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Abstract: Potato is one of the major cultivated crops and provides occupations and livelihoods
for numerous people across the globe. It also contributes to the economic growth of developing
and underdeveloped countries. However, potato blight is one of the major destroyers of potato
crops worldwide. With the introduction of neural networks to agriculture, many researchers have
contributed to the early detection of potato blight using various machine and deep learning algorithms.
However, accuracy and computation time remain serious issues. Therefore, considering these
challenges, we customised a convolutional neural network (CNN) to improve accuracy with fewer
trainable parameters, less computation time, and reduced information loss. We compared the
performance of the proposed model with various machine and deep learning algorithms used for
potato blight classification. The proposed model outperformed the others with an overall accuracy of
99% using 839,203 trainable parameters in 183 s of training time.

Keywords: blight; deep learning; machine learning; potato

MSC: 68T01

1. Introduction

The agricultural industry is the greatest contributor to food, income, and jobs globally.
In India, the industry accounts for 18.0% of the country’s GDP, and 53.3% of its workforce [1],
comparable to other low- to middle-income countries. Over the last three years, the
percentage of the country’s total GDP contributed by agriculture’s gross value added
(GVA) has increased from 17.6% to 20.2% [2,3], supporting India’s economic expansion.
Plant illnesses and insect infections may affect agriculture and, thus, the quality of food
production, but it is known that preventive drugs are inefficient for preventing epidemic
or endemic diseases. Early monitoring and detection of crop diseases with adequate crop
protection systems can help prevent production quality losses, and this can be accomplished
by monitoring and identifying diseases in crops as early as possible.

Late blight due to the oomycete Phytophthora infestans (henceforth P. infestans) has
caused the most damage to potato (Solanum tuberosum L.) crops in recorded history [4]. Many
potato types produced in Colombia are susceptible to late blight [5,6], and the disease is
difficult to control without using significant amounts of pesticide. The severity of late blight is
often evaluated visually by determining what percentage of the crop’s foliage is infected [7,8].
However, visually assessing the severity of a disease is labour intensive, time-consuming,
and not highly replicable due to the requirement for professional (subjective) intervention.
Infections and bug infestations leave distinct patterns that can be exploited to establish accurate
diagnoses [9]. In addition, farmers’ or specialists’ diagnoses of plant diseases may not be
accurate [10], potentially leading to inappropriate applications of drugs that may have a
detrimental effect on the quality of the crop and eventually damage the environment.

Recent developments in computer imaging have offered solutions to the detection
challenges that farmers are currently facing [9]. Since the spots indicating infection first
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appear as dots and patterns on the leaves, the research community has produced several
different approaches for accurately identifying and classifying plant diseases. Conventional
image processing, which requires the use of manual methods for tasks, such as feature
extraction and segmentation, is still used today [11]. Dubey et al. [12] used a K-means
clustering strategy to deliver a multiclass support vector machine (SVM) classification for
segregating contaminated leaf sections. Yun et al. [13] used a probabilistic neural network
(NN) to extract the statistical and meteorological characteristics of the data. Numerous
conventional models, such as the one created by Liu et al. [14], which combines an SVM
and K-means clustering with a backpropagation NN, have been developed to identify
plant diseases. Since the advent of AI, numerous computer imaging research projects have
focused on the use of machine learning (ML) and deep learning (DL) [15,16] models to
increase the accuracy of disease recognition.

A study [17] employed CNN architectures, such as AlexNet, GoogLeNet, and ResNet,
as basic models for diagnosing disease in tomato leaf samples. Histograms of training and
validation accuracy enabled the performance of the model to be visualised. Of the various
CNN architectures, ResNet emerged as the model that performed best. LeNet architecture
has also been used to identify banana leaf disease, and the model was evaluated in colour
and greyscale using the conditional average (CA) and the F1-score [18]. Both colour and
greyscale evaluations were performed using these metrics. In [19], a comparison was made
between the architectures of five different types of CNNs, referred to by their various names:
AlexNet, AlexNetOWTbn, GoogLeNet, Overfeat, and VGG. The research employed many
state-of-the-art DL models, including GoogLeNet, ResNet-50, ResNet-101, Inception-v3,
InceptionResNetv2, and SqueezeNet. In [20], a modern DL model, known as Inception-v3,
was used to diagnose a disease affecting cassava plants.

