Fh applied by the operator to the master robot,
and the force Fe applied by the environment to the slave robot, which can be further
described as τh = JT

mFh and τe = JT
s Fe. The Jacobian matrices of the master and slave robots

are defined as Jm and Js, respectively. The control torques of the master and slave robots
are defined as τm and τs.

The robot dynamics in Equation (1) are nonlinear and have time-varying parameters.
For j = m, s are defined as the master and slave robots, respectively, and there are some
important properties as follows [36,37]

Property 1. The inertia matrix Mj
(
qj
)

is positively symmetrical. Moreover, the following inequal-
ities are held if the maximum eigenvalue Mj,max and minimum eigenvalue Mj,min are satisfied with

0 < Mj,min I ≤ Mj
(
qj
)
≤ Mj,max I < ∞

Property 2. For any nonzero vector x ∈ Rn, the following equation always holds

xT(Ṁj − 2Cj
)
x = 0.

Property 3. For all position and velocity vectors qj, q̇j ∈ Rn, there exists a positive positive scalar
cj and the following inequality is always satisfied

‖Cj(qj, q̇j)q̇j‖ ≤ cj‖qj‖‖q̇j‖.

Property 4. The time derivative of Cj(qj, q̇j) is bounded if the velocity and acceleration q̇j, q̈j are
all bounded.
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Property 5. The gravitational torque Gj and friction torque Fj are all bounded.

The variable delay signals of the forward and backward communication channels are
defined as dm(t) and ds(t). In the control structure of the bilateral teleoperation system, the
position information of the master and the slave side qm and qs are transmitted to the other
side through the communication channel, which will cause the transmission delay and can
be described as qm(t− dm(t)) and qs(t− ds(t)). In order to simplify the expression in the
controller and stability derivation process, qmd and qsd are introduced here to replace the
expression qm(t− dm(t)) and qs(t− ds(t)), respectively.

In the design of a bilateral control scheme, it is necessary to make some assumptions
about communication delay, operator force, and external force signals:

Assumption 1. The asymmetric time-varying communication delays dm(t) and ds(t) are bounded.
There are two positive constants d̄m, d̄s ∈ R+ to satisfy the boundedness of communication delays as

0 ≤ dm(t) ≤ d̄m,

0 ≤ ds(t) ≤ d̄s.

Assumption 2. The operator force Fh and environment force Fe are also bounded, and they have
‖Fh‖ ≤ F̄h, F̄h ≥ 0 and ‖Fe‖ ≤ F̄e, F̄e ≥ 0.

Control Objectives The control objective of this study is to develop a finite-time
controller to guarantee the finite-time position-tracking control performance of the time-
delay teleoperation system. This means the tracking errors ‖q(t)− qs(t)‖ should converge
to a very small domain of 0 within the fixed time.

2.2. RBF Neural Network

The radial basis function (RBF) neural network is a commonly used three-layer feedfor-
ward neural network. One of its most important properties is that it can approximate any
nonlinear function [38]. Therefore, it is used to deal with laws that are difficult to analyze
in the system. In addition, it also has a good generalization ability and fast learning speed.
In nonlinear function approximation, data classification, system modeling, and control
system design, RBF neural networks are frequently utilized because of the aforementioned
characteristics. In the adaptive control method, RBF neural network is employed to esti-
mate the unknown dynamics of the system. The radial basis function is the key part of
the RBF neural network, and the Gaussian function is usually selected as the radial basis
kernel function. The concept of RBF neural network can be stated as follows [39].

For a continuous function G(x) : Rl → Rb, x ∈ Ra is the input vector, then the
function F(x) can be redefined by RBF neural network as

G(x) = W Tϕ(x) + w. (2)

where W ∈ Rk×l is the weight matrix, k is the number of network nodes. ϕ = [ϕ1, ϕ2, . . . , ϕk]
T

can also be calculated based on the Gaussian basis function as

ϕi = e−
(x−bi)

T(x−bi)
2c2 , i = 1, 2, . . . , d.

bi ∈ Ra is the the Gaussian center vector of the i-th node. c is the width of Gaussian
function. w is the bounded approximate error.

Remark 1. It should be mentioned that the weight matrix of the network is formed and obtained by
the Lyapunov stability criterion in the adaptive control approach with RBF neural network. The
developed adaptive learning laws can guarantee the convergence and stability of the closed-loop
system. A variety of neural network input values should be considered in determining the Gauss-
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centered vector of i-the node bi. With specifying an appropriate width of c, the input data values of
the neural network should fall inside the domain of Gaussian functions.

Remark 2. With the definition of the Gaussian basis function, it can be seen that for all input
vectors x, the Gauss function ϕi is always bounded. This property will be used in the system
stability analysis.

It is a different procedure for the RBF neural network to build the adaptive control
structure and directly estimate the unknown function. In general, the RBF neural network
is employed in adaptive control design to replace the uncertain element of the model and
normalize the input data using the radial basis function. Based on the defined weight error
vector, a Lyapunov function can be developed, and the learning rate of the neural network’s
weight coefficient can also be solved while guaranteeing the closed-loop system’s stability.
Therefore, the learning rate (also defined as the adaptive law) should be calculated during
the stability analysis of the closed-loop system. From a certain point of view, the Lyapunov
function constructed by a weight error can be regarded as its cost function.

2.3. Fundamentals of Mathematics and Lemma

The L2 norm of a time function f : R → Rn is shown as ‖ f ‖L2 =
(∫ ∞

0 ‖ f (t)‖2dt
)1/2.

