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Abstract

:

In this paper, we study a fixed-point problem with a set-valued mapping by using an algorithm based on unions of nonexpansive mappings. We show that an approximate solution is reached after a finite number of iterations in the presence of computational errors. This result is an extension of the results known in the literature.
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1. Introduction


The study of fixed-point problems is an important topic in nonlinear analysis [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]. These problems have various applications in mathematical analysis, optimization theory, engineering, medicine, and the natural sciences [14,15,16,17,18,19,20]. In particular, in [21], a novel framework for the investigation of iterative algorithms was introduced. This framework was given in terms of a certain nonlinear set-valued map T defined on a space X. For every   x ∈ X  ,   T ( x )   is a finite union of values of single-valued paracontracting operators. Tam [21] established a convergence for this algorithm. Note that his result was a generalization of the result attained by Bauschke and Noll [22]. In our recent paper [23], we obtained an extension of a result of [21]. It should be mentioned that in [21], X is a finite-dimensional Euclidean space, while in [23] and in the present paper, X is an arbitrary metric space. The main result of [23] was obtained for inexact iterations of operators under the assumption that the common fixed-point problem has a solution. In the present paper, we prove an extension of this result in a case in which the common fixed-point problem has only an approximated solution.




2. Preliminaries


Assume that   ( X , ρ )   is a metric space endowed with a metric  ρ  and that   C ⊂ X   is its nonempty closed set. For every   u ∈ X   and every   Δ ∈ ( 0 , ∞ )  , we set


  B ( u , Δ ) = { v ∈ X :  ρ ( u , v ) ≤ Δ } .  











For every map   A : C → C  , we define


  Fix ( A ) = { u ∈ C :  A ( u ) = u } .  











Assume that    T i  : C → C  ,   i = 1 , … , m  , where   m ≥ 1   is an integer,   0 <  c ¯  ≤ 1  , and that for every   j ∈ { 1 , … , m }  , every   u ∈ Fix (  T j  )  , and every   v ∈ C  ,


  ρ   ( u , v )  2  − ρ   ( u ,  T j   ( v )  )  2  ≥  c ¯  ρ   ( v ,  T j   ( v )  )  2  .   



(1)







It should be mentioned that inequality (1) is true for many nonlinear operators [14,15].



Assume that


  ϕ : X →  2  { 1 , … , m }   \  { ∅ }  .   



(2)







We set


  T  ( u )  = {  T j   ( u )  :  j ∈ ϕ  ( u )  } .   



(3)




for each   u ∈ C   and


  F ( T ) = { u ∈ C :  u ∈ T ( u ) } .  











In this paper, we study the fixed-point problem


  Find x ∈ X  such   that  x ∈ T ( x ) .  



(4)







This problem was introduced and studied in [21]. It should be mentioned that in [21], X was a finite-dimensional Euclidean space, and the mappings   T i  ,   i = 1 , … , m   were paracontracting. Tam [21] considered a sequence of iterations     {  x k  }   k = 0  ∞  ⊂ X   satisfying    x  k + 1   ∈ T  (  x k  )    for every integer   k ≥ 0   and established its convergence under the assumption that the mappings   T i  ,   i = 1 , … , m   had a common fixed point. In [21], this convergent result was applied to sparsity-constrained minimization. Note that the result in [21] was a generalization of the result attained by Bauschke and Noll [22]. In our recent paper [23], we considered mappings acting on a general metric space and obtained two extensions of the result from [21]. In the first result, we studied exact iterations of the set-valued mapping, while in the second one, we dealt with its inexact iterations while taking computational errors into account. More precisely, in [23], for a given computational error   δ > 0  , we considered a sequence     {  x k  }   k = 0  ∞  ⊂ X   satisfying   B  (  x  k + 1   , δ )  ∩ T  (  x k  )  ≠ ∅   for every integer   k ≥ 0   and analyzed its behavior. This result was also obtained under the assumption that the mappings   T i  ,   i = 1 , … , m   had a common fixed point. In the present paper, we generalize this result. Instead of assuming the existence of a common fixed point, we suppose that there exists an approximate common fixed point z such that


  B  ( z , γ )  ∩ Fix  (  T i  )  ≠ ∅ ,  i = 1 , … , m ,  








where  γ  is a given small positive constant. In other words, a small neighborhood of z contains a fixed point of every mapping.



We fix


  θ ∈ C .  











For any   u ∈  R 1   , we set


  ⌊ u ⌋ = max { j :  j  as   an   integer   and  j ≤ u } .  