In the research, the original PlantVillage dataset has been balanced by increasing the
healthy potato leaves that were fewer as compared to the rest of the classes in dataset.
For unbiased balancing, an algorithm is proposed for random selection of healthy potato
leaves and duplicating them. After the detailed study of CNN model, it was realized that
reduction in loss of salient features of the images may enhance the accuracy of the model.
Therefore, in the proposed model, number of pooling operations has been reduced in
comparison to convolutional operation. With multiple experiments, it has been found that
the approximate 3:2 ratio of convolution and pooling operations in the model has achieved
better performance in comparison with the basic CNN model and other existing works.

Providing a high-accuracy model for detecting potato blight by minimising the loss of
salient features due to the pooling layer and enhancing the feature extraction process. The
rest of this paper is organised as follows: Section 2 presents the literature review; Section 3
explains the methods and materials, and the data pre-processing and balancing; Section 4
describes the proposed architecture; Section 5 presents the result and discussion; Section 6
outlines the comparative analysis; and Section 7 provides the conclusion and future scope.

2. Literature Review

The powerful recognition and classification capabilities of CNNs, which work by ex-
tracting low-level complex information from images, have attracted significant attention.
CNNs are preferred to earlier approaches for automatically recognising plant diseases due
to the higher performance of CNNs [21]. The CNN-based predictive model described by
Sharma et al. [22] can be used to classify paddy plants by applying image processing to the
associated images. Asritha et al. [23] also used a CNN in their research to identify diseases
in rice paddies. The classification of plants often requires between four and six layers of
CNNs to be used by scientists. Mohanty et al. [24] accomplished the classification of plant
illnesses, and their identification and segmentation, by employing a CNN trained with a
transfer learning methodology. CNNs have been applied to a broad range of investigations,
and improved outcomes have been reported in some cases; however, the datasets used in
these studies were not truly diverse [25]. Narayanan et al. [26] suggested the use of a hybrid
CNN to identify the many diseases that can harm banana trees. They coupled a fusion SVM
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with a CNN and used a median filter to maintain the standard image dimensions without
adjusting the default settings of the raw input image. Jadhav et al. [27] proposed the use of
a CNN that had previously been trained to spot illnesses in soybean plants as a means of
detecting and identifying plant diseases. However, despite the better results, the model was
inadequate in terms of the variety of illnesses it could categorise. Jadhav et al. [28] improved
the performance of DL models by first proposing a novel histogram modification technique
for synthesising synthetic picture samples from low-quality test-set images.

Following in the footsteps of Olusola et al., Abbas et al. [29] developed a conditional
generative adversarial network to construct a library of synthetic pictures of the leaves of
tomato plants. In the past, capturing or collecting data in real time was not viable owing
to the high costs involved, the scarcity of resources, or both. Today, however, real-time
data capture and collection are becoming more practical. For example, Anh et al. [30]
presented a multi-leaf classification model that was based on a benchmark dataset using a
pre-trained MobileNet CNN model, which they found to be excellent for classification, with
an accuracy of 96.58%. In addition, a multilabel CNN was described for the classification
of numerous plant diseases based on transfer learning approaches, such as DenseNet,
Inception, Xception, ResNet, VGG, and MobileNet [31]. The authors of this study claimed
that they were the first to use a multi-label CNN to categorise 28 distinct illnesses that
may affect plants. In the context of the article [32], an ensemble classifier was proposed
as a method for categorising the diverse illnesses that can affect plants. PlantVillage and
Taiwan Tomato Leaves were used in the evaluation process to determine which ensemble
classifier performed best. The EfficientNet model, which uses a CNN, was developed by
Pradeep et al. [33] to categorise several labels simultaneously. They determined that CNN’s
hidden layer network was superior in its ability to detect plant diseases. However, when
compared to industry norms, the model did not measure up. The authors of [34] offered a
loss-fused, resilient CNN that achieved a classification accuracy of 98.93% based on the
freely available PlantVillage benchmark dataset. Later, Enkvetchakul and Surinta [35]
introduced a CNN network that used a transfer learning technique to diagnose two plant
diseases. Abade et al. [36] evaluated CNN algorithms for the identification of plant diseases.
The reviewers considered 121 articles published between 2010 and 2019, concluding that
TensorFlow was the most commonly used framework, and PlantVillage was the most
widely used dataset. Dhaka et al. [37] provided an overview of the principles underpinning
the use of CNN models to identify diseases in leaf samples and examined a selection of
CNN models, pre-processing techniques, and foundational frameworks. Another group of
researchers, Nagaraju et al. [38], analysed and discussed the best datasets, pre-processing
methodologies, and DL algorithms for a variety of plants.