The L∞ norm of a time function f : R → Rn is defined as ‖ f ‖L∞ = supt∈[0,∞) ‖ f (t)‖∞.
The definition of L2 and L∞ spaces can be given based on the definition of L2 and L∞
norms. The L2 and L∞ spaces are defined as the sets f : R → Rn, ‖ f (t)‖L2 < +∞ and
f : R → Rn, ‖ f (t)‖L∞ < +∞. For any time vector x = [x1, x2, . . . , xn]T ∈ Rn, the func-
tion sig(x)p is defined as sig(x) = [|x1|psign(x1), |x2|psign(x2), . . . , |xn|psign(xn)], where
p is a positive constant. The derivative of sig(x)p can be calculated as dsig(x)p/dt =
pẋdiag(x1, x2, . . . , xn)p−1.

Before designing the finite-time control structure, the definition of finite-time con-
trol for nonlinear systems is given here [40]. Consider the nonlinear system ẋ = f (x, t),
x(0) = x0, x ∈ Rn, f characterizes a continuous mapping f : U0 → Rn on an open neigh-
borhood U0 of the origin. The zero solution xt(0, x0) of the system is finite-time stable if it
is Lyapunov stable and finite-time convergent in a neighborhood U ⊂ U0. The finite time
convergence means that there exists a function Tx : U\0→ (0, ∞), U ⊆W is an open neigh-
borhood of the origin, such that ∀x0 ∈ W and for t ∈ [0, Tx(x0)], limt→Tx(x0)

xt(0, x0) = 0.
The zero solution is globally finite-time stable when W = R.

Lemma 1 ([41]). Considering a system as ẋ, x(0) = x0, the system is finite-time stable if there
exists a continuous positive differentiable function V : U\0→ R+ and the following inequality
can be always established

V̇(x) ≤ −ΥVσ(x) + Ψ, x ∈ U0\0

where 0 < σ < 1, Υ > 0 and Ψ > 0, U0 ⊂ U\0 is an open neighborhood of origin. If U0 = U the
system is globally finite-time stable, and there exists a positive scalar v satisfying 0 < v < 1, which
can make the system converge to a neighborhood Π in finite-time T as

T ≤ V1−σ(0)
Υv(1− σ)

Π =max

{
x

∣∣∣∣∣V ≤
[

Ψ
Υ(1− v)

]1/Ψ
}

Several mathematical lemmas are also given below for the analysis of system stability.

Lemma 2 ([34]). For any real numbers A, B, and 0 < b ≤ 1, the following two inequalities hold
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|sig(A)b − sig(B)b| ≤ 21−b|A− B|σ

(|A|+ |B|)b ≤ |A|b + |B|b

Lemma 3 ([34]). For any time vectors A(t), B(t) ∈ Rn, p > 0,and a real value function
r(A(t), B(t)) > 0, the following inequality holds

AT(t)
∫ t

t−T(t)
sig(B(ξ))pdξ −

∫ t

t−T(t)

pr(A(t), B(t))−
1
p

1 + p
BT(ξ)sig(B(ξ))pdξ

≤T̄
r(A(t), B(t))

1 + p
AT(t)sig(A(ξ))p

where 0 < T(t) ≤ T̄.

3. Adaptive Finite Time Proportional Plus Damping Control Design
3.1. Controller Design

In this subsection, a novel finite-time adaptive position tracking control method is
proposed. As stated in the introduction chapter, on the one hand, the gravitational torque
and friction torque are difficult to obtain accurately in the actual robot system. On the
other hand, the operator’s torque and the environmental torque need to be measured by
the multi-dimensional force sensors. According to the relevant properties of the system
dynamic models, the gravity, friction, operator, and environment torques are all bounded.
Therefore, the RBF neural network is employed to estimate the gravity, friction, and
operator/environment torques in the finite time control scheme design in our work.

Firstly, the unknown dynamics of the gravitational torques Gm, Gs, friction torques
Fm, Fs, and and operator and environment torques τh and τe are approximated and compen-
sated using the RBF neural network. These unknown dynamics can be defined by neural
networks as follows

Gm(qm) + Fm + τh = W T
mϕm(xm) + wm,

Gs(qs) + Fs + τe = W T
s ϕs(xs) + ws.

(3)

where for j = m, s, Wj ∈ Rl×n is the ideal RBF neural network weight matrix with l nodes,

ωj is the bounded estimation error, xj =
[
qT

j , q̇T
j

]T
is the input vector. ϕj(xj) ∈ Rl×1 is the

Gaussian basis function vector which can be calculated by

ϕj,i = e
− (

xj−bj,i)
T
(xj−bj,i)

2c2
j , i = 1, 2, . . . , l.

(4)

bj,i ∈ R1×ln is the Gaussian center function vector of i-th hidden layer node. cj is the width
of Gaussian function.

The telerobotics system description can then be represented as

Mm(qm)q̈m + Cm(q̇m, qm)q̇m + W T
mϕm(xm) + wm = τm,

Ms(qs)q̈s + Cs(q̇s, qs)q̇s + W T
s ϕs(xs) + ws = τs.

(5)

In order to better design and construct the finite-time control structure, the following
auxiliary variables sm and ss are introduced in the master–slave robot side.

sm = qm(t)− qsd + q̇m(t),

ss = qs(t)− qmd + q̇s(t).
(6)
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The following control laws of master and slave robots are designed as

τm =Kmsig(sm)
σ − 2Kmsig(qm − qsd)

σ − αmsig(q̇m)
σ + Ŵmϕm(xm) + ŵm,

τs =Kssig(ss)
σ − 2Kssig(qs − qmd)

σ − αssig(q̇s)
σ + Ŵsϕs(xs) + ŵs.

(7)

where for j = m, s, Kj and αj are the gain coefficients of controllers, o < σ < 1 presents
the power coefficient, Ŵj and ω̂j are defined as the adaptive estimate terms of the ideal
approximate weight matrix Wj and estimation error ωj.

