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Abstract

:

Space-time panel data widely exist in many research fields such as economics, management, geography and environmental science. It is of interest to study the relationship between response variable and regressors which come from above fields by establishing regression models. This paper introduces a new fixed effects partially linear varying coefficient panel data regression model with nonseparable space-time filters. On the basis of approximating the varying coefficient functions with a powerful B-spline method, the profile quasi-maximum likelihood estimators of parameters and varying coefficient functions are constructed. Under some regular conditions, we derive their consistency and asymptotic normality. Monte Carlo simulation shows that our estimates have good finite performance and ignoring spatial and serial correlations may lead to inefficiency of estimates. Finally, the driving forces of Chinese resident consumption rate are studied using our estimation method.
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1. Introduction


A space-time panel dataset is one sample collected from a number of spatial units over time periods (Li et al. [1]). Such datasets widely exist in economics, management, geography, environmental science and other research fields. How to effectively analyze space-time panel datasets and construct space-time panel data regression models has great theoretical and empirical significance. The space-time panel data regression models are a natural extension of panel data regression models. In the early 19th century, “regression” was first mentioned in the works of Legendre and Gauss. Later, at the turn of the 19th and 20th centuries, Galton and Pearson conceptualized regression, there were a number of regression models for analyzing panel data and exploring the association between dependent variable and regressors (Hsiao [2]; Baltagi [3]; Porter et al. [4]; Zamanzade [5]; Imai and Kim [6]). Among them, parametric panel data regression models have been widely used to study linear influence of regressors. Since the 1990s, nonparametric methods have been gradually applied into regression analysis (Fan and Gijbels [7]; Luo et al. [8]; Ullah et al. [9]; Dai et al. [10]), Li and Stengos [11] first proposed nonparametric panel data regression models to explore nonlinear influence of regressors. However, such models have their drawbacks. Parametric panel data regression models need to be precisely pre-specified, misspecified model forms can lead to inconsistent estimates as well as incorrect policy prescriptions. Although nonparametric panel data regression models are useful whenever we are not certain what the correct functional forms are, they may face the “curse of dimensionality” when the dimension of regressors is higher (Fan and Gijbels [7]), namely, the estimation accuracy decreases rapidly with the number of regressors increasing. Therefore, scholars proposed a number of non/semiparametric panel data regression models with a dimension reduction function to more flexibly overcome the “curse of dimensionality” encountered in practice, for example, partially linear additive panel data regression model, partially linear single-index panel data regression model and partially linear varying coefficient panel data regression model. In recent years, a series of their estimation methods have been also developed, including profile least squares estimation (Baltagi et al. [12]; Chen et al. [13]; Huang et al. [14]; Yong et al. [15]; Zhou et al. [16]; Zhang and Shen [17]), profile quasi-maximum likelihood estimation (Li et al. [18]; Su and Ullah [19]; Wu et al. [20]; Hu [21]), generalized method of moment estimation (GMM) (Tran and Tsionas [22]; Su and Ullah [23]), and others (Liu and Zhuang [24]).



All those modeling techniques and corresponding statistical inference methods for the above-mentioned semiparametric panel data regression models need the assumption that there is no correlation among the individuals or time periods. Elhorst [25] pointed out that two problems hampering the modeling of space-time panel data are serial correlation between the observations on each spatial unit over time and spatial correlation between the observations on the spatial units at each point in time. Furthermore, Baltagi et al. [12] mentioned that ignoring the serial correlation in the errors will result in consistent, but inefficient estimates of the regression coefficients and biased standard errors. Therefore, some scholars added nonseparable space-time filters, that is, space-time error correlation are modeled jointly, or separable space-time filters, that is, space-time error correlation are modeled independently from one another, under the framework of semi/parametric panel data regression models. The estimation, testing and empirical analysis of these models have been studied in recent years. Baltagi et al. [26] derived joint and conditional Lagrange Multiplier (LM) and Likelihood Ratio (LR) test statistics of random effects parametric panel regression model with separable space-time correlations and presented their small sample performance using Monte Carlo experiments. Elhorst [25] constructed a random effects parametric panel regression model with nonseparable space-time filters and presented its maximum likelihood estimation. Parent and LeSage [27] explored the Markov Chain Monte Carlo method of random effects parametric panel regression model with separable space-time filters—both Monte Carlo simulation and an application were used to illustrate the method. Lee and Yu [28] investigated quasi-maximum likelihood estimation for fixed effects parametric panel regression model with separable or nonseparable space-time filters, which might be spatially stable or unstable. They also derived consistency and asymptotic normality of the estimators under some regular conditions. Bai et al. [29] proposed a random effects partially linear varying coefficient panel model with separable space-time filters and derived consistency and asymptotic normality of weighted semiparametric least squares estimators. Zhao et al. [30] constructed weighted semiparametric least squares estimators and generalized F-type test statistic for random effects partially linear single-index panel model with separable space-time filters. They also derived the asymptotic properties of estimators and the asymptotic distribution of F-type test statistic. Li et al. [1] studied profile quasi-maximum likelihood estimation and generalized F-type test of random effects partially linear nonparametric panel model with separable space-time filters and obtained the consistency and asymptotic normality of parametric and nonparametric estimators as well as asymptotic distribution of generalized F-type test statistic. Monte Carlo simulation and Indonesian rice farming data were used to illustrate their methods.



To the best of our knowledge, there are no non/semiparametric spatiotemporal econometric models that study both fixed effects and nonseparable space-time filters in the existing literature. In this paper, we attempt to propose a fixed effects partially linear varying coefficient panel data regression model (PLVCPDRM) with nonseparable spacetime filters. It can simultaneously capture the linear and nonlinear effects of regressors, spatial and serial correlations of error structure, and individual fixed effects. Our aim is to construct profile quasi-maximum likelihood estimators (PQMLE) of this model and systematically study their asymptotic properties and finite sample performance. Furthermore, the proposed estimation method is illustrated by using a real dataset.



The rest of this paper is organized as follows: Section 2 presents a fixed effects PLVCPDRM with nonseparable space-time filters and its PQMLEs. Section 3 lays out some regular assumptions and asymptotic properties. Section 4 reports simulation results for examining the finite sample performance of the proposed estimators. Section 5 shows the empirical study for illustrating the proposed methodology. Conclusions are summarized in Section 6. Appendix A presents a lemma and proofs of the main theorems.




2. Model and Estimation


Consider a fixed effects PLVCPDRM with nonseparable space-time filters:


     Y  N t      =  X  N t   β +  Z  α , N t   + b +  ε  N t   ,  t = 1 , … , T ,     



(1)






     ε  N t      = ρ W  ε  N t   + λ  ε  N , t − 1   +  e  N t   ,     



(2)




where    Y  N t   =   (  y  1 t   ,  y  2 t   , … ,  y  N t   )  ′   ,   y  i t    are observations of a response variable,   i = 1 , … , N  ;    X  N t   =   (  x  1 t   ,  x  2 t   , … ,  x  N t   )  ′   ,    Z  α , N t   =   (  z  1 t  ′  α  (  u  1 t   )  , … ,  z  N t  ′  α  (  u  N t   )  )  ′   ,    x  i t   =   (  x  i t 1   ,  x  i t 2   , … ,  x  i t p   )  ′    and    z  i t   =   (  z  i t 1   ,  z  i t 2   , … ,  z  i t q   )  ′    are observations of p-dimensional and q-dimensional exogenous regressors, respectively;  β  is a regression coefficient vector of   x  i t   ,   α  (  u  i t   )  =   (  α 1   (  u  i t   )  ,  α 2   (  u  i t   )  , … ,  α q   (  u  i t   )  )  ′    is an unknown univariate varying coefficient function vector,    α l   ( u )   ( l = 1 , … , q )    are smoothing functions of u, u is an intermediate univariate variable;   b =   (  b 1  , … ,  b N  )  ′    are fixed effects satisfying    ∑  i = 1  N   b i  = 0   for identification purpose; W is an   N × N   row-normalized non-negative spatial weights matrix with zero diagonals;   ε  N t    is an   N × 1   vector of disturbance term,   e  N t    is an   N × 1   vector of random error term which is assumed to be   i . i . d . ( 0 ,  σ  e  2  )  . In order to keep the stationarity of the model (1)–(2), serial correlation coefficient  λ  and spatial correlation coefficient  ρ  should belong to parameter space   Θ = { ( λ , ρ ) : λ + ρ < 1 , λ + ρ > − 1 , λ − ρ > − 1 , λ − ρ < 1 }   (Elhorst [25]; Lee and Yu [28]), see Figure 1.



For the model (1)–(2), it is necessary to identify an appropriate estimation method to obtain estimators of the unknown parameter vector   θ =   (  β ′  ,  γ ′  , ρ , λ ,  σ  e  2  )  ′    and varying coefficient functions    α l   ( · )   ( l = 1 , … , q )   .



Before proceeding to the estimation procedure, the fitting problem of the varying coefficient functions needs to be solved priority. Polynomial spline method is efficient in function approximation and numerical computation. Polynomial splines are piecewise polynomials with the polynomial pieces joining together smoothly at a set of interior knot points (see De Boor [31]; Huang and Shen [32]; Zou and Zhu [33]). B-spline is a special form of polynomial spline. Considering that the B-spline basis has better numerical properties than other basis functions, we use the B-spline method to approximate the varying coefficient functions    α l   ( u )   ( l = 1 , … , q )    in the model (1). To be precise, let   a = min {  u 11  , … ,  u  N T   }  ,   d = max {  u 11  , … ,  u  N T   }   and   a =     ξ 0  <  ξ 1  < … <  ξ  k l   = d  ( l = 1 , … , q )    be a partition of interval   [ a , d ]  . Using the   ξ i   as knots, we have    κ l  =  k l  +  k 0    normalized B-spline basis function of order   (  k 0  − 1 )   that forms a basis function for the linear spline space   S   k l    k 0    on   U =   u  i t   ∈ R   . Denote B-spline basis function    ζ  l   κ l    ( u )  =   (  ζ  l 1    ( u )  , … ,  ζ  l  κ l     ( u )  )  ′   , we can approximate    α l   ( u )    by some spline function in   S   k l    k 0   :    α l   ( u )  ≈  ζ  l    κ l  ′    ( u )   γ l   , where    γ l  =   (  γ  l 1   , … ,  γ  l  κ l    )  ′    is an unknown    κ l  × 1   spline coefficient vector. Thus, the model (1) can be written as


   Y  N t   =  X  N t   β +   Z ˜   N t   γ + b +  ε  N t   ,  



(3)




where   γ =   (  γ  1  ′  , … ,  γ  q  ′  )  ′   ,     Z ˜   N t   =   (   z ˜   1 t   , … ,   z ˜   N t   )  ′   ,     z ˜   i t  ′  =  z  i t  ′   ζ  q , K    (  u  i t   )    and


   ζ  q , K    ( u )  =       ζ 11   ( u )     …     ζ  1  κ 1     ( u )     0   …   0   0   …   0     …   …   …   …   …   …   …   …   …     0   …   0   0   …   0     ζ  q 1    ( u )     …     ζ  q  κ q     ( u )        








is a   q × K   matrix,   K =  ∑  s = 1  q   κ s   .