According to Kamilaris et al. [39], DL approaches have the potential to solve multi-
ple issues that arise in the agricultural sector. According to their findings, DL methods
performed significantly better than more traditional approaches to image processing. Fer-
nandez Quintanilla et al. [40] conducted research to evaluate weed monitoring systems for
agricultural crops. They focused on ground-based and remote-sensing weed monitoring in
agricultural areas and concluded that monitoring is necessary for the effective management
of weeds. They anticipated that the data obtained by many sensors would be kept in the
cloud and used effectively. Lu et al. [41] conducted a review and showed for the first time
that plant diseases could be classified through the application of a CNN.

Golhani et al. [42] wrote a review article about the use of hyperspectral data for
identifying plant leaf diseases. They reviewed the status of the field, its potential future
applications, and NN techniques for accelerating SDI development, Bangari et al. [43]
zeroed in on potato blight as the illness of interest. After reviewing the relevant research,
the researchers concluded that CNNs are more effective than other methods of disease
detection. In addition, they discovered that CNNs performed a significant role in achieving
maximum accuracy in disease identification.

Iqbal et al. [44] implemented various ML algorithms using 450 potato leaf images from
the PlantVillage dataset. They declared that the random forest (RF) algorithm outperformed
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the other algorithms. Singh et al. [45] used 300 potato leaf images from the PlantVillage
dataset and divided them into three equal classes: early blight, late blight, and healthy.
The authors used GLCM to extract the features of dataset images and used these features
to classify potato blight using an SVM with an overall accuracy of 96%. Islam et al. [46]
segmented potato leaf images extracted from the PlantVillage dataset and used the thresh-
old method to segment the regions of interest (RoI) in the images. They then used the
segmented images to train the model using the SVM method and achieved 95% accuracy
with 300 samples. Chakraborty et al. [47], using potato leaf images from the PlantVillage
dataset, implemented and compared the performance of ResNet 50, VGG 16, MobileNet,
and VGG 19 for potato blight classification. The VGG 19 architecture achieved the highest
accuracy, at 92.69%. The authors then fine-tuned the VGG 19 architecture and achieved
an accuracy of 97.89%. Mahum et al. [48] added extra layers to DenseNet architecture and
evaluated the performance of the model by classifying potato blight using potato images
from the PlantVillage dataset. The modified DenseNet model achieved a high accuracy of
97.2% compared to the basic DenseNet architecture.

3. Materials and Methods
Data Balancing and Augmentation

To train, validate, and evaluate the proposed model, we acquired photos of potato leaf
diseases from the PlantVillage dataset, which is open to the public. The collection included
photos of three distinct potato leaf conditions: late blight, early blight, and healthy. Each
image in the dataset had a resolution of 256 × 256 pixels. The pictures of early and late
blight depicted the two stages of the devastating potato leaf disease, and the images of
healthy potato leaves showed leaves in a normal, healthy state. We assigned the values 0, 1,
and 2 as indices for the three classes in the dataset. Table 1 demonstrates the distribution of
the total number of photos across each category of the dataset. However, we found a much
lower number of healthy potato blight photos in the dataset than images of the other two
classes of potato blight.

Table 1. Number of images in each class of PlantVillage dataset.

Class Count

Late blight 1000
Early blight 1000

Healthy leaves 152
Total 2152

To balance the data, we increased the number of images of healthy potato leaves by
randomly selecting 10 healthy potato leaf images and creating 10 duplicate copies of each.
We repeated this process five times. Algorithm 1 shows the balancing process for healthy
potato leaf images in the dataset. Table 2 shows the total count of images in each class in
the dataset after balancing; there were 1000 images for early and late blight in each class
and 652 healthy potato leaf images. Randomly selected sample images for each class are
shown in Figure 1 for visualisation.

Table 2. Count of images in each class in the dataset after balancing.

Class Count

Early blight (0) 1000
Late blight (1) 1000

Healthy leaves (2) 652
Total 2652
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Algorithm 1. Data balancing.

Input: Healthy potato leave image directory from the PlantVillage dataset.
Output: Healthy potato leave image directory with an expanded number of images.