Remark 3. The finite-time control laws designed in this paper are based on the traditional
proportional-damping injection control and are improved by combining it with the finite-time
control method. In the teleoperation system, the time-varying communication delays will disturb
the position error of the master and the slave side, which will further cause oscillation and even
instability of the system. To maintain the stability of the closed-loop system, the damping term is
used to weaken and disperse the detrimental energy of the system. The finite-time control structure
is constructed by introducing power 0 < σ < 1 on the proportional error term and damping term

as sig
(

qj − qj′d

)σ
and sig

(
q̇j
)σ, when j = m, s, there has j′ = s, m. If the power is small, the

tracking error can have a fast convergence speed, but the control values would have oscillations.
When the power is closer to 1, the control performance is more similar to the traditional proportional
damping injection control method. The specific analysis will be described in the simulation part later.

Remark 4. For one thing, the crucial improvements of this paper over our previous work in [26] are
to realize the finite-time control efficiency of the closed-loop system and develop a simpler finite-time
controller. In [26] only the asymptotically stability of the position tracking control is achieved. The
non-singular terminal sliding mode or auxiliary variable must be developed first for the typical
finite-time controller of the teleoperation system, and finite-time control laws can be designed based
on their non-integer power terms. The calculation of the control law will be accompanied by a large
number of mathematical operations, which is inconvenient for engineering implementation and
application. For another, compared with the work in [34], the proposed finite-time controller has few
weight coefficients which can avoid the constraints on the controller implementation caused by more
controller gain selections. This study also presents a novel finite-time stability analysis approach,
which differs from [34].

Remark 5. In the proposed control scheme, the adaptive method is not only utilized to compensate
the uncertain dynamics, but also used to estimate the external torques of the operator and the
environment. In [26], the operator and environmental force information need to be measured
and transmitted back to the controller for compensation to achieve better position-tracking control
performance. In [34], the gravity torque in the controller is believed to be accurate, and the influences
of friction moment, operator, and environment are ignored. The control approach stated in this paper
addresses the major challenges well. The adaptive rates can be developed based on Lyapunov theory
and assure the passivity of the parameter estimation. For a teleoperation system, the introduction of
an adaptive method can further improve the passivity and stability of a closed-loop system. In our
work, the forms of adaptive learning rates are designed as

˙̂Wm = −Λm1ϕm(xm)q̇m,
˙̂wm = −Λm2q̇m,
˙̂Ws = −Λs1ϕs(xs)q̇s,
˙̂ws = −Λs2q̇s.

(8)

3.2. System Stability Analysis

To ensure the finite-time control performance of the closed-loop teleoperation system,
the following two theorems are proposed to show the main results of this paper. Firstly,
global asymptotic stability and the boundedness of state signals will be proved based
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on the Lyapunov method in Theorem 1. Secondly, the finite time control of closed-loop
teleoperation will be proved based on Lemma 1 in Theorem 2.

Theorem 1. In the network telerobotics system in (1), with the presented control laws in (7),
adaptive laws in (8), the bounded asymmetric time-varying communication delays, bounded human
and environmental forces, and unknown gravity and friction torques, the closed-loop system is
stable, and the signals of the system q̇m, q̇s, qm − qs, W̃m, W̃s, ω̃m, ω̃s are all bounded if there
exist appropriate positive controller gain coefficients αm, αs, Km, Ks and a positive real constant
K which can meet the following relationships with the upper bound d̄m and d̄s of master–slave
communication delays as

αm ≥ 21−σKm + d̄mK + 2d̄s

(
Km

1 + σ

)1+σ( σ

K

)
αs ≥ 21−σKm + d̄sK + 2d̄m

(
Km

1 + σ

)1+σ( σ

K

) (9)

Theorem 2. For the bilateral teleoperation system in (1), if Theorem 1 is established and the
positive controller gain coefficients satisfy αm ≥ 2Km and αsKm

Ks
≥ 2Km, then the finite time control

performance of closed-loop teleoperation system can be guaranteed.

First, the proof of Theorem 1 is given as follows

Proof. Consider the teleoperation system (1), define the state of the system where
xt = [qm, qs, q̇m, q̇s, W̃m, ω̃m, W̃s, ω̃s]T , choose the following Lyapunov–Krasovskii func-
tion V(xt) = V1(xt) + V2(xt) + V3(xt) + V4(xt), where

V1 =
1
2

q̇T
m Mmq̇m +

Km

2Ks
q̇T

s Msq̇s,

V2 =
Km

σ + 1

n

∑
i=1
|qmi − qsi|σ+1,

V3 =
∫ 0

−d̄m

∫ t

t+δ
Kq̇T

m(ξ)q̇m(ξ)dξdδ +
∫ 0

−d̄s

∫ t

t+δ
Kq̇T

s (ξ)q̇s(ξ)dξdδ,

V4 =
Λ−1

m1
2

tr
(

W̃ T
mW̃m

)
+

Λ−1
m2
2

w̃T
mw̃m +

Λ−1
s1 Km

2Ks
tr
(

W̃ T
s W̃s

)
+

Λ−1
s2 Km

2Ks
w̃T

s w̃s.

(10)

It is obvious that V1, V2, V3, and V4 are all positive.
With the property of the robotic system, control laws in (7), the time derivative of V1

can be computed as

V̇1 =q̇T
m
[
Kmsig(sm)

σ − Kmsig(qm − qsd)
σ − Kmsig(qm − qsd)

σ − αmsig(q̇m)
σ

+Ŵmϕm(xm) + ŵm −Wmϕm(xm)−wm
]

+
Km

Ks
q̇T

s
[
Kssig(ss)

σ − Kssig(qs − qmd)
σ − Kssig(qs − qmd)

σ − αssig(q̇s)
σ

+Ŵsϕs(xs) + ŵs −Wsϕs(xs)−ws
]

(11)
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Considering Lemma 2, we can obtain the following formula

V̇1 ≤Km

∣∣∣q̇T
m

∣∣∣∣∣sig(sm)
σ − sig(qm − qsd)