For any   N × 1   vector   A  N t   , denote   Δ  A  N t   =  A  N t   −  A  N , t − 1     as the first order difference. By first difference of the model (2)–(3) to eliminate the fixed effects, we have


        Δ  Y  N t   = Δ  X  N t   β + Δ   Z ˜   N t   γ + Δ  ε  N t   ,  t = 2 , 3 , … , T ,     



(4)






        Δ  ε  N t   = ρ W Δ  ε  N t   + λ Δ  ε  N , t − 1   + Δ  e  N t   .     



(5)




Note that   Δ  Y  N t   =  Y  N t   −  Y  N , t − 1     is observable for   t = 2 , 3 , … , T  ,   Δ  ε  N 1     can’t be observed. Let   η =   ( ρ , λ )  ′   ,    S N   ( ρ )  =  I N  − ρ W  ,    R N   ( λ )  = λ  I N   ,    S N  = S  (  ρ 0  )   ,    R N  = R  (  λ 0  )    and   I N   is an   N × N   identity matrix. The Equation (5) can be rewritten as    S N   ( ρ )  Δ  ε  N t   =     R N   ( λ )  Δ  ε  N , t − 1   + Δ  e  N t     for all t. With backward substitution, we have    S N   ( ρ )  Δ  ε  N , 2   =     ∑  j = 0  ∞   A  N  j   ( η )  Δ  e  N , 2 − j    , where    A N   ( η )  =  R N   ( λ )   S N    ( ρ )   − 1    . By denoting   Δ  ε  N , T − 1   =   Δ  ε  N 2  ′  , … , Δ  ε  N T  ′   ′    and


   B  N , T − 1    ( η )  =       S N   ( ρ )     0   …   0   0      −  R N   ( λ )       S N   ( ρ )     …   0   0     0    −  R N   ( λ )     …   0   0     ⋮   ⋮   ⋱   ⋱   ⋮     0   0   …    −  R N   ( λ )       S N   ( ρ )       ,  








the matrix form of the Equation (5) can be simply expressed as    B  N , T − 1    ( η )  Δ  ε  N , T − 1    = (    (  S N   ( ρ )  Δ  ε  N 2   )  ′   ,   Δ  e  N 3  ′  , … , Δ  e  N T  ′    )  ′   . As   Var   ∑  j = 0  ∞   A  N  j   ( η )  Δ  e  N , 2 − j    =  σ  e  2   K N   ( η )   , where


   K N   ( η )  ≡   I N  +  ∑  j = 0  ∞   A j   ( η )    A N   ( η )  −  I N       A N   ( η )  −  I N   ′   A  N   ′ j    ( η )  ,  








and    K N  =  K N   (  η 0  )   , we can obtain   Var  (  B  N , T − 1    ( η )  Δ  ε  N , T − 1   )  =  σ  e  2   Ω  N , T − 1    ( η )    with


   Ω  N , T − 1    ( η )  =       K N   ( η )      −  I N     0   …   0   0      −  I N      2  I N      −  I N     …   0   0     0    −  I N      2  I N     …   0   0     ⋮   ⋮   ⋮   ⋱   ⋮   ⋮     0   0   0   …    2  I N      −  I N       0   0   0   …    −  I N      2  I N       .  











Note that the only unknown element of    Ω  N , T − 1    ( η )    is    K N   ( η )   . In order to obtain determinant and inverse of    Ω  N , T − 1    ( η )   , we define a confirmable block matrix (Hsiao et al [34]; Lee and Yu [28]) as


   P  N , T − 1    ( η )  =      I N    0   0   …   0      I N      K N   ( η )     0   …   0      I N      K N   ( η )      2  K N   ( η )  −  I N     …   0     ⋮   ⋮   ⋮   ⋱   ⋮      I N      K N   ( η )      2  K N   ( η )  −  I N     …     ( T − 2 )   K N   ( η )  −  ( T − 3 )   I N       .  








From straight calculation, we know that


      D  N , T − 1    ( η )      ≡  P  N , T − 1    ( η )   Ω  N , T − 1    ( η )   P  N , T − 1  ′   ( η )           = diag   K N   ( η )  ,  2  K N   ( η )  −  I N    K N   ( η )  ,  3  K N   ( η )  − 2  I N    2  K N   ( η )  −  I N   , … ,              ( T − 1 )   K N   ( η )  −  ( T − 2 )   I N     ( T − 2 )   K N   ( η )  −  ( T − 3 )   I N    .     








Thus, the determinant    |   Ω  N , T − 1     ( η )  | = |   D  N , T − 1     ( η )  | / |   P  N , T − 1      ( η )  |  2  =  |  ( T − 1 )   K N   ( η )  −  ( T − 2 )   I N  |    and the inverse    Ω  N , T − 1   − 1    ( η )  =  P  N , T − 1     ( η )  ′   D  N , T − 1     ( η )   − 1    P  N , T − 1    ( η )   . Therefore, the quasi-log-likelihood function can be written as


     log  L  N , T    ( θ )  =     −   N ( T − 1 )  2  log  2 π  σ  e  2   −  1 2  log   I N  +  ( T − 1 )   (  K N   ( η )  −  I N  )            +  ( T − 1 )  log   S N   ( ρ )   −  1  2  σ  e  2      Y − X β −  Z ˜  γ  ′   J  N T    ( η )   Y − X β −  Z ˜  γ  ,     



(6)




where   Y =   (  Y  N 1  ′  , … ,  Y  N T  ′  )  ′   ,   X =   (  X  N 1  ′  , … ,  X  N T  ′  )  ′   ,    Z ˜  =   (   z ˜  11  , … ,   z ˜   N T   )  ′   ,    J  N T    ( η )  =  L  N , ( T − 1 ) T  ′      B  N , T − 1  ′   ( η )   Ω  N , T − 1   − 1    ( η )   B  N , T − 1    ( η )   L  N , ( T − 1 ) T    ,    L  N , ( T − 1 ) T   = L ⊗  I N    with


  L =      − 1    1   0   …   0     0    − 1    1   …   0     ⋮   ⋮   ⋮   ⋱   0     0   0   0    − 1    1      








as the first order difference transformation matrix of dimension   ( T − 1 ) × T  .



Motivated by Su and Jin [35], we obtain PQMLEs of parameter vector  θ  and varying coefficient functions    α l   ( · )   ( l = 1 , … , q )    by the following the two-step estimation procedure:



Step 1: Assuming the parameter  η  is known, the initial estimators of    (  β ′  ,  γ ′  ,  σ  e  2  )  ′   can be obtained by maximizing quasi-log-likelihood function (6):


    β ^   I N   =    X ′   J  N T    ( η )  X   − 1    X ′   J  N T    ( η )   Y −  Z ˜    γ ^   I N    ,  










    γ ^   I N   =     Z ˜  ′   J  N T    ( η )   Z ˜    − 1     Z ˜  ′   J  N T    ( η )   Y − X   β ^   I N    ,  










    σ ^   e I N  2  =  1  N ( T − 1 )     Y − X   β ^   I N   −  Z ˜    γ ^   I N    ′   J  N T    ( η )   Y − X   β ^   I N   −  Z ˜    γ ^   I N    .  











Step 2: With the estimated    β ^   I N   ,    γ ^   I N    and    σ ^   e I N  2  , PQMLE of  η  can be obtained by maximizing the concentrated quasi-log-likelihood function of  η :


     log  L  N , T    ( η )  =     −   N ( T − 1 )  2  log  2 π  −   N ( T − 1 )  2   ( log   σ ^   e I N  2  + 1 )           −  1 2  log   I N  +  ( T − 1 )   (  K N   ( η )  −  I N  )   +  ( T − 1 )  log   S N   ( ρ )   .     








The final estimator of  η  is given by    η ^  = arg  max η  log  L  N , T    ( η )   . With the estimated   η ^  , update



    β ^   I N  ′  ,   γ ^   I N  ′    and    σ ^   e I N  2  , we can obtain the final PQMLEs as


   β ^  =    X ′    ( I −  S  η ^   )  ′   J  N T    (  η ^  )   ( I −  S  η ^   )  X   − 1    X ′    ( I −  S  η ^   )  ′   J  N T    (  η ^  )   ( I −  S  η ^   )  Y ,  










   γ ^  =     Z ˜  ′   J  N T    (  η ^  )   Z ˜    − 1     Z ˜  ′   J  N T    (  η ^  )   Y − X  β ^   ,  



(7)






    σ ^   e  2  =  1  N ( T − 1 )     Y − X  β ^   ′    ( I −  S  η ^   )  ′   J  N T    (  η ^  )   ( I −  S  η ^   )   Y − X  β ^   ,  








where I is an identity matrix of dimension   N T  ,    S η  =  Z ˜      Z ˜  ′   J  N T    ( η )   Z ˜    − 1     Z ˜  ′   J  N T    ( η )   . Then, the estimator of the nonparametric function   α ( u )   can be written as


   α ^   ( u )  =  ζ  q , K    ( u )   γ ^  .  



(8)








3. Asymptotic Properties


To derive the asymptotic properties of the estimators, we first introduce some regular assumptions. For clear exposition, denote    θ 0  =   (  β  0  ′  ,  γ  0  ′  ,  η 0 ′  ,  σ  e 0  2  )  ′   ,    θ  0  *  =   (  β  0  ′  ,  η 0 ′  ,  σ  e 0  2  )  ′    and    η 0  =   (  ρ 0  ,  λ 0  )  ′    as the true parameter vector of  θ ,   θ *   and  η , respectively, and    α 0   ( u )    as the true varying coefficient function vector of   α ( u )  .



Assumption 1.

(i) The sequences    {  x  i t   }   i = 1 , t = 1   N , T   ,    {  z  i t   }   i = 1 , t = 1   N , T    and    {  u  i t   }   i = 1 , t = 1   N , T    are nonstochastic, and they have bounded support set on   R p  ,   R q   and   R 1   respectively. In addition,   u  i t    forms a sequence of designs such that they are analogous to a positive and bounded “design density“    f U   ( u )    (Su and Jin [35]).



(ii) For any bounded continuous function    h ( · )  , it holds that


   lim  N → ∞    1  N T    ∑  i = 1  N   ∑  t = 1  T  h (  u  i t   ) =  ∫ U  h  ( u )   f U   ( u )  d u .  



(9)







(iii) The parameter   β ∈  R p    in a neighborhood of   β 0   satisfies    |   x  i t  ′   β | ≤   m x   , where   m x   is a positive constant.





Assumption 2.

The disturbances     e  i t     i = 1 , t = 2   N , T    are   i . i . d .   with zero mean, variance   σ  e 0  2   and   E    e  i t     4 + ϵ   < ∞   for some   ϵ > 0  .





Assumption 3.

(i) For every K, the smallest eigenvalue of     Z ˜  ′   Z ˜  / N T   and     Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T   are bounded away from zero uniformly in K.



(ii) There is a sequence of constants    ζ 0   ( K )    satisfying    sup  u ∈ U     ζ  q , K    ( u )   ≤  ζ 0   ( K )    such that    ζ  0  2   ( K )  K / N    → 0   as   N → ∞  .