We prove the following theorem in the presence of computational errors. This theorem shows that after a certain number of iterations, we obtain an approximate solution to our fixed-point problem. The number of iterations depends on the computational error.



Theorem 1. 

Let   M > 0  ,   ϵ ∈ ( 0 , 1 ]  ,


   γ ∈ ( 0 ,   ( 18 )   − 1     ( 4 M + 4 )   − 1    ϵ 2   c ¯  ) ,    



(5)






   z ∈ B ( θ , M )   



(6)




satisfy


   B  ( z , γ )  ∩ Fix  (  T i  )  ≠ ∅ ,  i = 1 , … , m ,    



(7)






   Q =  ⌊ 8  ϵ  − 2    M 2    c ¯   − 1   ⌋  + 1 ,    



(8)




and   δ ∈ ( 0 , γ ) .   Assume that     {  x k  }   k = 0  ∞  ⊂ C  ,


   ρ  ( θ ,  x 0  )  ≤ M    



(9)




and that


   B  (  x  k + 1   , δ )  ∩ T  (  x k  )  ≠ ∅ ,  k = 0 , 1 , … .    



(10)







Then, there is a nonnegative integer   p < Q   for which


   B  (  x p  , ϵ )  ∩ T  (  x p  )  ≠ ∅ .    



(11)









In the theorem above, we assume the existence of a point z that satisfies (7), which means that z is an approximate fixed point for all of the mappings   T i  ,   i = 1 , … , m  . This result has a prototype in [23], which was obtained under the assumption that z is a common fixed point for all   T k  ,   k = 1 , … , m  .




3. Proof of Theorem 1


Proof. 

Assume that for every nonnegative integer   k < Q  , relation (11) is not true. Then, for every nonnegative integer   k < Q  ,


  B  (  x k  , ϵ )  ∩ T  (  x k  )  = ∅ .   



(12)







We set


   M 0  = 2 M + 1 .   



(13)







According to (7), for every   k ∈ { 1 , … , m }  , there is


   z k  ∈ Fix  (  T k  )    



(14)




such that


  ρ  ( z ,  z k  )  ≤ γ .   



(15)







According to (6) and (9),


  ρ  (  x 0  , z )  ≤ 2 M .   



(16)







Let   i ∈ [ 0 , Q − 1 ]   be an integer. According to (10), there is


    x ^   i + 1   ∈ T  (  x i  )    



(17)




for which


  ρ  (  x  i + 1   ,   x ^   i + 1   )  ≤ δ .   



(18)







Equations (3) and (17) imply that there is an integer   j ∈ [ 1 , m ]   for which


    x ^   i + 1   =  T j   (  x i  )  .   



(19)







It follows from (1) and (19) that


  ρ   (  z j  ,  x i  )  2  ≥ ρ   (  z j  ,   x ^   i + 1   )  2  +  c ¯  ρ   (  x i  ,   x ^   i + 1   )  2  .   



(20)







According to (12) and (19),


  ρ  (  x i  ,   x ^   i + 1   )  > ϵ .   



(21)







In view of (20) and (21),


  ρ   (  z j  ,  x i  )  2  ≥ ρ   (  z j  ,   x ^   i + 1   )  2  +  c ¯   ϵ 2  .   



(22)







Assume that


  ρ  ( z ,  x i  )  ≤  M 0  .   



(23)







(In view of (13) and (16), Equation (23) holds for   i = 0  ). Equations (15) and (23) imply that


  ρ  (  z j  ,  x i  )  ≤ ρ  (  z j  , z )  + ρ  ( z ,  x i  )  ≤  M 0  + γ .   



(24)







It follows from (5), (13), (22), and (24) that


  ρ   (  z j  ,   x ^   i + 1   )  2  ≤ ρ   (  z j  ,  x i  )  2  −  ϵ 2   c ¯  ≤   (  M 0  + γ )  2  −  ϵ 2   c ¯   










  =  M 0 2  + γ  ( γ + 2  M 0  )  −  ϵ 2   c ¯  ≤  M 0 2  + γ  ( 1 + 2  M 0  )  −  ϵ 2   c ¯   










  ≤  M 0 2  − 7 γ  ( 1 + 2  M 0  )  ≤   (  M 0  − 2 γ )  2   








and


  ρ  (  z j  ,   x ^   i + 1   )  ≤  M 0  − 2 γ .   