σ∣∣
+ q̇T

m
[
−Kmsig(qm − qsd)

σ − αmsig(q̇m)
σ + W̃mϕm(xm) + w̃m

]
+ Km

∣∣∣q̇T
s

∣∣∣∣∣sig(ss)
σ − sig(qs − qmd)

σ∣∣
+

Km

Ks
q̇T

s
[
−Kssig(qs − qmd)

σ − αssig(q̇s)
σ + W̃sϕs(xs) + w̃s

]
≤21−σKm

∣∣∣q̇T
m

∣∣∣|sm − qm + qsd|σ + 21−σKm

∣∣∣q̇T
s

∣∣∣|ss − qs + qmd|σ

+ q̇T
m
[
−Kmsig(qm − qsd)

σ − αmsig(q̇m)
σ + W̃mϕm(xm) + w̃m

]
+

Km

Ks
q̇T

s
[
−Kssig(qs − qmd)

σ − αssig(q̇s)
σ + W̃sϕs(xs) + w̃s

]
=21−σKmq̇T

msig(q̇m)
σ + 21−σKmq̇T

s sig(q̇s)
σ

+ q̇T
m
[
−Kmsig(qm − qsd)

σ − αmsig(q̇m)
σ + W̃mϕm(xm) + w̃m

]
+

Km

Ks
q̇T

s
[
−Kssig(qs − qmd)

σ − αssig(q̇s)
σ + W̃sϕs(xs) + w̃s

]
.

(12)

The derivative of V2 is

V̇2 = Km(q̇m − q̇s)
Tsig(qm − qs). (13)

Combining Equations (12) and (13), it can be obtained as

V̇1 + V̇2 ≤21−σKmq̇T
msig(q̇m)

σ + 21−σKmq̇T
s sig(q̇s)

σ

+ Kmq̇msig(qm − qs)
σ − Kmq̇msig(qm − qsd)

σ

+ Kmq̇ssig(qm − qs)
σ − Kmq̇ssig(qs − qmd)

σ

− αmq̇T
msig(q̇m)

σ + q̇T
m
[
W̃mϕm(xm) + w̃m

]
− αsKm

Ks
q̇T

s sig(q̇s)
σ +

Km

Ks
q̇T

s
[
W̃sϕs(xs) + w̃s

]
(14)

For Kmq̇T
msig(qm − qs)

σ−Kmq̇T
msig(qm − qsd)

σ, the following inequality can be obtained

Kmq̇T
msig(qm − qs)

σ − Kmq̇T
msig(qm − qsd)

σ

≤Km

∣∣∣q̇T
m

∣∣∣∣∣sig(qm − qs)
σ − sig(qm − qsd)

σ∣∣
≤21−σKm

∣∣∣q̇T
m

∣∣∣|qs − qsd|

=21−σKm

∣∣∣q̇T
m

∣∣∣∣∣∣∣∫ t

t−ds
q̇s(ξ)dξ

∣∣∣∣σ
(15)

Then, based on V̇1 and V̇2, we have

V̇1 + V̇2 ≤−
(

αm − 21−σKm

)
q̇T

msig(q̇m)
σ + 21−σKm

∣∣∣q̇T
m

∣∣∣∣∣∣∣∫ t

t−ds
q̇s(ξ)dξ

∣∣∣∣σ
+ q̇T

m
[
W̃mϕm(xm) + w̃m

]
−
(

αsKm

Ks
− 21−σKm

)
q̇T

s sig(q̇s)
σ + 21−σKm

∣∣∣q̇T
m

∣∣∣∣∣∣∣∫ t

t−ds
q̇s(ξ)dξ

∣∣∣∣σ
+

Km

Ks
q̇T

s
[
W̃sϕs(xs) + w̃s

]
(16)
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For each element
∣∣∣∫ t

t−ds
q̇si(ξ)dξ

∣∣∣σ, i = 1, 2, . . . , n in the integral vector
∣∣∣∫ t

t−ds
q̇s(ξ)dξ

∣∣∣σ,
along with the definition of integral and Lemma 2, we can further obtain∣∣∣∣∫ t

t−ds
q̇si(ξ)dξ

∣∣∣∣σ =

∣∣∣∣∣ lim
n→∞

n−1

∑
ik=0

ds

n
q̇si

(
t− ds +

kds

n

)∣∣∣∣∣
σ

≤ lim
n→∞

n−1

∑
ik=0

∣∣∣∣ds

n
q̇si

(
t− ds +

kds

n

)∣∣∣∣σ
=
∫ t

t−ds
|q̇si(ξ)dξ|σdξ

(17)

Then there are the following vector inequalities∣∣∣∣∫ t

t−ds
q̇s(ξ)dξ

∣∣∣∣σ ≤ ∫ t

t−ds
|q̇s(ξ)dξ|σdξ∣∣∣∣∫ t

t−dm
q̇m(ξ)dξ

∣∣∣∣σ ≤ ∫ t

t−dm
|q̇m(ξ)dξ|σdξ

(18)

Therefore, we can further express (16) as

V̇1 + V̇2 ≤−
(

αm − 21−σKm

)
q̇T

msig(q̇m)
σ + 21−σKm

∣∣∣q̇T
m

∣∣∣ ∫ t

t−ds
|q̇s(ξ)|σdξ

+ q̇T
m
[
W̃mϕm(xm) + w̃m

]
−
(

αsKm

Ks
− 21−σKm

)
q̇T

s sig(q̇s)
σ + 21−σKm

∣∣∣q̇T
m

∣∣∣ ∫ t

t−ds
|q̇s(ξ)|σdξ

+
Km

Ks
q̇T

s
[
W̃sϕs(xs) + w̃s

]
(19)

The derivative of V3 can be expressed as

V̇3 =d̄mKq̇msig(q̇m)
σ − K

∫ t

t−d̄m
q̇m(ξ)sig(q̇m(ξ))