(iii) For any   r 1  -th  (  r 1  ≥ 2 )   continuously differentiable bounded function   α ( · )   satisfying the normalization of    α 0   ( · )   , there exist some    r 2  > 0   such that    sup  u ∈ U     z  i t  ′  α  (  u  i t   )  −   z ˜   i t  ′  γ  = O   K  −  r 2       as   K → ∞   and    N   K  −  r 2    → 0   as   N → ∞  .





Assumption 4.

(i) W is a row-normalized and prespecified spatial weights matrix.



(ii) Row and column sums of W in absolute value are uniformly bounded (i.e., UB).



(iii)    S N   ( ρ )    is invertible for all   ρ ∈ P  , where  P  is compact and the true parameter   ρ 0   is in the interior of  P . Additionally,    S  N   − 1    ( ρ )    is UB for   ρ ∈ P  .





Assumption 5.

(i)    ∑  h = 1  ∞  a b s  (  A  N  h  )    is UB, where     a b s   A N     i j   =   A  N , i j      and    A N  =  A N   (  η 0  )   .



(ii)    J  N T    ( η )    is UB.



(iii) The limit of the information matrix (A4) in Appendix A is nonsingular.



(iv)    lim  N → ∞    1  N ( T − 1 )     [ X ,  Z ˜  ]  ′   J  N T    ( η )   [ X ,  Z ˜  ]    is nonsingular.





Assumption 6.

   lim  N → ∞    T  N T , 1    η ,  σ  e  2   ≠ 0   for     η ,  σ  e  2   ′  ≠    η 0  ,  σ  e 0  2   ′   , where   T  N T , 1    is defined in (A1).





Remark 1.

The fixed bounded design in Assumption 1 is typically assumed in spatial econometric literature, see Kelejian and Prucha [36], Kelejian and Prucha [37], Su and Jin [35] and Cheng and Chen [38]. Assumption 1 (ii) parallels Assumption 1 of Su and Jin [35] and Assumption 2.1 (iv) of Hu et al. [39]. It means that if    {  u  i t   }   i = 1 , t = 1   N , T    are   i . i . d .   with the density    f U   ( · )   , the Equation (9) holds with probability 1. Assumption 2 presents regularity assumptions for error terms   e  i t   . Assumption 3 is a set of mild conditions on the B-spline method (see Newey [40]; Hu et al. [39]; Yong et al. [15]; Zhang [41]). Assumption 3(i) ensures that     Z ˜  ′   Z ˜    and     Z ˜  ′   J  N T    (  η 0  )   Z ˜    are asymptotically nonsingular, which parallels Assumption 3 of Zhang [41] and Assumption 2(i) of Newey [40]. Newey [40] gave some primitive conditions for power series and splines such that Assumption 3(ii)–(iii) hold. In addition, Assumption 3(iii) is the counterpart assumption in the kernel method. Assumption 4 provides the basic features of the spatial weight matrix. The uniform boundedness of W and    S  N   − 1    ( ρ )    limits the spatial correlation to a manageable degree in Assumptions 4(ii)–(iii). Assumption 5(i) is the absolute summability condition and row/column sum boundedness condition for disturbances, which will play an important role for the proofs of asymptotic properties. To prove the absolute summability of   A N  , a sufficient condition is     A N   < 1   for any matrix norm (see Corollary 5.6.16 in Horn and Johnson [42]) that satisfies     A N   =  a b s   A N     . When     A N   < 1  ,    ∑  h = 0  ∞   A  N  h    exists and can be defined as     I N  −  A N    − 1   . Under the condition that the inverse of the variance matrix of     ( 1 − ϕ )   1 / 2    e  N t   +   A N  −  I N     e  N , t − 1   +  A N   e  N , t − 2   +  A  N  2   e  N , t − 3   + …    is UB for   ϕ = 0 , 1   and    T − 2   T − 1   , Assumption 5(ii) can be certified. Assumption 5(iii)–(iv) is used for establishing the uniqueness identification and asymptotic normality of the proposed estimators. Assumption 6 specifies an identification condition for the estimators of parameters when Assumption 5(iv) is not satisfied.





In order to prove consistency of the parametric estimators, we need to obtain the expected value function for the quasi-log-likelihood function (6) divided by the effective sample size   N ( T − 1 )  . The relationship    B  N T  *  ε = e   between   ε =   (  ε  N 1  ′  , … ,  ε  N T  ′  )  ′    and   e =   (  e  N 1   † ′   , … ,  e  N T  ′  )  ′    (the first block of N in e are not exactly the original   e  N 1    and all the entries are i.i.d. under normality) would be used frequently, where


   B  N T  *  =       Q  N  *    0   …   0   0      −  R N      S N    …   0   0     0    −  R N     …   0   0     ⋮   ⋮   ⋱   ⋱   ⋮     0   0   …    −  R N      S N       N T × N T    








and    Q  N  *  =    ∑  j = 0  ∞   A  N  j   A  N   j ′     − 1 / 2    S N   . Thus,    e  N 1  †  =  Q  N  *   S  N   − 1       ∑  j = 0  ∞   A  N  j   e  N , 1 − j     and    Q  N  *  Var  (  ε  N 1   )   Q  N   * ′   =  σ  e 0  2   I N    under the normality of disturbances. Split   B  N T  *   into four block matrices, one of which is   Q  N  *  . Utilizing the formula        A   0     B   C      − 1   =      A  − 1     0      −  C  − 1   B  A  − 1       C  − 1         for inversion of a block matrix, we have that


   B  N T   * − 1   =      Q  N   * − 1                     A N   Q  N   * − 1       S  N   − 1                 A  N  2   Q  N   * − 1        A N   S  N   − 1       S  N   − 1               ⋮   ⋮   ⋮   ⋱          ⋮   ⋮   ⋮   ⋱   ⋱           A  N   T − 1    Q  N   * − 1        A  N   T − 2    S  N   − 1        A  N   T − 3    S  N   − 1      …   …     A N   S  N   − 1       S  N   − 1       .  








Define    Q  N , T    ( θ )  = E  ( log  L  N , T    ( θ )  /  N ( T − 1 )  )   , then


      Q  N , T    ( θ )  =     −  1 2  log  2 π  σ  e  2   +  1 N  log  S ( ρ )  −  1  2 N ( T − 1 )   log   I N  +  ( T − 1 )   (  K N  −  I N  )            −  1  2  σ  e  2  N  ( T − 1 )     e ′   B  N T   * − 1 ′    J  N T    ( η )   B  N T   * − 1   e .     



(10)







However, when    e †  =   (  e  N 1   † ′   , … ,  e  N T  ′  )  ′    are not normally distributed, elements in   e  N 1  †   are uncorrelated but not necessarily independent of each other even though they are independent with   e  N t   (  t = 2 , … , T  ). Consider the case that the process starts at a finite past period, such as   t = − m  . Denote    e  N , T + m   =   (  e  N , 1 − m  ′  ,  e  N , 1 − ( m − 1 )  ′  , … ,  e  N 0  ′  ,  e  N 1  ′  , … ,  e  N T  ′  )  ′   , which includes the original   i . i . d .   disturbances vectors, we have    e †  =  F  N T , N ( T + m )    e  N , T + m    , where


        F  N T , N ( T + m )       =           ∑  j = 0  m   A  N  j   A  N   j ′     −  1 2    ·  A  N  m     …       ∑  j = 0  m   A  N  j   A  N   j ′     −  1 2    ·  A N         ∑  j = 0  m   A  N  j   A  N   j ′     −  1 2    ·  I N                       I N                     ⋱                    I N         








is UB. Under non-normality, we can obtain


      Q  N , T    ( θ )  =     −  1 2  log  2 π  σ  e  2   +  1 N  log  S ( ρ )  −  1  2 N ( T − 1 )   log   I N  +  ( T − 1 )   (  K N  −  I N  )            −  1  2  σ  e  2  N  ( T − 1 )     e  N , T + m  ′   F  N T , N ( T + m )  ′   B  N T   * − 1 ′    J  N T    ( η )   B  N T   * − 1    F  N T , N ( T + m )    e  N , T + m   .     



(11)







To show the consistency of   θ ^  , we follow Lee [43] by identifying   θ 0   based upon the maximum value of    Q  N , T    ( θ )    and showing the uniform convergence of    1  N ( T − 1 )   log  L  N , T    ( θ )  −  Q  N , T    ( θ )    to zero, consistency of   θ ^   follows.



Theorem 1.

Suppose Assumptions 1–6 hold,   θ 0   is globally identifiable and   θ ^   is consistent with   θ 0  .





Theorem 2.

Suppose Assumptions 1–6 hold, as   N → ∞   simultaneously, we have


     N T      θ ^  *  −  θ  0  *    → L  N  0 ,  Σ   θ 0 *    − 1   +  Σ   θ 0 *    − 1    Ω  θ 0 *    Σ   θ 0 *    − 1    .   








where “   → L   ” means convergence in distribution,    Σ  θ  0  *   = −  lim  N , T → ∞   E   1  N ( T − 1 )      ∂ 2  log  L  N , T     θ  0  *     ∂  θ *  ∂  θ  * ′        is an expected Hessian matrix showed in (A5) and   E   1  N ( T − 1 )     ∂ log  L  N , T    (  θ  0  *  )    ∂  θ *      ∂ log  L  N , T    (  θ  0  *  )    ∂  θ  * ′      =  Σ  θ 0 *   +  Ω  θ 0 *   +  o P   ( 1 )    with   Ω  θ 0 *    defined in (A6).





Theorem 3.

Suppose Assumptions 1–5 hold, we have


     α ^   (  u  i t   )  −   α ^  0   (  u  i t   )   =  O P    ζ 0   ( K )   (  K  /  N  +  K  −  r 2    )   .   













Remark 2.

The term   K / N   essentially corresponds to a variance term and   K  − 2  r 2     to a bias term. When K is chosen as   N  1  1 + 2  r 2      so that these two terms go to zero at the same rate, which occurs when K goes to infinity at the same rate as   N  1  1 + 2  r 2      (and the side condition    ζ 0    ( K )  2  K / N → 0   is satisfied), the convergence rate will be   N  −   r 2   1 + 2  r 2      .





Theorem 4.

Suppose Assumptions 1–5 hold, as   N → ∞   simultaneously, we have


    Λ  u   − 1 / 2     α ^   ( u )  −  α *   ( u )    ⟶ L  N  ( 0 ,  σ  e 0  2   I K  )  ,   








where    Λ u  =  ζ  q , K    ( u )    [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1     Z ˜  ′   J  N T    (  η 0  )   B  N T   * − 1    B  N T   * ′ − 1       J  N T  ′   (  η 0  )   Z ˜    [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1    ζ  q , K  ′   ( u )   ,    α *   ( u )  =  ζ  q , K    ( u )   γ 0   ,   I K   is an identity matrix of dimension K.