1: i = 0
2: if (i ≤ 4)
3: Select 10 random images
4: Create 10 × 10 copies of each image
5: i = i + 1
6: goto step 2
7: else
8: stop
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Early blight (g–i) Healthy.

To accelerate the computation, we divided the dataset into 83 batches containing
32 images each and placed the remaining images in the last batch. We randomly split
the dataset into training, testing, and validation samples with ratios of 0.6, 0.2, and 0.2,
respectively, and a shuffle size of 10,000. The distributions of the training, testing, and
validation images are shown in Table 3.
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Table 3. Number of images in each training, testing, and validation class.

Class Early Blight Late Blight Healthy Total

No. of training samples 789 795 524 2108
No. of testing samples 107 109 72 288

No. of validation samples 84 97 75 256

We normalised the data to enhance the speed of computation and augmented the
training data to vigorously train the model and avoid overfitting. For augmentation, the
images were horizontally flipped, vertically flipped, rotated between −20 and +20, sheared
between−40 and +40, and shifted by width and height within a range of 0.2. A visualisation
of the augmentation process is shown in Figure 2.
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4. Proposed Model

We used a customised CNN to accurately detect blight on potato leaves. The potato blight
classification process comprised data balancing, augmentation, splitting, training, validation,
and testing. A flowchart of the working procedure is shown in Figure 3. The data were
shuffled, resized, and distributed into batches. For data pre-processing, the unbalanced data
were balanced by increasing the number of healthy potato leaf images. Thereafter, the data
were split into training, testing, and validation data; the training data were augmented using
various parameters and normalised between 0 and 1, whereas the testing and validation data
were normalised between 0 and 1. The training and validation data were used to train the
model, and the testing data were used to evaluate its performance.

D′ = {(x_i, y_i) | (x_i, y_i) ∈ D}

where D is the dataset and D′ is the shuffled dataset, x_i is the input feature vector for the
i-th example in D, y_i is its corresponding label, and the order of the elements (x_i, y_i) in
D’ is randomly permuted.

D′ = {(x′_i, y′_i) | (x′_i, y′_i) ∈ D′}

D′_train = {(x′_i, y′_i) | i ∈ [1, n_train]}

D′_test = {(x′_i, y′_i) | i ∈ [n_train + 1, n]}

where D′_train is the training dataset and D′_test is the testing dataset, n_train is the number
of examples assigned to the training dataset, and n is the total number of examples in D′.

n_train = α n

n_test = (1 − α) n

where α is a value between 0 and 1 that represents the proportion of D′ assigned to D′_train.
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The proposed classification model contains two blocks, each of which has a pair of
convolution layers followed by a pooling layer. Both blocks are sandwiched between the
pair of convolution layers and the pooling layer. The number of blocks can vary according
to the application and the dataset. We intentionally reduced the pooling layers compared
with the convolutional layers to reduce the loss of salient features, because pooling layers
are prone to information loss due to dimensionality reduction [49,50]. We used the ReLU
activation function in the convolution process to reduce linearity and vanishing gradient
problems, thus restricting all the negative values in the feature maps and only allowing the
positive values. The mathematical equation is shown in Equation (1).

f (x) =
{

x f or x ≥ 0
0 f or x < 0

(1)

A graphical representation of the working procedure of the ReLU activation function
is shown in Figure 4, where the red colour is non-linearity and sky blue colour is rectifier.
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To train the model, we used images with sizes of 256, 256, and 3. In the initial
convolution layer of the model, we employed 32 kernels of 3 × 3 size with the ReLU
activation function, followed by a pooling layer with a window size of 2 × 2. In the model,
the output feature maps of the initial layers are assigned to Block 1, which comprises a
pair of convolution layers followed by a max pooling layer. Each convolution layer has
64 kernels of size 3 × 3 and a max pool layer with a 2 × 2 window. The generated Block 1
feature maps are passed as inputs to Block 2, and the composition of Block 2 is the same
as Block 1, except for the number of kernels. In Block 2, 128 kernels are used instead of
64 kernels. The output feature maps of Block 2 are further passed as inputs to the last layer
of the model, which is the same as the first layer. In the last step, the output of the pooling
layers is flattened before being used as an input to a fully connected NN. This network has
two hidden layers and an output layer with three neurons, which is equal to the number
of classes included in the dataset. To perform multiclass classification, we used SoftMax
activation in the output layer. The architecture of the model is shown in Figure 5.
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5. Results

Here, we discuss the experimental setup, model evaluation, performance analysis,
and comparison of the model with other existing models.