(25)







According to (15) and (25),


  ρ  ( z ,  x  i + 1   )  ≤ ρ  ( z ,  z j  )  + ρ  (  z j  ,   x ^   t + 1   )  + ρ  (   x ^   i + 1   ,  x  i + 1   )   










  ≤  M 0  − 2 γ + γ + γ ≤  M 0   








and


  ρ  ( z ,  x  i + 1   )  ≤  M 0  .   



(26)







According to (22),


  ρ   (  z j  ,   x ^   i + 1   )  2  ≤ ρ   (  z j  ,  x i  )  2  −  ϵ 2   c ¯  .   



(27)







Equations (15) and (23) imply that


   | ρ    (  x i  , z )  2  − ρ   (  x i  ,  z j  )  2   |   










  ≤  ( ρ  (  x i  , z )  + ρ  (  x i  ,  z j  )  )   | ρ  (  x i  , z )  − ρ  (  x i  ,  z j  )  |   










  ≤  ( ρ  (  x i  , z )  + ρ  (  x i  , z )  + γ )  ρ  (  z j  , z )  ≤ γ  ( 2  M 0  + 1 )  .   



(28)







It follows from (15), (18), and (26) that


   | ρ    (  x  i + 1   , z )  2  − ρ   (   x ^   i + 1   ,  z j  )  2   |   










  ≤  ( ρ  (  x  i + 1   , z )  + ρ  (   x ^   i + 1   ,  z j  )  )   | ρ  (  x  i + 1   , z )  − ρ  (   x ^   i + 1   ,  z j  )  |   










  ≤  ( 2  M 0  + γ + δ )   ( ρ  (  z j  , z )  + ρ  (   x ^   i + 1   ,  x  i + 1   )  )  ≤  ( 2  M 0  + 2 )   ( γ + δ )  .   



(29)







By (5), (13), (22), and (29),


  ρ   (  x  i + 1   , z )  2  ≤ ρ   (  z j  ,   x ^   i + 1   )  2  + 2 γ  ( 2  M 0  + 2 )   










  ≤ ρ   (  z j  ,  x i  )  2  −  c ¯   ϵ 2  + 2 γ  ( 2  M 0  + 2 )   










  ≤ ρ   (  x i  , z )  2  −  ϵ 2   c ¯  + γ  ( 2  M 0  + 1 )  + 2 γ  ( 2  M 0  + 2 )   










  ρ   (  x i  , z )  2  −  ϵ 2   c ¯  + 3 γ  ( 2  M 0  + 1 )   










  ≤ ρ   (  x i  , z )  2  −  ϵ 2   c ¯  / 2 .   



(30)







Thus, we have shown by induction that (23) and (30) hold for   i = 0 , … , Q − 1  . By (16) and (30),


  4  M 2  ≥ ρ  ( z ,  x 0  )    )  2   










  ≥ ρ   ( z ,  x 0  )  2  − ρ   ( z ,  x Q  )  2   










  =  ∑  i = 0   Q − 1    ( ρ   ( z ,  x i  )  2  − ρ   ( z ,  x  i + 1   )  2  )  ≥ Q  c ¯   ϵ 2  / 2 ,  








and


  Q ≤ 8  M 2    c ¯   − 1    ϵ  − 2   .  











This contradicts (8). The contradiction that we have reached proves Theorem 1. □






4. Extensions


We use the notation and definitions introduced in Section 2.



Lemma 1. 

Assume that    M 0  > 0  ,


   z ∈ B  ( θ ,  M 0  )  ,    



(31)






   B  ( z , 1 )  ∩ Fix  (  T i  )  ≠ ∅ ,  i = 1 , … , m ,    



(32)






    x 0  ∈ B  ( θ ,  M 0  )  ,    



(33)




   x 1  ∈ C  , and


   B  (  x 1  , 1 )  ∩ T  (  x 0  )  ≠ ∅ .    



(34)







Then,


   ρ  (  x 1  , θ )  ≤ 3  M 0  + 3 .   













Proof. 

According to (3), there is an integer   j ∈ [ 1 , m ]   for which


  ρ  (  x 1  ,  T j   (  x 0  )  )  ≤ 1 .   



(35)







According to (32), there is


   z j  ∈ Fix  (  T j  )    



(36)




for which


  ρ  ( z ,  z j  )  ≤ 1 .   