4. Simulation Studies


In this section, we report the results of Monte Carlo simulation experiments to examine the finite sample performance of the proposed estimation method. In order to illustrate the estimation accuracy of parameters, we use the sample mean (Mean), the sample standard deviation (SD) and the root mean square error (RMSE) as the evaluation criteria. Here,


  RMSE =    1  m c n    ∑  i = 1   m c n       θ ^  i  −  θ 0   2    1 2   ,  








where   m c n   is the simulation times,     θ ^  i   ( i = 1 , 2 , … , m c n )    are the parametric estimates of each simulation and   θ 0   is the true value. For the nonparametric estimates, we consider the mean absolute deviation error (MADE) as the evaluation criterion which is defined as


   MADE j  =  Q  − 1    ∑  q = 1  Q     g ^  j    u q   −  g j    u q    ,  j = 1 , 2 , … , m c n ,  








where     u q    q = 1  Q   are Q fixed grid points at support set of u.



Example 1.

The first example is to evaluate the performance of the estimation procedure. Consider the following data-generated processes:


   {      y  i t   =  x  i t 1    β 1  +  x  i t 2    β 2  +  z  i t 1    α 1   (  u  i t   )  +  z  i t 2    α 2   (  u  i t   )  +  b i  +  ε  i t   ,        ε  i t   = ρ   ∑  j = 1  N    w  i j    ε  j t   + λ  ε  i , t − 1   +  e  i t   ,       



(12)




where    x  i t p   ∼ U  [ − 2 , 2 ]   ( p = 1 , 2 )   ,    z  i t q   ∼ U  [ − 2 , 2 ]   ( q = 1 , 2 )   ,    u  i t   ∼ U  [ − 3 , 3 ]   ,    b i  ∼ i . i . d . N  ( 0 , 1 )   ,    e  i t   ∼ i . i . d . N  ( 0 , 0.5 )   , the link functions    α 1   (  u  i t   )  = 0.5  u  i t   + s i n  ( 1.5  u  i t   )    and    α 2   (  u  i t   )  =  u  i t  2  + 0.5  u  i t    ,     β 1  ,  β 2   =  ( 1 , 1.5 )   . As in Su [44], the spatial weighting matrix is set to the Rook weight matrix. Sample size is   T = 10 , 15 , 20   and   N = 25 , 49 , 81  . For each case, we ran 500 simulations. The R software was used.



Table 1 summarizes Means, Medians, SDs and RMSEs for parametric estimates of     β ^  1  ,   β ^  2  ,  ρ ^  ,  λ ^    and    σ ^  e 2   when the true values of spatial correlation coefficient and serial correlation coefficient are set as   ( ρ , λ ) = ( 0.4 , 0.4 ) , ( 0.2 , 0.7 )   and   ( 0.7 , 0.2 )  , respectively. Table 2 and Table 3 give the median and SD of MADE values of     α ^  1   ( u )    and     α ^  2   ( u )    at 20 fixed grid points in all cases, respectively. We have the following finds: (1) The estimates of    β 1  ,  β 2  , ρ , λ ,  σ e 2    are close to true values for all cases; (2) SDs and RMSEs for     β ^  1  ,   β ^  2  ,  ρ ^  ,  λ ^  ,   σ ^   e  2    are fairly small for all cases; (3) For fixed T(or N), as N(or T) increased, the SDs and RMSEs for estimates of all parameters decrease; (4) The SDs and Medians for 500 MADEs of     α ^  1   ( u )    and     α ^  2   ( u )    at 20 fixed grid points decrease as T or N is increased. Based on these findings, we conclude that the estimates of all parameters and varying coefficient functions are fairly close to their true values, and the deviations decrease with increasing of sample size. Overall, our proposed estimators for the model (12) perform well in finite sample cases.



Figure 2 and Figure 3 present the fitting results and 95% confidence intervals of    α 1   ( u )    and    α 2   ( u )    under   N = 49   (or 81) and   T = 15   (or 20), where the short dashed curves in black are the average fits over 500 simulations by PQMLE, the solid curves in red are the true values of nonparametric functions and the two long dashed curves in black are the corresponding 95% confidence bands. We can see that the short dashed curve is close to the solid curve, and the confidence bandwidth gradually becomes narrow with the increase of the sample size. They indicate that the nonparametric estimation procedure is feasible in the case of small samples.





Example 2.

The second example is used to show that misspecification for the model (12) will lead to inconsistent parameter estimates. Here are the three most likely misspecified models, which ignore the spatial correlation, serial correlation and spatio-temporal correlations in the model (12), respectively:


   {      y  i t   =  x  i t 1    β 1  +  x  i t 2    β 2  +  z  i t 1    α 1   (  u  i t   )  +  z  i t 2    α 2   (  u  i t   )  +  b i  +  ε  i t   ,        ε  i t   = λ  ε  i , t − 1   +  e  i t   ,       



(13)






   {      y  i t   =  x  i t 1    β 1  +  x  i t 2    β 2  +  z  i t 1    α 1   (  u  i t   )  +  z  i t 2    α 2   (  u  i t   )  +  b i  +  ε  i t   ,        ε  i t   = ρ   ∑  j = 1  N    w  i j    ε  j t   +  e  i t   ,       



(14)






    y  i t   =  x  i t 1    β 1  +  x  i t 2    β 2  +  z  i t 1    α 1   (  u  i t   )  +  z  i t 2    α 2   (  u  i t   )  +  b i  +  e  i t   ,   



(15)




where all variables in the above models are the same as the model (12). No loss of generality, we only study the case that   ρ = 0.4   and   λ = 0.4  . Additionally, we set   N = 25 , 49  ,   T = 10   and   m c n = 500  . The experimental results are presented in Table 4.



Table 4 lists the Means, Medians, SDs, RMSEs and MRs of parameter estimates in the models (12)–(15), where MR is the growth rate of RMSE on the basis of that in the model (12). From Table 4, we can see that: (1) The Means and Medians for the estimates of all parameters in the model (12) are closer to true values as sample size increases. However, it is easy to see that the Means and Medians of    β ^  1  ,    β ^  2  ,   ρ ^  ,   λ ^   and    σ ^   e  2   in the models (13)–(15) do not converge with the increasing of N, indicating that they are not stable. (2) The SDs and RMSEs of almost all parameter estimators in the models (13)–(15) are larger than that in the model (12). In particular, the SDs and RMSEs of    σ ^   e  2   do not decrease with the increasing of sample size. (3) MRs of most parameter estimators are greater than 0% and increase with the increasing of sample size, especially for    β ^  2  ,   ρ ^   and    σ ^   e  2  . In addition, MRs of    σ ^   e  2   in the models (13) and (14) are less than 0%, which again indicates that the estimator of   σ  e  2   is unstable. It can be concluded that model misspecification would result in inconsistent parameter estimators. It further indicates that our proposed model is more effective and reliable.






5. Real Data Analysis


In this section, we employ the proposed model and its estimation method to study the driving forces of Chinese resident consumption rate. This dataset was collected on 1 August 2022) from the China Statistical Yearbook (http://www.stats.gov.cn/sj/ndsj/) for 2008 to 2020 and covers 30 provincial administrative regions (except Tibet, Taiwan, Hong Kong and Macau). Based on the research results drawn by Ding and Chen [45] and Ding [46], let   Y C   be response variable and   L R  ,   C R  ,   E R  ,   G R   and   T R   be regressors. There is no doubt that per capita disposable income has an important impact on the resident consumption rate. Therefore, we assume that the impacts of the above regressors on resident consumption rate may be realized through per capita disposable income and   I R   is selected as their intermediate variable. The definitions of these variables and their meanings are given in Table 5.



Firstly, Table 6 and Figure 4 show the descriptive statistics of the response variable, five regressors and intermediate variable. From observing Table 6, we can draw the conclusion that   L R  ,   C R  ,   E R  ,   G R  ,   T R   and   I R   are steady, as well as concluding that   G R   has a small fluctuation range. In addition, Figure 4 presents the scatter plots between   Y C   versus each regressor (  L R  ,   C R  ,   E R  ,   G R   and   T R  ). It can be found that the regressor   L R   has a linear effect on the response variable   Y C  . The rest of the regressors have nonlinear effects on the response variable   Y C  .



Based on the above comprehensive analysis, the study on driving forces of Chinese resident consumption rate can be analyzed by establishing the following PLVCPDRM with nonseparable space-time filters:


     Y  C  i t       = L  R  i t   β + C  R  i t    α 1   ( I  R  i t   )  + E  R  i t    α 2   ( I  R  i t   )  + G  R  i t    α 3   ( I  R  i t   )  + T  R  i t    α 4   ( I  R  i t   )  +  b i  +  ε  i t         ε  i t      = ρ  ∑  j = 1  N   w  i j    ε  j t   + λ  ε  i , t − 1   +  e  i t   ,  i = 1 , … , 30 , t = 1 , … , 13 ,     



(16)




where   W =   (  w  i j   )   30 × 30     is a normalized spatial weight matrix calculated by the Euclidean distance in the light of the longitude and latitude coordinates of any two provinces.



Table 7 reports the estimation results of parameters in the model (16). It can be seen that    ρ ^  = 0.6126   and    λ ^  = 0.3674   are significant. Namely, it indicates that there exist strong and positive spatial and serial correlations among the disturbance terms in the model (16). Furthermore,    β ^  = − 0.1751 < 0   is significant, which means that the linear effect of   L R   on the resident consumption rate is negative. Figure 5 shows the varying coefficient effects of   C R  ,   E R  ,   G R   and   T R   to   Y C   and their   95 %   confidence intervals. It can be seen that   C R  ,   E R  ,   G R   and   T R   have obvious nonlinear effects on resident consumption rate with   I R  .




6. Concluding Remarks


In order to sufficiently use the information of spatial and serial correlations in the disturbances when modeling space-time data by regression models, we propose a fixed effects PLVCPDRM with nonseparable space-time filters. It can not only simultaneously capture non/linear effects of regressors and space-time correlations of error structure, but also overcome the “curse of dimensionality” in multivariate nonparametric regression models.



In this paper, the PQMLEs of unknown parameters and varying coefficient functions for this model are constructed. Under the regular assumptions, we prove that the estimators satisfy consistency and asymptotic normality. Monte Carlo simulations show that the proposed estimators have good finite sample performances. In addition, ignoring spatial and serial correlations in errors of the model would result in inconsistent and inefficient estimators. Finally, a Chinese resident consumption rate dataset is used to illustrate our estimation method.



This paper mainly focuses on the estimation of a fixed effects PLVCPDRM with nonseparable space-time filters. In the future, we may study the methods of variable selection, Bayesian estimation and quantile regression for the proposed model in our paper; we can also use the proposed method to study similar semiparametric panel data regression models with space-time filters.
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Appendix A


To prove the theoretical results, the following facts and lemma will be used frequently in the sequel.



Fact 1: If   A  1 , N T    and   A  2 , N T    are   N T × N T   matrices that are uniformly bounded in row sums (resp., column sums), then    A  1 , N T    A  2 , N T     is also uniformly bounded in row sums (resp., column sums).



Fact 2: If   A  1 , N T    is uniformly bounded in row sums (resp., column sums) and   A  2 , N T    is a conformable matrix whose elements are uniformly   O   o  N T     , then so are the elements of    A  1 , N T    A  2 , N T     (resp.    A  2 , N T    A  1 , N T    )   .