σdξ

+ d̄sKq̇ssig(q̇s)
σ − K

∫ t

t−d̄s
q̇s(ξ)sig(q̇s(ξ))

σdξ

≤d̄mKq̇msig(q̇m)
σ − K

∫ t

t−dm
q̇m(ξ)sig(q̇m(ξ))

σdξ

+ d̄sKq̇ssig(q̇s)
σ − K

∫ t

t−ds
q̇s(ξ)sig(q̇s(ξ))

σdξ

(20)

Combining Equations (19) and (20), we have

V̇1 + V̇2 + V̇3 ≤−
(

αm − 21−σKm

)
q̇T

msig(q̇m)
σ + 21−σKm

∣∣∣q̇T
m

∣∣∣ ∫ t

t−ds
|q̇s(ξ)|σdξ

+ q̇T
m
[
W̃mϕm(xm) + w̃m

]
−
(

αsKm

Ks
− 21−σKm

)
q̇T

s sig(q̇s)
σ + 21−σKm

∣∣∣q̇T
m

∣∣∣ ∫ t

t−ds
|q̇s(ξ)|σdξ

+
Km

Ks
q̇T

s
[
W̃sϕs(xs) + w̃s

]
+ d̄mKq̇msig(q̇m)

σ − K
∫ t

t−dm
q̇m(ξ)sig(q̇m(ξ))

σdξ

+ d̄sKq̇ssig(q̇s)
σ − K

∫ t

t−ds
q̇s(ξ)sig(q̇s(ξ))

σdξ

(21)
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Let
∣∣q̇T

m
∣∣ = AT , σ = p, r(t) =

(
21−σKmσ
K(1+σ)

)σ
, with Lemma 3, we can obtain

21−σKm

∣∣∣q̇T
m

∣∣∣ ∫ t

t−ds
|q̇s(ξ)|σdξ − K

∫ t

t−ds
q̇s(ξ)sig(q̇s(ξ))

σdξ

≤d̄s

(
Km21−σ

1 + σ

)1+σ( σ

K

)σ
q̇T

msig(q̇m)
σ

≤2d̄s

(
Km

1 + σ

)1+σ( σ

K

)σ
q̇T

msig(q̇m)
σ

(22)

According to the same method and derivation process, the following inequality can
also be further obtained

21−σKm

∣∣∣q̇T
s

∣∣∣ ∫ t

t−dm
|q̇m(ξ)|σdξ − K

∫ t

t−dm
q̇m(ξ)sig(q̇m(ξ))

σdξ

≤2d̄m

(
Km

1 + σ

)1+σ( σ

K

)σ
q̇T

2 sig(q̇2)
σ

(23)

Then

V̇1 + V̇2 + V̇3

≤−
[

αm − 21−σKm − d̄mK− 2d̄s

(
Km

1 + σ

)1+σ( σ

K

)σ
]

q̇T
msig(q̇m)

σ

−
[

αsKm

Ks
− 21−σKm − d̄sK− d̄m

(
Km

1 + σ

)1+σ( σ

K

)σ
]

q̇T
s sig(q̇s)

σ

+ q̇T
m
[
W̃mϕm(xm) + w̃m

]
+

Km

Ks
q̇T

s
[
W̃sϕs(xs) + w̃s

]
(24)

Finally, the derivative of V4 can be computed as

V̇4 = Λ−1
m1tr

(
W̃ T

m
˙̃Wm

)
+ Λ−1

m2ω̃T
m ˙̃ωm +

Km

KsΛs1
tr
(

W̃ T
s

˙̃Ws

)
+

Km

KsΛs2
ω̃T

s ˙̃ωs (25)

where W̃m = Ŵm −Wm, ω̃m = ω̂m −ωm, W̃s = Ŵs −Ws, ω̃s = ω̂s −ωs

V̇4 = Λ−1
m1tr

(
W̃ T

m
˙̂Wm

)
+ Λ−1

m2ω̃T
m ˙̂ωm +

Km

KsΛs1
tr
(

W̃ T
s

˙̂Ws

)
+

Km

KsΛs2
ω̃T

s ˙̂ωs (26)

Based on the adaptive rate, we can further obtain

V̇4 = −q̇m

[
W̃ T

mϕm(xm) + ωT
m

]
− Km

Ks
q̇s

[
W̃ T

s ϕs(xs) + ωT
s

]
(27)

Finally, we can obtain that

V̇1 + V̇2 + V̇3 + V̇4

≤− (αm − ψm)q̇T
msig(q̇m)

σ − (αs − ψs)q̇T
s sig(q̇s)

σ
(28)

where ψm = 21−σKm + d̄mK + 2d̄s

(
Km

1+σ

)1+σ(
σ
K
)
, ψs = 21−σKm + d̄sK + 2d̄m

(
Km

1+σ

)1+σ(
σ
K
)

Based on the controller gain coefficient condition set in Theorem 1, we have αm ≥ ψm
and αs ≥ ψs, and an important conclusion can be obtained as

V̇ = V̇1 + V̇2 + V̇3 + V̇4 ≤ 0 (29)

Obviously, the closed-loop teleoperation system is stable. In addition, the following
conclusions can be obtained that the velocities q̇m, q̇s ∈ L∞, the position-tracking error
qm − qs ∈ L∞, the adaptive parameter errors W̃m, W̃s, ω̃m, ω̃s ∈ L∞. As qm − qsd =
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qm − qs +
∫ t

t−ds
q̇sdξ, then qm − qsd ∈ L∞. Similarly, qs − qmd, sm, ss ∈ L∞ can be further

obtained. In order to prove the global asymptotic stability of the system, it is also necessary
to prove the boundedness of the acceleration signals q̈m and q̈s.