5.1. Experimental Setup

We used the Kaggle platform rather than a GPU to train and evaluate the proposed
model. The model was implemented using TensorFlow version 2.6.4 with a total of
2652 potato leaf images. In the dataset, the images were distributed almost equally across
the three classes. We trained the model using 2108 augmented images for 45 epochs and
assessed it using 288 actual images. We found that the model had adequate performance,
with 839,203 trainable parameters in 183 s of training time. Furthermore, we used an Adam
optimiser with a learning rate of 0.001 to adjust the weights of neurons in the NN, as
summarised in Table 4.

Table 4. Broad summary of the model.

Optimiser Batch Size # Epochs Activation
Functions

Learning
Rate

# Trainable
Parameters

Adam 32 45 ReLU 0.001 839,203

5.2. Evaluation Metrics and Performance Analysis

We evaluated the performance of the model using a confusion matrix to represent
the classwise performance of the proposed model, as shown in Figure 6. The indices 0,
1, and 2 referred to the corresponding classes (i.e., early blight, late blight, and healthy,
respectively). In addition, using a confusion matrix, we calculated the true and false positive
and negative values for each class to analyse the performance of the model according to
various parameters.

The term ‘true positive’ (TP) refers to the total number of pictures that were accurately
predicted in the positive class, whereas ‘false positive’ (FP) refers to the total number of
incorrectly predicted pictures in the positive class. Similarly, ‘true negative’ (TN) reflects the
total number of accurately predicted photos in the negative class, whereas ‘false negative’
(FN) reflects the total number of incorrectly predicted images in the negative class. Many
additional measures, such as accuracy, precision, recall, and F1-scores, were derived based
on the confusion matrix.
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Accuracy is the ratio of the TN to the total number of predictions (Equation (2)):

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
(2)

Precision can be defined as the ratio of TP to the total number of positive predicted
samples, as shown in Equation (3):

recesion (PRE) =
TP

TP + FP
(3)

Recall is the ratio of TP to the sum of the TP and FN samples (Equation (4)):

Recall (REC) =
TP

TP + FN
(4)

The F1-score can be calculated by taking a harmonic mean of the precision and recall
values, as shown in Equation (5):

F1 score =
2 ∗ TP

2 ∗ TP + FP + FN
(5)

The class wise values for all the evaluation parameters for the proposed model are
summarised in Table 5.

Table 5. Performance analysis of the proposed model with testing data.

Classes TP FP TN FN Accuracy Precession Recall F1-Score

Early blight 103 3 185 0 0.99 1.0 0.97 0.98
Late blight 107 0 181 3 0.99 0.97 1.0 0.99

Healthy 78 0 210 0 1.0 1.0 1.0 1.0

The model achieved an inclusive accuracy of 99%. Figure 7 shows examples of actual and
predicted labelled results, along with their confidence values. The training process for the model,
represented by accuracy and loss curves, is shown in Figure 8, which reveals a sudden rise and
steep fall in accuracy and loss up to the seventeenth epoch but slow progress up to the thirty-fifth
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epoch and stagnant growth up to the forty-fifth epoch. Prediction = model.Predict(img_array),
where img_array is an input image converted to array.
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The k-fold cross-validation approach was utilized to assess the model’s performance.
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Table 6. The performance metrics of Accuracy, Precision, Recall, and F1-score using the k-fold
cross-validation method (k = 5).

Folds k = 1 k = 2 k = 3 k = 4 k = 5

Class 0 1 2 0 1 2 0 1 2 0 1 2 0 1 2

Precision 0.9765 0.9595 0.9172 1.0000 0.9268 0.9394 0.9854 0.9550 1.0000 0.9663 0.9770 0.9852 0.9531 0.9515 1.0000

Recall 0.9674 0.9071 1.0000 0.9282 0.9596 1.0000 0.9621 0.9845 0.9920 0.9829 0.9636 0.9852 0.9632 0.9561 0.9778

F1-Score 0.9720 0.9326 0.9568 0.9628 0.9429 0.9688 0.9736 0.9695 0.9960 0.9745 0.9703 0.9852 0.9581 0.9538 0.9888

Table 7. Average mean and standard deviation for training, testing, and validation dataset used in
k-fold cross validation for k = 5.