The above two Facts can be found in Su and Jin [35].



Lemma A1.

Under Assumptions 1–3, we have that




	(i)

	
    Z ˜  ′   Z ˜  / N T −  I K  =  O P    ζ 0   ( K )   K  /  N    .




	(ii)

	
    Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T −  I K  =  O P    ζ 0   ( K )   K  /  N    .











Proof. 

(i) See the proof of Theorem 1 in Newey [40] (pp. 161–162); (ii) It follows from Assumption 3(i) by similar proof of (i). □





Proof of Theorem 1.

Substituting   ε  ( β , γ )  = ε + X  (  β 0  − β )  +  Z ˜   (  γ 0  − γ )    into the quasi-log-likelihood function (6), we have that


     log  L  N , T    ( θ )  =     −   N ( T − 1 )  2  log  2 π  σ  e  2   +  ( T − 1 )  log   S N   ( ρ )   −  1 2  log   Ω  N , T − 1    ( η )            −  1  2  σ  e  2     ε ′   J  N T    ( η )  ε −  1  σ  e  2    ε ′   J  N T    ( η )   [ X  (  β 0  − β )  +  Z ˜   (  γ 0  − γ )  ]           −  1  2  σ  e  2      [ X  (  β 0  − β )  +  Z ˜   (  γ 0  − γ )  ]  ′   J  N T    ( η )   [ X  (  β 0  − β )  +  Z ˜   (  γ 0  − γ )  ]       =    log  L  N T , 1    ( θ )  + log  L  N T , 2    ( θ )  + log  L  N T , 3    ( θ )  ,     








where


     log  L  N T , 1    ( θ )  =     −   N ( T − 1 )  2  log  2 π  σ  e  2   +  ( T − 1 )  log   S N   ( ρ )   −  1 2  log   Ω  N , T − 1    ( η )            −  1  2  σ  e  2     ε ′   J  N T    ( η )  ε ,     










     log  L  N T , 2    ( θ )      = −  1  σ  e  2    ε ′   J  N T    ( η )   [ X  (  β 0  − β )  +  Z ˜   (  γ 0  − γ )  ]  ,       log  L  N T , 3    ( θ )      = −  1  2  σ  e  2      [ X  (  β 0  − β )  +  Z ˜   (  γ 0  − γ )  ]  ′   J  N T    ( η )   [ X  (  β 0  − β )  +  Z ˜   (  γ 0  − γ )  ]  .     








In order to prove that    1   N (   T − 1 )    log  L  N , T    ( θ )  −  Q  N , T    ( θ )   → P  0   uniformly for  θ , it is sufficient to prove that    1  N ( T − 1 )   log  L  N T , j    ( θ )  −  Q  N T , j    ( θ )   → P  0   uniformly for  θ  according to that   log  L  N T , 3    ( θ )    is deterministic by Assumption 4, where    Q  N T , j    ( θ )  = E  1  N ( T − 1 )   log  L  N T , j    ( θ )   ,   j = 1 , 2  . For case   j = 1  , as   ε =  B  N T   * − 1    F  N T , N ( T + m )    e  N , T + m    , we have that


         1  N ( T − 1 )   log  L  N T , 1    θ  −  Q  N T , 1    θ       =    −  1  2  σ  e  2      1  N ( T − 1 )    e  N , T + m  ′   F  N T , N ( T + m )  ′   B  N T   * − 1 ′    J  N T    ( η )   B  N T   * − 1    F  N T , N ( T + m )    e  N , T + m              − E  1  N ( T − 1 )    e  N , T + m  ′   F  N T , N ( T + m )  ′   B  N T   * − 1 ′    J  N T    ( η )   B  N T   * − 1    F  N T , N ( T + m )    e  N , T + m    .     








By using Lemma 7 in Yu et al. [47], we have that    1  N ( T − 1 )   log  L  N T , 1    θ  −  Q  N T , 1    θ   → P  0   uniformly for  θ  when T is fixed due to the explicit forms of   F  N T , N ( T + m )   ,   B  N T   * − 1    and    J  N T    ( η )    which are UB from Assumption 4. For case   j = 2  , similarly, as   B  N T   * − 1    and    J  N T    ( η )    are UB, using Lemma 8 in Yu et al. [47], we have that    1  N ( T − 1 )    e  N , T + m  ′   F  N T , N ( T + m )  ′   B  N T   * − 1 ′    J  N T    ( θ )   [ X   β 0  − β  +  Z ˜   (  γ 0  − γ )  ]   → P  0   when T is fixed.



To prove that    Q  N , T    ( θ )    is uniformly equicontinuous, we just need to investigate    Q  N T , 1    θ    and    Q  N T , 3    θ    according to that    Q  N T , 2    ( θ )  = 0  . It is easy to know that


      Q  N T , 1    ( θ )  =     −  1 2  log  2 π  σ  e  2   +  1 N  log   S N   ( ρ )   −  1  2 N ( T − 1 )   log   Ω  N , T − 1    ( η )          −  1  2  σ  e  2  N  ( T − 1 )    E   e  N , T + m  ′   F  N T , N ( T + m )  ′   B  N T   * − 1 ′    J  N T    ( η )   B  N T   * − 1    F  N T , N ( T + m )    e  N , T + m    .     








It is obvious that   −  1 2  log  2 π  σ  e  2   +  1 N  log   S N   ( ρ )     is uniformly equicontinuous for  η  and   σ  e  2  , so is   log   Ω  N , T − 1    ( η )    . Furthermore, we know that


  E  [  e  N , T + m  ′   F  N T , N ( T + m )  ′   B  N T   * − 1 ′    J  N T    ( η )   B  N T   * − 1    F  N T , N ( T + m )    e  N , T + m   ]  =  σ  e 0  2  tr  [  B  N T   * − 1 ′    J  N T    ( η )   B  N T   * − 1   ]   








by    F  N T , N ( T + m )    F  N T , N ( T + m )  ′  = I  . With the explicit form of    J  N T    ( η )   ,    1  σ e 2   tr  [  B  N T   * − 1 ′    J  N T    ( η )   B  N T   * − 1   ]    is uniformly equicontinuous for  η  and   σ  e  2  . Thus,    Q  N T , 1    ( θ )    is uniformly equicontinuous for  θ  and   σ  e  2  . For    Q  N T , 3    ( θ )   , we find that    Q  N T , 3    ( θ )    is a linear quadratic form of parameters  β  and  γ , and a function of    J  N T    ( η )   . Thus, it is uniformly equicontinuous for  θ .



To prove identification uniqueness of   θ 0  , note that


  E  1  N ( T − 1 )   log  L  N , T    ( θ )  − E  1  N ( T − 1 )   log  L  N , T     θ 0   ≡  T  N T , 1    η ,  σ  e  2   +  T  N T , 2    ( θ )  ,  



(A1)




where


         T  N T , 1    η ,  σ  e  2        =    −  1  2 N ( T − 1 )   log   σ  e  2   Ω  N , T − 1    ( η )   +  1 N  log   S N   ( ρ )   +  1  2 N ( T − 1 )   log   σ  e 0  2   Ω  N , T − 1    −  1 N  ln   S N            −  1  2  σ  e  2  N  ( T − 1 )    E   e  N , T + m  ′   F  N T , N ( T + m )  ′   B  N T   * − 1 ′    J  N T    ( η )   B  N T   * − 1    F  N T , N ( T + m )    e  N , T + m    +  1 2      








and


   T  N T , 2    θ  = −  1  2  σ  e  2  N  ( T − 1 )      X  (  β 0  − β )  +  Z ˜   (  γ 0  − γ )   ′   J  N T    ( η )   X  (  β 0  − β )  +  Z ˜   (  γ 0  − γ )   .  








Consider an auxiliary nonseparable space-time disturbance process:    ε  N t   = ρ W  ε  N t   + λ  ε  N , t − 1   +  e  N t    ( t = 1 , … , T )   , where its quasi-log-likelihood function is


     log  L  p , N T    ( η ,  σ  e  2  )  =     −   N ( T − 1 )  2  log  2 π  σ  e  2   +  ( T − 1 )  log   S N   ( ρ )   −  1 2  log   Ω  N , T − 1    ( η )            −  1  2  σ  e  2     ε ′   J  N T    ( η )  ε .     








According to the information inequality for the auxiliary nonseparable space-time disturbance process, we know that    T  N T , 1    η ,  σ  e  2   ≤ 0   for any  η  and   σ  e  2  . Additionally,    T  N T , 2    ( θ )    is a quadratic function of  β  and  α  with a negative semidefinite matrix given  θ . We can find that identification uniqueness of   β 0   and   γ 0   would be possible when


   lim  N → ∞    1  N ( T − 1 )     [ X ,  Z ˜  ]  ′   J  N T    ( η )   [ X ,  Z ˜  ]   








is nonsingular given any value of  η  in Assumption 5 (iv), then    T  N T , 2    ( θ )  < 0   for any   β ≠  β 0    and   γ ≠  γ 0   . In addition, when


   lim  N → ∞    T  N T , 1    η ,  σ  e  2   ≠ 0  








for     η ,  σ  e  2   ′  ≠    η 0  ,  σ  e 0  2   ′    in Assumption 6 is satisfied, the identification uniqueness of   η 0   and   σ  e 0  2   is obtained. This completes the proof. □





Proof of Theorem 2.

Denote    θ *  =   (  β ′  , ρ , λ ,  σ  e  2  )  ′    and    θ 0 *  =   (  β 0 ′  ,  ρ 0  ,  λ 0  ,  σ  e 0  2  )  ′   . According to the Taylor expansion of the first-order condition from maximizing the quasi-log-likelihood function


     log  L  N , T    (  θ *  )  =     −   N ( T − 1 )  2  log  2 π  σ  e  2   −  1 2  log   I N  +  ( T − 1 )   (  K N   ( η )  −  I N  )            +  ( T − 1 )  log   S N   ( ρ )   −  1  2  σ  e  2      [ Y − X β ]  ′    ( I −  S η  )  ′   J  N T    ( η )   ( I −  S η  )   [ Y − X β ]  ,     








we have


    N ( T − 1 )      θ ^  *  −  θ  0  *   = −    1  N ( T − 1 )      ∂ 2  log  L  N , T    (   θ ˜   N T  *  )    ∂  θ *  ∂  θ  * ′       − 1    1   N ( T − 1 )      ∂ log  L  N , T     θ  0  *     ∂  θ *    ,  








where    θ ˜   N T  *   lies between    θ ^  *   and   θ  0  *   and converges to   θ  0  *   in probability by Theorem 1. The proof is completed if we can show that


   1   N ( T − 1 )      ∂ log  L  N , T     θ  0  *     ∂  θ *     → L  N  0 ,  Σ  θ 0 *   +  Ω  θ 0 *    ,  



(A2)






   1  N ( T − 1 )      ∂ 2  log  L  N , T     θ  0  *     ∂  θ *  ∂  θ  * ′     −  Σ  θ 0 *   =  o P   ( 1 )   



(A3)




and


   1  N ( T − 1 )      ∂ 2  log  L  N , T    (   θ ˜   N T  *  )    ∂  θ *  ∂  θ  * ′     −  1  N ( T − 1 )      ∂ 2  log  L  N , T    (  θ  0  *  )    ∂  θ *  ∂  θ  * ′     =  o P   ( 1 )   uniformly  in    θ ˜   N T  *  .  