Firstly, taking the analysis of the master robot as an example, based on the dynamics
model and control law of the master robot, the following expression of acceleration can be
obtained as

q̈m = M−1
m

[
−Cmq̇m + Kmsig(sm)

σ − 2Kmsig(qm − qsd)
σ − αmsig(q̇m)

σ + W̃ T
mϕm + ω̃m

]
(30)

With the qm, qm − qsd ∈ L∞, and Property 1, 3, and 4, it can be deduced that q̈m ∈ L∞.
Considering the slave robot, we can get a similar conclusion as q̈s ∈ L∞. With Barbalt’s
Lemma, it is obvious that there has q̇m, q̇s → 0, when t→ ∞.

Based on the above formula, it can be found that if qm − qs is held, we must prove
q̈m → 0 and bounded

...q m. By differentiation of the above equation on both sides, there is

...q m =
dM−1

m
dt

[
−Cmq̇m + Kmsig(sm)

σ − 2Kmsig(qm − qsd)
σ − αmsig(q̇m)

σ + W̃ T
mϕm + ω̃m

]
+ M−1

m

[
−Cmq̈m − Ċmq̇m + Kmσdiag|sm|σ−1 ˙sm + W̃ T

mϕ̇m + ˙̂W T
mϕm + ω̇m

−2Kmσdiag|qm − qsd|σ−1(q̇m −
(
1− ḋs

)
q̇s
)
− αmσdiag|q̇m|σ−1q̈m

] (31)

Based on the above properties and conclusions, it is obvious that
...q m,

...q s ∈ L∞. There-
fore, with Barbalt’s Lemma, q̈m, q̈s → 0 when t→ ∞. Finally, based on the definition of the
RBF neural network, we know that qm − qs → 0 when t→ ∞ can be ensured.

This completes the proof.

Next, based on the conclusion of Theorem 1, the proof of the finite-time control
performance of Theorem 2 is given here.

Proof. The proof of this theorem is investigated using the following Lyapunov function
V̄ as

V̄ =
1
2

q̇T
m Mmq̇m +

1
2

q̇T
s Msq̇s (32)

Based on the previous proof process, the derivative of V̄ can be expressed as

˙̄V =q̇T
m
[
2Kmsig(sm)

σ − 2Kmsig(qm − qsd)
σ − αmsig(q̇m)

σ

+W̃mϕm(xm) + ω̃m − Kmsig(sm)
σ
]

+
Km

Ks
q̇T

s
[
2Kssig(ss)

σ − 2Kssig(qs − qmd)
σ − αssig(q̇s)

σ

+W̃sϕs(xs) + ω̃s − Kssig(ss)
σ
]

(33)

With Lemma 2, we can obtain

˙̄V ≤− (αm − 2Km)q̇T
msig(q̇m)

σ + q̇T
m
[
W̃mϕm(xm) + ω̃m − Kmsig(sm)

σ
]

−
(

αsKm

Ks
− 2Km

)
q̇T

s sig(q̇s)
σ + q̇T

s
[
W̃sϕs(xs) + ω̃s − Kssig(ss)

σ
] (34)

Based on boundedness in Theorem 1 of W̃m, W̃s, ω̃m, ω̃s, sm, ss,ϕm,ϕs, q̇m, q̇s, there is

˙̄V ≤− κmq̇T
msig(q̇m)

σ − κsq̇T
s sig(q̇s)

σ + Φm + Φs (35)

where κm = αm − 2Km, κs = αsKm
Ks
− 2Km,

∣∣q̇T
m
∣∣∣∣W̃mϕm(xm) + ω̃m − Kmsig(sm)σ

∣∣ ≤ Φm,∣∣q̇T
s
∣∣∣∣W̃sϕs(xs) + ω̃s − Kssig(ss)σ

∣∣ ≤ Φs. if Φ = Φm + Φs, we can get

˙̄V ≤− 2
σ+1

2 κm

[λmax(Mm)]
σ+1

2

(
1
2

q̇T
m Mmq̇m

) σ+1
2
− 2

σ+1
2 κs

[λmax(Ms)]
σ+1

2

(
1
2

q̇T
s Msq̇m

) σ+1
2

+ Φ (36)
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If Υ is defined as

Υ = min

{
2

σ+1
2 κm

[λmax(Mm)]
σ+1

2
,

2
σ+1

2 κs

[λmax(Ms)]
σ+1

2

}
(37)

Then with the Lemma 2

˙̄V ≤− Υ

[(
1
2

q̇T
m Mmq̇m

) σ+1
2

+

(
1
2

q̇T
s Msq̇m

) σ+1
2
]
+ Φ

≤− Υ
[(

1
2

q̇T
m Mmq̇m

)
+

(
1
2

q̇T
s Msq̇m

)] σ+1
2

+ Φ

≤− ΥV̄
σ+1

2 + Φ

(38)

Finally, invoking Lemma 1 and according to Theorem 1, the finite-time control perfor-
mance of the closed-loop teleoperation system is obtained. This completes the proof.

4. Simulation Results and Analysis

In this section, simulation experiments are designed and implemented to analyze and
verify the effectiveness of the proposed control structure. The simulation is implemented in
the Simulink environment of MATLAB 2021b. In the simulation, a pair of two manipulators
with 2-dof revolute joints is employed. In addition, in order to better simulate the interaction
process between the operator, teleoperation system, and environment, the operator dynamic
is introduced at the master robot side and the environment contact model is also employed
at the slave robot side. These models are assumed to be stiffness-damping models. The
detailed mathematical descriptions of operator force Fh and environmental force Fe are
shown as

Fh = bhẊm + kh(Xm − Xm0) + fh

Fe = beẊs + ke(Xs − Xs0)
(39)

where for j = m, s, Xj and Ẋj are the end position and velocity vectors of the master/slave
robots in the Cartesian coordinate system. Xj can be obtained through the forward kine-
matic of the robot, and Ẋj can be calculated through Jacobian matrices with the joint
velocities. bh and kh are the damping and stiffness coefficients of the operator force dy-
namic. be and ke are the damping and stiffness coefficients of the environment force model,
respectively. fh is the external operator force vector. In this simulation, the values of kh
and ke are set as 10 N/(m/s), bn is 5 N/(m/s), and be is 2 N/(m/s). Xm0 and Xs0 are set as
[1.366, 1]Tm. The principle diagram of the simulation is shown in Figure 1.

