On Hybrid Numbers with Gaussian Leonardo Coefficients
Abstract
:1. Introduction
2. The Gaussian Leonardo Sequence
3. Matrix Representation of the Gaussian Leonardo Sequence
4. On Hybrid Numbers with Gaussian Leonardo Coefficients
5. On Permanents of Hessenberg Matrices Yielding the Leonardo and Gaussian Leonardo Sequences
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Catarino, P.; Borges, A. On Leonardo numbers. Acta Math. Univ. Comen. 2019, 89, 75–86. [Google Scholar]
- Alp, Y.; Koçer, E.G. Some Properties of Leonardo Numbers. Konuralp J. Math. 2021, 9, 183–189. [Google Scholar]
- Catarino, P.; Borges, A. A Note on Incomplete Leonardo Numbers. Integers 2020, 20, 1–7. [Google Scholar]
- Shannon, A.G. A Note On Generalized Leonardo Numbers. Notes Number Theory Discret. Math. 2019, 25, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Kuhapatanakul, K.; Chobsorn, J. On The Generalized Leonardo Numbers. Integers 2022, 22, 1–7. [Google Scholar]
- Vieira, R.; Mangueira, M.; Catarino, P. The Generalization of Gaussians and Leonardo’s Octonions. Ann. Math. Silesianae 2023, 37, 117–137. [Google Scholar] [CrossRef]
- Ozdemir, M. Introduction to Hybrid Numbers. Adv. Appl. Clifford Algebras 2018, 28, 11. [Google Scholar] [CrossRef]
- Szynal-Liana, A.; Wloch, I. The Fibonacci hybrid numbers. Util. Math. 2019, 110, 3–10. [Google Scholar]
- Szynal-Liana, A.; Wloch, I. On Jacosthal and Jacosthal-Lucas hybrid numbers. Ann. Math. Sil. 2019, 33, 276–283. [Google Scholar]
- Szynal-Liana, A.; Wloch, I. On Pell and Pell-Lucas hybrid numbers. Commentat. Math. 2018, 58, 11–17. [Google Scholar]
- Szynal-Liana, A. The Horadam hybrid numbers. Discuss. Math. Gen. Algebra Appl. 2018, 38, 91–98. [Google Scholar] [CrossRef]
- Catarino, P. On k-Pell hybrid numbers. J. Discrete Math. Sci. Cryptogr. 2019, 22, 83–89. [Google Scholar] [CrossRef]
- Ozkan, E.; Uysal, M. Mersenne-Lucas Hybrid Numbers. Math. Montisnigri 2021, 52, 17–29. [Google Scholar] [CrossRef]
- Taşcı, D.; Sevgi, E. Some Properties between Mersenne, Jacobsthal and Jacobsthal-Lucas Hybrid Numbers. Chaos Solitons Fractals 2021, 146, 110862. [Google Scholar] [CrossRef]
- Soykan, Y.; Taşdemir, E. Generalized Tetranacci Hybrid Numbers. Ann. Math. Silesianae 2021, 35, 113–130. [Google Scholar] [CrossRef]
- Alp, Y.; Kocer, E.G. Hybrid Leonardo numbers. Chaos Solitons Fractals 2021, 150, 111–128. [Google Scholar] [CrossRef]
- Isbilir, Z.; Gurses, N. Pentanacci and Pentanacci-Lucas hybrid numbers. J. Discret. Math. Sci. Cryptogr. 2021, 1–20. [Google Scholar] [CrossRef]
- Kocer, E.G.; Alsan, H. Generalized Hybrid Fibonacci and Lucas p-numbers. Indian J. Pure Appl. Math. 2022, 53, 948–955. [Google Scholar] [CrossRef]
- Kızılates, C. A new generalization of Fibonacci hybrid and Lucas hybrid numbers. Chaos Solitons Fractals 2020, 130, 1–5. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Manocha, H.L.A. Treatise on Generating Functions; Halsted Press (Ellis Horwood Limited): Chichester, UK; John Wiley and Sons: New York, NJ, USA, 1984. [Google Scholar]
- Uysal, M.; Ozkan, E. Padovan Hybrid Quaternions and Some Properties. J. Sci. Arts 2022, 22, 121–132. [Google Scholar] [CrossRef]
- Szynal-Liana, A.; Włoch, I. On generalized Leonardo hybrid numbers. Chaos Solitons Fractals 2021, 150, 111128. [Google Scholar]
- Akbiyik, M.; Alo, J. On Third-Order Bronze Fibonacci Numbers. Mathematics 2021, 9, 2606. [Google Scholar] [CrossRef]
- Brualdi, R.A.; Gibson, P.M. Convex polyhedra of doubly stochastic matrices I: Applications of the permanent function. J. Combin. Theory A 1977, 22, 194–230. [Google Scholar] [CrossRef] [Green Version]
- da Fonseca, C.M. An identity between the determinant and the permanent of Hessenberg type-matrices. Czechoslovak Math. J. 2011, 61, 917–921. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, F.; Bozkurt, D. Hessenberg matrices and the Pell and Perrin numbers. J. Number Theory 2011, 131, 1390–1396. [Google Scholar] [CrossRef] [Green Version]
- Yılmaz, F.; Bozkurt, D. On the Fibonacci and Lucas numbers, their sums and permanents of one type of Hessenberg matrices. Hacet. J. Math. Stat. 2014, 43, 1001–1007. [Google Scholar] [CrossRef]
- Sogabe, T.; Yılmaz, F. A note on a fast breakdown-free algorithm for computing the determinants and the permanents of k-tridiagonal matrices. Appl. Math. Comput. 2015, 270, 644–647. [Google Scholar] [CrossRef]
. | 1 | i | h | |
---|---|---|---|---|
1 | 1 | i | h | |
i | i | |||
0 | ||||
h | 1 |
n | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|---|
n | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kara, N.; Yilmaz, F. On Hybrid Numbers with Gaussian Leonardo Coefficients. Mathematics 2023, 11, 1551. https://doi.org/10.3390/math11061551
Kara N, Yilmaz F. On Hybrid Numbers with Gaussian Leonardo Coefficients. Mathematics. 2023; 11(6):1551. https://doi.org/10.3390/math11061551
Chicago/Turabian StyleKara, Nagihan, and Fatih Yilmaz. 2023. "On Hybrid Numbers with Gaussian Leonardo Coefficients" Mathematics 11, no. 6: 1551. https://doi.org/10.3390/math11061551
APA StyleKara, N., & Yilmaz, F. (2023). On Hybrid Numbers with Gaussian Leonardo Coefficients. Mathematics, 11(6), 1551. https://doi.org/10.3390/math11061551