(A4)







To prove that (A2)–(A4) hold, we need to compute the following scores under the non-normality of errors:


       ∂ log  L  N , T     θ  0  *     ∂ β   =      1  σ  e 0  2    X ′    ( I −  S  η 0   )  ′   J  N T    ( I −  S  η 0   )   B  N T   * − 1    F  N T , N ( T + m )    e  N , T + m   +  o P   ( 1 )  ,         ∂ log  L  N , T     θ  0  *     ∂ ρ   =     −  1  2  σ  e 0  2     e  N , T + m  ′   F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  η 0   )  ′    ∂  J  N T     ∂ ρ    ( I −  S  η 0   )   B  N T   * − 1    F  N T , N ( T + m )    e  N , T + m            −  ( T − 1 )  tr  W  S  N   − 1    −  1 2  tr   K  N   − 1     ∂  K N    ∂ ρ    +  o P   ( 1 )  ,         ∂ log  L  N , T     θ  0  *     ∂ λ   =     −  1  2  σ  e 0  2     e  N , T + m  ′   F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  η 0   )  ′    ∂  J  N T     ∂ λ    ( I −  S  δ 0   )   B  N T   * − 1    F  N T , N ( T + m )    e  N , T + m            −  1 2  tr   K  N   − 1     ∂  K N    ∂ λ    +  o P   ( 1 )  ,         ∂ log  L  N , T     θ  0  *     ∂  σ  e  2    =      1  2  σ  e 0  4     e  N , T + m  ′   F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  η 0   )  ′   J  N T    ( I −  S  η 0   )   B  N T   * − 1    F  N T , N ( T + m )    e  N , T + m            −   N ( T − 1 )   2  σ  e 0  2    +  o P   ( 1 )  .     











Defining


      Δ  N T   ≡      vec (  F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  η 0   )  ′    ∂  J  N T     ∂ ρ    ( I −  S  η 0   )   B  N T   * − 1    F  N T , N ( T + m )   ) ,          vec (  F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  η 0   )  ′    ∂  J  N T     ∂ λ    ( I −  S  η 0   )   B  N T   * − 1    F  N T , N ( T + m )   ) ,           −  1  σ  e 0  2   vec  (  F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  η 0   )  ′   J  N T    ( I −  S  η 0   )   B  N T   * − 1    F  N T , N ( T + m )   )   ′          ×  vec (   (  F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  η 0   )  ′    ∂  J  N T     ∂ ρ    ( I −  S  η 0   )   B  N T   * − 1    F  N T , N ( T + m )   )  s  ) ,           vec (   (  F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  η 0   )  ′    ∂  J  N T     ∂ λ    ( I −  S  η 0   )   B  N T   * − 1    F  N T , N ( T + m )   )  s  ) ,          −  1  σ  e 0  2   vec  (   (  F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  η 0   )  ′   J  N T    ( I −  S  η 0   )   B  N T   * − 1    F  N T , N ( T + m )   )  s  )      








and    A s  = A +  A ′    for any square matrix  A , we can obtain the expected Hessian matrix


   Σ  θ  0  *   =  1  N ( T − 1 )         1  σ  e 0  2    X ′    ( I −  S  η 0   )  ′   J  N T    ( I −  S  η 0   )  X     0  p × 3       *     1 4   Δ  N T         



(A5)




which is a symmetric matrix.



According to the above results, it is not hard to obtain that


  E   1  N ( T − 1 )     ∂ log  L  N , T     θ  0  *     ∂  θ *      ∂ log  L  N , T     θ  0  *     ∂  θ  * ′      =  Σ  θ 0 *   +  Ω  θ 0 *   +  o P   ( 1 )  ,  








where   Ω  θ 0 *    is related to the third and fourth moments of   e  i t   . The expression of   Ω  θ 0 *    is as follows


   Ω  θ 0 *   =  1  N ( T − 1 )        0  p × p        μ 3   σ  e 0  4    X ′    ( I −  S  η 0   )  ′   J  N T    B  N T   * − 1    F  N T , N ( T + m )   P      *       μ 4  − 3  σ  e 0  4    σ  e 0  4    P ′  P      ,  



(A6)




where


     P =     −  1 2   vec D   (  F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  δ 0   )  ′    ∂  J  N T     ∂ ρ    ( I −  S  δ 0   )   B  N T   * − 1    F  N T , N ( T + m )   )  ,          −  1 2   vec D   (  F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  δ 0   )  ′    ∂  J  N T     ∂ λ    ( I −  S  δ 0   )   B  N T   * − 1    F  N T , N ( T + m )   )  ,           1  2  σ  e 0  2     vec D   (  F  N T , N ( T + m )  ′   B  N T   * − 1 ′     ( I −  S  δ 0   )  ′   J  N T    ( I −  S  δ 0   )   B  N T   * − 1    F  N T , N ( T + m )   )      








and    vec D   ( A )    is the column vector formed by diagonal elements of a square matrix  A .



The components of    1   N ( T − 1 )      ∂ log  L  N , T     θ  0  *     ∂  θ *      are linear or quadratic functions of   e  N , T + m   . (A2) can be proved by the central limit theorem for linear quadratic forms of Theorem 1 in Kelejian and Prucha [48]. (A3) and (A4) can be proved by applying (38)–(41) in Yu et al. [47]. This completes the proof. □





Proof of Theorem 3.

Note that   η ^   is consistent with   η 0   in Theorem 1, from the Equation (7), it holds that


      γ ^  =       [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1     Z ˜  ′   J  N T    (  η 0  )   [ Y − X  β ^  ]       =      [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1     Z ˜  ′   J  N T    (  η 0  )   [ X  (  β 0  −  β ^  )  +  (  Z  α 0   −  Z ˜   γ 0  )  +  Z ˜   γ 0  + ε ]       =      [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1     Z ˜  ′   J  N T    (  η 0  )  X  (  β 0  −  β ^  )           +   [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1     Z ˜  ′   J  N T    (  η 0  )   (  Z  α 0   −  Z ˜   γ 0  )           +   [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1     Z ˜  ′   J  N T    (  η 0  )  ε +  γ 0  ,     



(A7)




where    Z  α 0   =   (  z 11 ′   α 0   (  u 11  )  , … ,  z  N T  ′   α 0   (  u  N T   )  )  ′   . Consider the first term of the last equation in (A7), let   1 N   be the indicator function for the smallest eigenvalue of     Z ˜  ′   Z ˜  / N T   and     Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T   being greater than   1 / 2  . Then,    lim  N → ∞    P (   1 N     = 1 ) = 1  . By Assumption 3, Lemma A1 and Fact 2, we have that


         1 N      [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1     Z ˜  ′   J  N T    (  η 0  )  X  (  β 0  −  β ^  )   2       =     1 N    (  β 0  −  β ^  )  ′   X ′   J  N T    (  η 0  )   Z ˜    [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 2     Z ˜  ′   J  N T    (  η 0  )  X  (  β 0  −  β ^  )       =     O P   (  1  N T   )   1 N    (  β 0  −  β ^  )  ′   X ′   J  N T    (  η 0  )   Z ˜    [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T ]   − 1     Z ˜  ′   J  N T    (  η 0  )  X  (  β 0  −  β ^  )  /  ( N T )       ≤     O P   (  1  N T   )  .     



(A8)




For the second term of last equation in (A7), note that     Z  α 0   −  Z ˜   γ 0   =  O P   (  K  −  r 2    )    by Assumption 3 (iii), then


         1 N     [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T ]   − 1     Z ˜  ′   J  N T    (  η 0  )   (  Z  α 0   −  Z ˜   γ 0  )  / N T       =     1 N     (  Z  α 0   −  Z ˜   γ 0  )  ′   J  N T    (  η 0  )   Z ˜    [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T ]   −  1 2      [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T ]   − 1              ·   [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T ]   −  1 2      Z ˜  ′   J  N T    (  η 0  )   (  Z  α 0   −  Z ˜   γ 0  )  / N T   1 2       ≤     O P   ( 1 )   1 N       Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T   −  1 2      Z ˜  ′   J  N T    (  η 0  )   (  Z  α 0   −  Z ˜   γ 0  )  / N T       =     O P   (  K  −  r 2    )  .     



(A9)




For the third term of the last equation in (A7), it suffices to prove


        E   1 N      [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T ]   −  1 2      Z ˜  ′   J  N T    (  η 0  )  ε / N T  2        =     1 N  E   ε ′   J  N T    (  η 0  )   Z ˜    [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T ]   − 1     Z ˜  ′   J  N T    (  η 0  )  ε  /   ( N T )  2       =     1 N  tr   F  N T , N ( T + m )  ′   B  N T   * − 1 ′    J  N T    (  η 0  )   Z ˜    [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T ]   − 1             ·    Z ˜  ′   J  N T    (  η 0  )   B  N T   * − 1    F  N T , N ( T + m )    /   ( N T )  2       ≤    K / N T     








by    F  N T , N ( T + m )    F  N T , N ( T + m )  ′  = I   and    J  N T    (  η 0  )   B  N T   * − 1    B  N T   * − 1 ′    J  N T    (  η 0  )  =  J  N T    (  η 0  )   . According to the Markov inequality, it follows that    1 N     [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T ]   −  1 2      Z ˜  ′   J  N T    (  η 0  )  ε / N T  =  O P   (  K  /  N  )   .



Hence, we have that


         1 N     [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T ]   − 1     Z ˜  ′   J  N T    (  η 0  )  ε / N T       ≤     O P   ( 1 )   1 N     [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  / N T ]   −  1 2      Z ˜  ′   J  N T    (  η 0  )  ε / N T       =     O P   (  K  /  N  )  .     



(A10)




Based on (A8)–(A10), the formula (A7) can be written as


    γ ^  −  γ 0   =  O P   (  K  /  N  )  +  O P   (  K  −  r 2    )  .  



(A11)







By Assumption 3, (A11) and Theorem 2, it is easy to obtain that


      1 N   |  α ^   (  u  i t   )  −  α 0   (  u  i t   )  |      =  1 N   |  ζ  q , K    (  u  i t   )   (  γ ^  −  γ 0  )  +  (  ζ  q , K    (  u  i t   )   γ 0  −  α 0   (  u  i t   )  )  |           ≤  1 N   |   ζ  q , K    (  u  i t   )   (  γ ^  −  γ 0  )   | + |   (  ζ  q , K    (  u  i t   )   γ 0  −  α 0   (  u  i t   )  )   |           =  O P    ζ 0   ( K )    K  /  N  +  K  −  r 2      .     








 □





Proof of Theorem 4.

According to (A7), we have


   γ ^  −  γ 0  =   [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1     Z ˜  ′   J  N T    (  η 0  )   B  N T   * − 1   e +  O P     1 / N   +  K  −  r 2     .  