(37)







Equations (1), (31), (33), and (35)–(37) imply that


  ρ  (  x 1  , θ )  ≤ ρ  ( θ ,  T j   (  x 0  )  )  + ρ  (  T j   (  x 0  )  ,  x 1  )   










  ≤ 1 + ρ  ( θ , z )  + ρ  ( z ,  z j  )  + ρ  (  z j  ,  T j   (  x 0  )  )   










  ≤ 1 +  M 0  + 1 + ρ  (  z j  ,  x 0  )   










  ≤ 2 +  M 0  + ρ  ( θ ,  x 0  )  + ρ  ( θ , z )  + ρ  ( z ,  z j  )   










  ≤ 3 + 3  M 0  .  











Lemma 1 is proved. □





Theorem 2. 

Let   M > 0  ,   ϵ ∈ ( 0 , 1 ]  ,


   γ ∈ ( 0 ,   ( 18 )   − 1     ( 12 M + 12 )   − 1    ϵ 2   c ¯  ) ,   










   z ∈ B ( θ , M )   








satisfy


   B  ( z , γ )  ∩ Fix  (  T i  )  ≠ ∅ ,  i = 1 , … , m ,   










   Q = ⌊ 8  ϵ  − 2     ( 3 M + 3 )  2    c ¯   − 1   ⌋ + 1 ,   








and   δ ∈ ( 0 , γ ) .  



Assume that     {  x k  }   k = 0  ∞  ⊂ C  ,


   ρ ( θ ,  x 0  ) ≤ M ,   








and that


   B  (  x  k + 1   , δ )  ∩ T  (  x k  )  ≠ ∅ ,  k = 0 , 1 , … .   











Then, there is   j ∈ { 1 , … , Q }   for which


   B  (  x j  , ϵ )  ∩ T  (  x j  )  ≠ ∅ .   













Proof. 

Lemma 1 implies that


  ρ (  x 1  , θ ) ≤ 3 M + 3 .  











The application of Theorem 1 to the sequence    {  x  i + 1   }   i = 0  ∞   implies our result. □





Theorem 3. 

Let   M > 0  ,   ϵ ∈ ( 0 , 1 ]  ,


   { ξ ∈ C :  B ( ξ , ϵ ) ∩ T ( ξ ) ≠ ∅ } ⊂ B ( θ , M ) ,   



(38)






   γ ∈ ( 0 ,   ( 18 )   − 1     ( 12 M + 12 )   − 1    ϵ 2   c ¯  ) ,   










   z ∈ B ( θ , M )   








satisfy


   B  ( z , γ )  ∩ Fix  (  T i  )  ≠ ∅ ,  i = 1 , … , m ,   










   Q = ⌊ 8  ϵ  − 2     ( 3 M + 3 )  2    c ¯   − 1   ⌋ + 1 ,   








and   δ ∈ ( 0 , γ ) .  



Assume that     {  x k  }   k = 0  ∞  ⊂ C  ,


   ρ ( θ ,  x 0  ) ≤ M ,   








and that


   B  (  x  k + 1   , δ )  ∩ T  (  x k  )  ≠ ∅ ,  k = 0 , 1 , … .   











Then, there exists a strictly increasing sequence of natural numbers    {  q j  }   j = 1  ∞   such that


   1 ≤  q 0  ≤ Q  ,   



(39)




and for each integer   j ≥ 0  ,


    q  j + 1   −  q j  ≤ Q    



(40)






   B  (  x  q j   , ϵ )  ∩ T  (  x  q j   )  ≠ ∅ .    



(41)









Proof. 

Theorem 2 implies that there exists    q 0  ∈  { 1 , … , Q }    for which


  B  (  x  q 0   , ϵ )  ∩ T  (  x  q 0   )  ≠ ∅ .  











Assume that   p ∈ { 0 , 1 , … }  ,   q j  ,   j = 0 , … , p   are natural numbers such that for any integer j satisfying   0 ≤ j < p  , (40) holds, and assume that (41) is true for all   j = 0 , … , p  . We set


   y i  =  x  i +  q p    ,  i = 0 , 1 , … .  











According to (38) and (41),


  ρ ( θ ,  y 0  ) ≤ M .  











Clearly, all of the assumptions of Theorem 2 hold with    x i  =  y i   ,   i = 0 , 1 , …  , and Theorem 2 implies that there is   j ∈ { 1 , … , Q }   for which


  B  (  y j  , ϵ )  ∩ T  (  y j  )  ≠ ∅ .  











We set


   q  p + 1   =  q p  + j .  











Clearly,


  B  (  x  q  p + 1    , ϵ )  ∩ T  (  x  q  p + 1    )  ≠ ∅ .  











Thus, by induction, we have constructed the sequence of natural numbers    {  q j  }   j = 1  ∞   and proved Theorem 3. □
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