The dynamic matrices and vectors Mj, Cj, Gj, and Fj are defined as follows [37]

Mj =

[
mj11 mj12
mj21 mj22

]
, Cj =

[
cj11 cj12
cj21 cj22

]
, Gj =

[
gj1
gj2

]
, Fj =

[
f j1
f j2

]
.

where mj11 = l2
j1(mj1 + mj2) + lj2mj2(2lj1 cos qj2 + lj2), mj12 = mj21 = l2

j2mj2 + lj1lj2mj2

cos qj2, m22 = l2
j2mj2, c11 = −lj1lj2mj2 sin qj2 ˙̇qj2, c12 = −lj1lj2mj2 sin qj2(q̇j1 + q̇j2), c21 =

lj1lj2mj2 sin qj2, c22 = 0, gj1 = (mj1 + mj2)lj1g cos(qj1) + mj2lj2g cos(qj1 + qj2), gj2 =
mj2lj2g cos(qj1 + qj2), f j1 = 0.5q̇j1 + 0.2sign(q̇j1), and f j2 = 0.5q̇j2 + 0.2sign(q̇j2). For sim-
plicity, the parameters of the master robot are defined as [24] mm1 = 4.0 kg, mm2 = 0.5 kg,
lm1 = lm2 = 1.0 m. The parameters of the slave robot are set as ms1 = 3.4 kg, ms2 = 0.25 kg,
ls1 = ls2 = 1.0 m.
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Environment

Communication
Master 

controller
Slave 

controller

Hand

Figure 1. The block diagram of the simulation experiment.

The time-varying communication delays are considered in the simulation experiments,
which are shown in Figure 2. The curves of the external force fh applied by the operator
in the x-direction and y-direction are shown in Figure 3. It can be seen that from 2 to 7 s,
the operator applied an external force in the negative x-direction and positive y-direction
to change the end position of the master robot. Then, the external force injected by the
operator disappears to zero. However, it should be noted that at this time, the operator and
environment still have forces acting on the master and slave robots. This simulation factor
is not available in some related work.

0 5 10 15

0.5

1

0 5 10 15

0.5

1

Figure 2. The time-varying communication delays dm and ds.

Figure 3. External operator forces fh.

Theorems 1 and 2 are used to set controller gains in the simulation to guarantee the
stability and finite-time control performance of closed-loop teleoperation systems. In the
master and slave controllers, the controller gain parameters are selected as Km = Ks = 0.8,
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αm = αs = 5, σ = 8/11. The gains of adaptive learning rate are selected as Λm1 = Λs1 = 0.9,
Λm2 = Λs2 = 0.9. The initial joint position of the master and slave robots are qm0 = [pi/4, pi/6]T

and qs0 = [pi/6, pi/8]T , respectively. The initial joint velocities q̇m0 and q̇s0 are zeros.
We carried out three parts of simulation experiments to verify the stability of the closed-

loop system, the influence of power on the control performance, and the advantages of
finite-time control performance. The results of these simulations are shown in Figures 4–17,
respectively.

4.1. Verification of System Stability

Figures 4 and 5 show the position-tracking performances of the closed-loop system.
Figure 4 represents that the joints of master and slave robots have position deviation with
the action of the extra force of the operator. When the extra injection forces of the operator
are removed, the joint positions of the master and the slave robots quickly realize mutual
tracking. Figure 5 gives the results of the joint position difference between the master robot
and the slave robot at the same time. These results vividly present the position tracking
effect of the master and slave robots. Seven to eight seconds after the injection forces are
removed, the master robot and slave robot quickly realize the position-tracking performance
without static error. These results demonstrate that stable and efficient position-tracking
control performance can be achieved with the proposed control method. In addition, the
results also verify some important conclusions obtained from the above theorem proving.

Figure 4. Joint positions of the master and slave robots.

Figure 5. Joint tracking errors performances of teleoperation system.

Figure 6 shows the curves of operator force and environmental force. The upper
subfigure is the operator force, and the lower one is the environmental force. It can be
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seen that in the teleoperation system, the operator exerts a non-zero force on the master
robot, and the environment also exerts a force on the slave robot. In addition, the stability
of the operator and environmental force results further shows that the closed-loop system
is stable. Figure 7 shows the control values of the master and slave controllers.

Figure 6. Results of operator force and environmental force.

Figure 7. The control values of the master and slave controllers.

In order to verify the boundedness of adaptive learning parameters, the curves of
adaptive learning parameters Ŵm, Ŵs, ω̂m, and ω̂s are also shown in Figures 8 and 9 below.

Figure 8. The adaptive parameters of Ŵm and Ŵs.



Mathematics 2023, 11, 1486 18 of 24

Figure 9. The adaptive parameters of ω̂m and ω̂s.

The above simulation results verify the statement of Theorem 1 and the conclusions
obtained from its proof expression. The whole closed-loop teleoperation system is stable,
and the state variables for constructing the Lyapunov function are also bounded.

4.2. Effect of the Power Coefficient

In the second part of the simulation, the influences of the power parameter σ of the
master and slave controllers are shown and analyzed. We choose the different power values
of σ as σ = 1, 8/11, 5/11, 2/11. In this simulation, the initial position status of the master
and slave robots are all set to 0. Figures 10 and 11 show the control results based on these
power parameters.

Figure 10. Position tracking errors between the master and the salve with different values of σ.