Denote    α *   ( u )  =  ζ  q , K    ( u )   γ 0   , we know


   α ^   ( u )  −  α *   ( u )  =  ζ  q , K    ( u )    [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1     Z ˜  ′   J  N T    (  η 0  )   B  N T   * − 1   e +  O P     ζ  q , K    ( u )      1 / N   +  K  −  r 2      .  








For any fixed point   u ∈ ( a , d )  , as   N → ∞  , applying the central limit theorem, we can obtain that


   Λ  u   − 1 / 2     α ^   ( u )  −  α *   ( u )    ⟶ L  N  ( 0 ,  σ  e 0  2  )  ,  








where    Λ u  =  ζ  q , K    ( u )    [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1     Z ˜  ′   J  N T    (  η 0  )   B  N T   * − 1    B  N T   * ′ − 1       J  N T  ′   (  η 0  )   Z ˜    [   Z ˜  ′   J  N T    (  η 0  )   Z ˜  ]   − 1    ζ  q , K  ′   ( u )   . This completes the proof of Theorem 4. □
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Figure 1. The parameter space  Θ  of  ρ  and  λ . 
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Figure 2. The fitting results and 95% confidence intervals of    α 1   ( u )    in the model (12). 
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Figure 3. The fitting results and 95% confidence intervals of    α 2   ( u )    in the model (12). 
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Figure 4. Scatter plots of the response variable versus five regressors, respectively. 
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Figure 5. Varying coefficient effects of   C R  ,   E R  ,   G R   and   T R   to   Y C   and their   95 %   confidence intervals, respectively. 
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Table 1. Simulation results of parametric estimates     β ^  1  ,   β ^  2  ,  ρ ^  ,  λ ^    and    σ ^   e  2  .
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T = 10

	
T = 15

	
T = 20




	
N

	
Parameter

	
    ( ρ , λ )    

	
    ( 0.2 , 0.7 )    

	
    ( 0.4 , 0.4 )    

	
    ( 0.7 , 0.2 )    

	
    ( 0.2 , 0.7 )    

	
    ( 0.4 , 0.4 )    

	
    ( 0.7 , 0.2 )    

	
    ( 0.2 , 0.7 )    

	
    ( 0.4 , 0.4 )    

	
    ( 0.7 , 0.2 )    






	
25

	
   β 1   

	
Mean

	
0.9998

	
0.9993

	
0.9990

	
0.9994

	
0.9978

	
0.9968

	
0.9999

	
0.9998

	
0.9999




	

	

	
Median

	
0.9985

	
0.9962

	
1.0002

	
1.0004

	
0.9987

	
0.9989

	
1.0002

	
1.0003

	
1.0003




	

	

	
SD

	
0.0344

	
0.0391

	
0.0399

	
0.0277

	
0.0310

	
0.0309

	
0.0235

	
0.0261

	
0.0259




	

	

	
RMSE

	
0.0344

	
0.0390

	
0.0398

	
0.0277

	
0.0310

	
0.0310

	
0.0235

	
0.0260

	
0.0259




	

	
   β 2   

	
Mean

	
1.4971

	
1.4972

	
1.4963

	
1.4976

	
1.4978

	
1.4983

	
1.5015

	
1.5011

	
1.5004




	

	

	
Median

	
1.4970

	
1.4940

	
1.4960

	
1.4984

	
1.4978

	
1.4975

	
1.5018

	
1.5017

	
1.5007




	

	

	
SD

	
0.0357

	
0.0394

	
0.0380

	
0.0273

	
0.0300

	
0.0296

	
0.0231

	
0.0257

	
0.0257




	

	

	
RMSE

	
0.0357

	
0.0395

	
0.0381

	
0.0273

	
0.0300

	
0.0296

	
0.0231

	
0.0257

	
0.0257




	

	
  ρ  

	
Mean

	
0.2513

	
0.4282

	
0.7199

	
0.2354

	
0.4139

	
0.7103

	
0.2303

	
0.4125

	
0.7089




	

	

	
Median

	
0.2489

	
0.4335

	
0.7214

	
0.2385

	
0.4162

	
0.7130

	
0.2317

	
0.4115

	
0.7060




	

	

	
SD

	
0.0948

	
0.0640

	
0.0396

	
0.0713

	
0.0465

	
0.0279

	
0.0601

	
0.0417

	
0.0236




	

	

	
RMSE

	
0.1076

	
0.0698

	
0.0443

	
0.0795

	
0.0484

	
0.0297

	
0.0671

	
0.0435

	
0.0252




	

	
  λ  

	
Mean

	
0.7598

	
0.4237

	
0.2022

	
0.7423

	
0.4153

	
0.2029

	
0.7339

	
0.4091

	
0.1984




	

	

	
Median

	
0.7625

	
0.4368

	
0.1995

	
0.7484

	
0.4101

	
0.1965

	
0.7339

	
0.4054

	
0.2000




	

	

	
SD

	
0.0921

	
0.0955

	
0.0592

	
0.0723

	
0.0616

	
0.0409

	
0.0626

	
0.0526

	
0.0316




	

	

	
RMSE

	
0.1096

	
0.0982

	
0.0591

	
0.0837

	
0.0633

	
0.0410

	
0.0711

	
0.0533

	
0.0316




	

	
   σ  e  2   

	
Mean

	
0.4196

	
0.4020

	
0.3950

	
0.4483

	
0.4366

	
0.4334

	
0.4608

	
0.4507

	
0.4473




	

	

	
Median

	
0.4172

	
0.4139

	
0.3944

	
0.4490

	
0.4388

	
0.4368

	
0.4606

	
0.4501

	
0.4496




	

	

	
SD

	
0.0438

	
0.0443

	
0.0470

	
0.0385

	
0.0361

	
0.0383

	
0.0349

	
0.0313

	
0.0328




	

	

	
RMSE

	
0.0915

	
0.1075

	
0.1149

	
0.0644

	
0.0729

	
0.0768

	
0.0524

	
0.0584

	
0.0621




	
49

	
   β 1   

	
Mean

	
1.0005

	
1.0012

	
1.0017

	
0.9984

	
0.9984

	
0.9994

	
0.9993

	
0.9991

	
1.0006




	

	

	
Median

	
0.9994

	
1.0026

	
1.0036

	
0.9991

	
0.9998

	
0.9980

	
1.0003

	
0.9989

	
0.9999




	

	

	
SD

	
0.0267

	
0.0293

	
0.0286

	
0.0185

	
0.0207

	
0.0209

	
0.0176

	
0.0195

	
0.0175




	

	

	
RMSE

	
0.0267

	
0.0293

	
0.0286

	
0.0185

	
0.0207

	
0.0209

	
0.0176

	
0.0194

	
0.0175




	

	
   β 2   

	
Mean

	
1.5010

	
1.5006

	
1.5002

	
1.5014

	
1.5011

	
1.5008

	
1.4982

	
1.4977

	
1.5027




	

	

	
Median

	
1.5009

	
1.4944

	
1.5011

	
1.5009

	
1.5015

	
1.5022

	
1.4981

	
1.4970

	
1.5007




	

	

	
SD

	
0.0264

	
0.0290

	
0.0283

	
0.0187

	
0.0204

	
0.0215

	
0.0159

	
0.0179

	
0.0181




	

	

	
RMSE

	
0.0264

	
0.0290

	
0.0283

	
0.0187

	
0.0204

	
0.0216

	
0.0159

	
0.0180

	
0.0181




	

	
  ρ  

	
Mean

	
0.2545

	
0.4213

	
0.7109

	
0.2456

	
0.4135

	
0.7064

	
0.2347

	
0.4042

	
0.7059




	

	

	
Median

	
0.2538

	
0.4209

	
0.7133

	
0.2446

	
0.4110

	
0.7079

	
0.2297

	
0.4023

	
0.7064




	

	

	
SD

	
0.0728

	
0.0466

	
0.0321

	
0.0645

	
0.0403

	
0.0233

	
0.0556

	
0.0282

	
0.0168




	

	

	
RMSE

	
0.0908

	
0.0512

	
0.0338

	
0.0789

	
0.0424

	
0.0241

	
0.0655

	
0.0285

	
0.0177




	

	
  λ  

	
Mean

	
0.7540

	
0.4207

	
0.2089

	
0.7482

	
0.4079

	
0.1997

	
0.7410

	
0.4066

	
0.1961




	

	

	
Median

	
0.7533

	
0.4122

	
0.1995

	
0.7446

	
0.3983

	
0.1944

	
0.7468

	
0.4042

	
0.1959




	

	

	
SD

	
0.0780

	
0.0847

	
0.0512

	
0.0661

	
0.0481

	
0.0353

	
0.0570

	
0.0388

	
0.0272




	

	

	
RMSE

	
0.0947

	
0.0900

	
0.0519

	
0.0817

	
0.0486

	
0.0354

	
0.0701

	
0.0393

	
0.0275




	

	
   σ  e  2   

	
Mean

	
0.4412

	
0.4291

	
0.4238

	
0.4680

	
0.4526

	
0.4481

	
0.4759

	
0.4650

	
0.4582




	

	

	
Median

	
0.4378

	
0.4205

	
0.4179

	
0.4649

	
0.4536

	
0.4452

	
0.4714

	
0.4614

	
0.4590




	

	

	
SD

	
0.0378

	
0.0350

	
0.0393

	
0.0319

	
0.0277

	
0.0311

	
0.0290

	
0.0261

	
0.0252




	

	

	
RMSE

	
0.0692

	
0.0790

	
0.0857

	
0.0551

	
0.0549

	
0.0605

	
0.0417

	
0.0436

	
0.0488




	
81

	
   β 1   

	
Mean

	
1.0013

	
1.0016

	
1.0018

	
0.9995

	
0.9996

	
1.0000

	
1.0001

	
1.0001

	
0.9997




	

	

	
Median

	
1.0004

	
1.0029

	
1.0036

	
1.0002

	
0.9999

	
1.0003

	
1.0002

	
1.0003

	
1.0003




	

	

	
SD

	
0.0205

	
0.0223

	
0.0216

	
0.0156

	
0.0175

	
0.0175

	
0.0126

	
0.0146

	
0.0145




	

	

	
RMSE

	
0.0205

	
0.0223

	
0.0216

	
0.0156

	
0.0175

	
0.0175

	
0.0126

	
0.0146

	
0.0145




	

	
   β 2   

	
Mean

	
1.5012

	
1.5017

	
1.5019

	
1.4996

	
1.4993

	
1.4991

	
1.5002

	
1.5006

	
1.5005




	

	

	
Median

	
1.5023

	
1.5023

	
1.5022

	
1.5000

	
1.5007

	
1.5009

	
1.5009

	
1.5014

	
1.5007




	

	

	
SD

	
0.0197

	
0.0219

	
0.0215

	
0.0147

	
0.0160

	
0.0158

	
0.0127

	
0.0141

	
0.0139




	

	

	
RMSE

	
0.0197

	
0.0219

	
0.0215

	
0.0147

	
0.0160

	
0.0157

	
0.0127

	
0.0141

	
0.0139




	