Dataset Mean Standard Deviation

Training 0.9682 0.0084

Validation 0.9628 0.0075

Testing 0.9656 0.0093

6. Comparison with Existing Methods

In this stage of the research, we compared our model with the most recent research on
potato blight classification using ML and DL techniques. We evaluated all the strategies
using potato blight photos taken from the PlantVillage dataset to facilitate an objective com-
parison. We also compared the performance of the proposed model with the performance
of some standard ML and DL algorithms, including random forest (RF), SVM, grey-level
co-occurrence matrix (GLCM), CNN, and visual geometry group (VGG) networks. Accord-
ing to the findings of the comparative study, we determined that the proposed approach
worked better than the other methods across all parameters.

Iqbal et al. [44] compared the effectiveness of various conventional ML techniques us-
ing potato leaf pictures taken from the PlantVillage dataset. They found that the RF method
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stood out in terms of accuracy compared to the other algorithms. Singh et al. [45] used
GLCM to analyse and extract characteristics from blight photos taken from the PlantVillage
collection. Then, the authors used an SVM technique to conduct potato blight classifi-
cation using the collected characteristics. The PlantVillage dataset gave Islam et al. [46]
300 different potato leaf photos to work with, and they used the threshold approach to
segment the pictures and locate RoI. In addition, they recommended training SVM models
to classify blight disorders using segmented pictures. Chakraborty et al. [47] evaluated
four different DL techniques (VGG 16, VGG 19, MobileNet, and ResNet 50) and compared
their respective levels of performance. They classified potato leaf diseases using potato leaf
photos taken from the PlantVillage dataset and found that fine-tuned VGG 16 achieved
the highest accuracy at 97.8%. Mahum et al. [48] modified the DenseNet architecture by
adding extra layers and evaluated the performance of the model using potato leaf images
taken from the PlantVillage dataset. The model classified potato blight with an accuracy of
97.2%. Mohamed et al. [49] used potato leaf images from the PlantVillage dataset to train a
four-layered CNN model and classified potato blight with an accuracy of 98.3%.

We compared our proposed model with some popular machine and DL algorithms,
and with recent studies, as summarised in Table 8. In the proposed architecture, we
reduced the pooling layers compared to the convolution layer to minimise the loss of
salient features, and we performed more convolution in the middle two layers of the
architecture to achieve maximum feature extraction. This novel arrangement of layers in
the architecture outperformed all methods in terms of evaluation matrices.

Table 8. Comparison of the proposed model with other models.

References Model Accuracy(%)
Precision Recall F1-Score

0 1 2 0 1 2 0 1 2

Iqbal et al. [44] Random Forest 97.0 1.0 0.91 1.0 0.94 1.0 0.96 0.97 0.95 0.98
Singh et al. [45] GLCM + SVM 95.99 0.98 0.91 0.99 0.94 0.95 0.98 0.96 0.93 0.98
Islam et al. [46] SVM 95 0.97 0.89 0.95 0.93 0.94 0.98 0.95 0.98 0.92

Chakraborty et al.
[47]

VGG 16 92.69 - - - - - - - - -
VGG 19 80.39 - - - - - - - - -

ResNet 50 73.75 - - - - - - - - -
MobileNet 78.84 - - - - - - - - -

VGG 16(fine-tuned) 97.89 0.9721 0.9613 0.9617

Mahum et al. [48] DenseNet(customised) 97.2 0.99 0.99 0.96 0.99 0.98 1 0.99 0.99 0.99
Mohamed et al. [51] CNN 98.2 - - - - - - - - -

Proposed model CNN(customised) 99 1 0.97 1 0.97 1 1 0.98 0.99 1

7. Conclusions

In this research, we customised the CNN model architecture to enhance performance
with fewer trainable parameters, reduced computation time, and minimal information loss.
To minimise the loss of salient features, we purposely reduced the pooling layers in the
proposed architecture. The architecture contained two blocks, each of which comprised
a pair of convolution layers, followed by a pooling layer. We validated the performance
of the proposed model using potato blight images taken from the PlantVillage dataset,
and the proposed model outperformed others, with an overall accuracy of 99% compared
with similar studies using similar datasets. In the future, the performance of the proposed
model should be assessed using a dataset with real-time potato blight images rather
than segmented and pre-processed images. Moreover, the trainable parameters of the
architecture could be further reduced without affecting the performance of the model or
making it prone to overfitting.
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