From Figures 10 and 11, it can be seen that the larger the power is, the slower the
convergence rate has. When σ = 1, the control scheme is degraded to the traditional
proportional damping injection controller. However, the faster convergence speed will
cause the oscillation of the control torque, which further limits its application in the actual
robot system. It also further shows that the finite-time control structure proposed in this
paper has a faster convergence rate than the traditional proportional damping injection
control structure.
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Figure 11. Control torques for the master and slave robots with different values of σ.

4.3. Comparison of Control Performance

For this subsection, we chose three representative P+d control methods, applied them
in the simulation, and compared the results of these methods with the proposed control
scheme to confirm the effectiveness. There are three instances created based on these P+d
control strategies. Case 1: in [23], De Lima proposed a simplified P+d control method, and
gravity compensation is also considered in the controller. In the simulation experiment, the
gravity torque vector of the control law in case 1 is inaccurate, and we intend to demonstrate
the benefits of the adaptive method in our method by evaluating the position-tracking
performance with Case 1. Case 2: in [12], Yang introduced the adaptive term to compensate
for the gravity torque and proposed an adaptive P+d control strategy. Case 3: in [22],
this control strategy employs hybrid control terms, and a new control scheme is designed
based on the P+d control approach. In Case 3, the operator and environment torques
need to be measured and sent into the controllers. In the proposed approach, the RBF
neural network is introduced to estimate the external force, and we expect to evaluate the
performance of external force estimation by analyzing and contrasting the method of Case
3. Additionally, as these three comparison approaches are non-finite-time performance
control structures, we expect to validate the efficacy of the proposed control method by
contrasting the simulation results of these non-finite-time methods. Figures 12–17 show
the detailed simulation results and comparisons.

The joint position-tracking performances based on the Case 1 method are given in
Figures 12 and 13. These results show that the position-tracking performances of the master
and slave robots can reach stability after the additional injection forces are removed. The
time when the final tracking error converges into the stable region is around 10.5 s. From
the curve of position-tracking errors in Figure 13, it can be seen that the proposed control
approach has a higher convergence accuracy and speed than the Case 1 method.
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Figure 12. Joint positions with the method in Case 1.

Figure 13. Comparisons of joint tracking errors with the proposed method and Case 1.

Figures 14 and 15 show the joint position tracking of the master and slave robots with
the method in Case 2. It can be seen that the position-tracking performance in the method
of Case 2 has steady-state errors in the first joint. In the control structure of Case 2, the
authors only introduce the adaptive control method in the slave controller. However, the
proposed finite-time control scheme still has advantages in the convergence speed and
accuracy of position tracking.

Figure 14. Joint positions with the method in Case 2.
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Figure 15. Comparisons of joint tracking errors with the proposed method and Case 2.

Figures 16 and 17 show the joint position tracking of the master/slave robots with the
method in Case 3. In Case 3, the author has proved that with the action of operator force
and environmental force, when t→ ∞, qm − qs → 0 is held. Therefore, theoretically, if the
time is long enough, the convergence precision of Case 3 is similar to the finite-time control
method we proposed. The simulation results illustrate this point. However, it is clear that
the convergence speed of the finite-time control performance is faster, demonstrating the
efficacy of the suggested control method.

Figure 16. Joint positions with the method in Case 3.

Figure 17. Comparisons of joint tracking errors with the proposed method and Case 3.
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The comparisons of these three P+d control methods show that the proposed finite-
time control scheme has higher convergence speed and accuracy in position tracking error
performances. From Figures 15–17, it can be seen that based on the proposed method,
the position errors of the master–slave robot have converged to a small neighborhood
of 0 in about 8 s, while the performances with Case 1 and Case 2 have converged to a
relatively stable state in about 11 s and 9.5 s, respectively, and neither of them can converge
to the small neighborhood of 0, which means that there are steady-state errors. The root
mean square error (RMSE) index is introduced here to quantify the speed and accuracy of
position-tracking performances of the proposed approach and these three methods. The
RMSE is defined as follows:

RMSE =

√
1
n

n

∑
i=1

(ei)
2 (40)

where ei represents the position tracking error of each joint of the robot, n denotes the length
of the error sequence. The smaller the RMSE, the faster the tracking and the higher the
accuracy of the position performance. In order to avoid the impact of the extra force, only
the RMSE values of the system after 8 seconds are analyzed and calculated. The RMSEs of
the position tracking errors with these three control schemes are shown in Table 1. It can be
seen that the tracking errors with the proposed control method have smaller RMSE values,
which means that the master and slave robots have better position-tracking performance.

Table 1. RMSE of position-tracking errors with different control methods.

Index Proposed Case1 Case2 Case3

RMSE of joint 1 0.0036 0.1573 0.3371 0.0127
RMSE of joint 2 0.0092 0.2126 0.0132 0.0099

5. Conclusions

This paper presents a new finite-time controller for the time-delay teleoperation system,
whereas the majority of existing proportional damping injection controllers only achieve
asymptotic position-tracking stability. Based on the conventional structure of proportional
damping injection control, a finite-time control structure is designed by introducing non-
integer power terms, and position tracking finite-time control performance is achieved.
Compared with other finite-time control strategies, the proposed control strategy has a
simple structure and fewer gain parameters. In addition, the RBF neural network and
adaptive method are employed to estimate the uncertain dynamics and external injection
forces. In the proof of stability, the stability and boundedness of the system and state
are demonstrated, followed by the finite-time convergence performance, which offers
a novel approach to the finite-time performance analysis of damping injection control.
Simulation results prove the bounded stability of the closed-loop system and present that
the proposed method has a faster convergence speed and higher convergence precision
than other methods. However, some considerable works still need to take place. First,
experiments should be performed to validate the proposed control strategy. Second, the
study of the communication environment is mostly predicated on the ideal condition, and
the analysis of packet loss and other issues are needed. Finally, further improvement of
this finite-time control structure should be considered.
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