	
  ρ  

	
Mean

	
0.2654

	
0.4161

	
0.7087

	
0.2489

	
0.4096

	
0.7049

	
0.2463

	
0.4072

	
0.7042




	

	

	
Median

	
0.2458

	
0.4184

	
0.7099

	
0.2497

	
0.4079

	
0.7058

	
0.2455

	
0.4071

	
0.7060




	

	

	
SD

	
0.0624

	
0.0333

	
0.0252

	
0.0522

	
0.0259

	
0.0163

	
0.0492

	
0.0214

	
0.0161




	

	

	
RMSE

	
0.0767

	
0.0370

	
0.0266

	
0.0714

	
0.0276

	
0.0170

	
0.0551

	
0.0225

	
0.0166




	

	
  λ  

	
Mean

	
0.7556

	
0.4190

	
0.2088

	
0.7519

	
0.4076

	
0.2016

	
0.7427

	
0.4044

	
0.2013




	

	

	
Median

	
0.7505

	
0.4002

	
0.2006

	
0.7507

	
0.4025

	
0.1973

	
0.7453

	
0.4037

	
0.2000




	

	

	
SD

	
0.0723

	
0.0688

	
0.0442

	
0.0531

	
0.0425

	
0.0274

	
0.0443

	
0.0289

	
0.0231




	

	

	
RMSE

	
0.0911

	
0.0712

	
0.0450

	
0.0742

	
0.0430

	
0.0274

	
0.0598

	
0.0292

	
0.0231




	

	
   σ  e  2   

	
Mean

	
0.4518

	
0.4362

	
0.4340

	
0.4724

	
0.4577

	
0.4565

	
0.4779

	
0.4654

	
0.4649




	

	

	
Median

	
0.4485

	
0.4333

	
0.4287

	
0.4726

	
0.4570

	
0.4558

	
0.4753

	
0.4656

	
0.4650




	

	

	
SD

	
0.0366

	
0.0305

	
0.0338

	
0.0254

	
0.0223

	
0.0236

	
0.0202

	
0.0174

	
0.0220




	

	

	
RMSE

	
0.0604

	
0.0707

	
0.0742

	
0.0475

	
0.0478

	
0.0495

	
0.0335

	
0.0387

	
0.0414
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Table 2. The Medians and SDs of MADE values for     α ^  1   ( u )   .
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T = 10

	
T = 15

	
T = 20




	
    ( ρ , λ )    

	

	
N = 25

	
N = 49

	
N = 81

	
N = 25

	
N = 49

	
N = 81

	
N = 25

	
N = 49

	
N = 81






	
(0.2, 0.7)

	
Median

	
0.0782

	
0.0553

	
0.0443

	
0.0622

	
0.0426

	
0.0347

	
0.0553

	
0.0405

	
0.0310




	

	
SD

	
0.0203

	
0.0148

	
0.0113

	
0.0174

	
0.0105

	
0.0096

	
0.0157

	
0.0101

	
0.0080




	
(0.4, 0.4)

	
Median

	
0.0853

	
0.0604

	
0.0488

	
0.0693

	
0.0473

	
0.0379

	
0.0628

	
0.0445

	
0.0337




	

	
SD

	
0.0219

	
0.0159

	
0.0121

	
0.0193

	
0.0116

	
0.0110

	
0.0177

	
0.0112

	
0.0092




	
(0.7, 0.2)

	
Median

	
0.0835

	
0.0588

	
0.0495

	
0.0670

	
0.0491

	
0.0383

	
0.0627

	
0.0424

	
0.0334




	

	
SD

	
0.0217

	
0.0150

	
0.0117

	
0.0187

	
0.0128

	
0.0108

	
0.0177

	
0.0107

	
0.0090
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Table 3. The Medians and SDs of MADE values for     α ^  2   ( u )   .
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T = 10

	
T = 15

	
T = 20




	
    ( ρ , λ )    

	

	
N = 25

	
N = 49

	
N = 81

	
N = 25

	
N = 49

	
N = 81

	
N = 25

	
N = 49

	
N = 81






	
(0.2, 0.7)

	
Median

	
0.0776

	
0.0532

	
0.0444

	
0.0683

	
0.0442

	
0.0350

	
0.0563

	
0.0378

	
0.0306




	

	
SD

	
0.0213

	
0.0152

	
0.0115

	
0.0183

	
0.0115

	
0.0091

	
0.0143

	
0.0112

	
0.0078




	
(0.4, 0.4)

	
Median

	
0.0856

	
0.0599

	
0.0480

	
0.0672

	
0.0498

	
0.0384

	
0.0618

	
0.0426

	
0.0336




	

	
SD

	
0.0231

	
0.0166

	
0.0125

	
0.0198

	
0.0128

	
0.0099

	
0.0153

	
0.0123

	
0.0088




	
(0.7, 0.2)

	
Median

	
0.0846

	
0.0606

	
0.0476

	
0.0653

	
0.0460

	
0.0375

	
0.0607

	
0.0413

	
0.0329




	

	
SD

	
0.0226

	
0.0159

	
0.0129

	
0.0191

	
0.0113

	
0.0097

	
0.0153

	
0.0115

	
0.0090
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Table 4. Simulation results of parametric estimates for the models (12)–(15).
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N = 25,T = 10

	
N = 49,T = 10




	
Model

	

	
    β 1    

	
    β 2    

	
   ρ   

	
   λ   

	
    σ e 2    

	
    β 1    

	
    β 2    

	
   ρ   

	
   λ   

	
    σ e 2    






	
Model (12)

	
Mean

	
1.9993

	
1.4972

	
0.4282

	
0.4237

	
0.4020

	
1.0012

	
1.5006

	
0.4213

	
0.4207

	
0.4291




	

	
Median

	
0.9962

	
1.4940

	
0.4335

	
0.4368

	
0.4139

	
1.0016

	
1.4944

	
0.4209

	
0.4122

	
0.4205




	

	
SD

	
0.0391

	
0.0394

	
0.0640

	
0.0955

	
0.0443

	
0.0293

	
0.0290

	
0.0466

	
0.0847

	
0.0350




	

	
RMSE

	
0.0390

	
0.0395

	
0.0698

	
0.0982

	
0.1075

	
0.0293

	
0.0290

	
0.0512

	
0.0900

	
0.0790




	
Model (13)

	
Mean

	
0.9989

	
1.4996

	
-

	
0.5610

	
0.5508

	
1.0011

	
1.5012

	
-

	
0.5456

	
0.5735




	

	
Median

	
0.9981

	
1.4985

	
-

	
0.5649

	
0.5485

	
1.0026

	
1.4924

	
-

	
0.5689

	
0.5778




	

	
SD

	
0.0429

	
0.0464

	
-

	
0.1066

	
0.0671

	
0.0324

	
0.0328

	
-

	
0.0694

	
0.0499




	

	
RMSE

	
0.0428

	
0.0463

	
-

	
0.1930

	
0.0841

	
0.0324

	
0.0328

	
-

	
0.1612

	
0.0888




	

	
MR

	
97.4%

	
17.21%

	
-

	
96.54%

	
−21.77%

	
10.58%

	
13.10%

	
-

	
79.11%

	
12.41%




	
Model (14)

	
Mean

	
0.9984

	
1.4956

	
0.4145

	
-

	
0.4145

	
1.0009

	
1.5003

	
0.4542

	
-

	
0.4410




	

	
Median

	
0.9961

	
1.4939

	
0.4667

	
-

	
0.4139

	
1.0006

	
1.5003

	
0.4567

	
-

	
0.4379




	

	
SD

	
0.0440

	
0.0426

	
0.0670

	
-

	
0.0499

	
0.0310

	
0.0328

	
0.0448

	
-

	
0.0351




	

	
RMSE

	
0.0439

	
0.0427

	
0.0942

	
-

	
0.0989

	
0.0310

	
0.0328

	
0.0703

	
-

	
0.0686




	

	
MR

	
12.56%

	
8.10%

	
34.96%

	
-

	
−8.00%

	
5.80%

	
13.10%

	
37.30%

	
-

	
−13.16%




	
Model (15)

	
Mean

	
0.9969

	
1.4991

	
-

	
-

	
0.6073

	
1.0000

	
1.5007

	
-

	
-

	
0.6309




	

	
Median

	
0.9964

	
1.4982

	
-

	
-

	
0.5955

	
0.9987

	
1.5032

	
-

	
-

	
0.6278




	

	
SD

	
0.0550

	
0.0544

	
-

	
-

	
0.0953

	
0.0368

	
0.0408

	
-

	
-

	
0.0677




	

	
RMSE

	
0.0549

	
0.0543

	
-

	
-

	
0.1434

	
0.0367

	
0.0407

	
-

	
-

	
0.1473




	

	
MR

	
40.76%

	
37.46%

	
-

	
-

	
33.39%

	
25.25%

	
40.34%

	
-

	
-

	
86.45%








Note: True values (    β 10   ,    β 20   ,    σ  e 0  2   )′ = (1, 1.5, 0.5)′ for the models (12)–(15), λ0 = 0.4 for the model (13) and ρ0 = 0.4 for the model (14).
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Table 5. Variable definitions and their meanings.
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	Response Variable
	Definition





	   Y C   
	The ratio of resident consumption to GDP



	Regressors
	Definition



	   L R   
	The ratio of the population over 65 to the population between 14 and 65



	   C R   
	The ratio of the population under 14 to the population between 14 and 65



	   E R   
	The ratio of the population with junior college degree or above to total population



	   G R   
	The ratio of the male population to total population



	   T R   
	The ratio of the tertiary industry to GDP



	Intermediate Variable
	Definition



	   I R   
	Growth rate of per capita disposable income
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Table 6. The descriptive statistics of the response variable, five regressors and intermediate variable.
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	Min
	1st Qu.
	Median
	Mean
	3rd Qu.
	Max
	SD
	Range





	   Y C   
	0.2160
	0.3260
	0.3609
	0.3642
	0.4001
	0.5811
	0.0579
	0.3651



	   L R   
	0.0744
	0.1132
	0.1361
	0.1407
	0.1612
	0.2548
	0.0351
	0.1804



	   C R   
	0.0965
	0.1791
	0.2311
	0.2289
	0.2767
	0.3981
	0.0639
	0.3016



	   E R   
	0.0285
	0.0806
	0.1063
	0.1219
	0.1398
	0.4769
	0.0698
	0.4484



	   G R   
	0.4873
	0.5057
	0.5108
	0.5117
	0.5168
	0.5519
	0.0091
	0.0645



	   T R   
	0.2830
	0.3875
	0.4461
	0.4581
	0.5100
	0.8400
	0.0990
	0.5570



	   I R   
	−0.0285
	0.0795
	0.0890
	0.0946
	0.1162
	0.2038
	0.0355
	0.2323
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Table 7. Estimation results of parameters in the model (16).
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	   β   
	   ρ   
	   λ   
	    σ  e  2    





	Estimator
	−0.1751 ***
	0.6126 ***
	0.3674 ***
	0.0005 ***



	SD
	0.1072
	0.1432
	0.0329
	9.6963 × 10    − 5   







Notes: *** represents that the regressor is significant under the significance level 1%.
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