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Abstract: The motion synchronization of the hybrid actuation system (composed of a servo-hydraulic
actuator and an electro-mechanical actuator) is very important for all applications, especially for civil
aircraft. The current research presents a nested-loop control design technique to synchronize motion
between two different actuators, such as a servo-hydraulic actuator (SHA) and an electro-mechanical
actuator (EMA). The proposed strategy consists of a trajectory, an intelligent position controller (fuzzy
logic-based controller), a feed-forward controller, and an intelligent force controller (fuzzy logic-
based controller). Position, speed, and acceleration signals are produced by trajectory at a frequency
that both SHA and EMA can follow. The SHA/EMA system’s position tracking performance is
enhanced by the feed-forward controller and intelligent position controller working together, while
the intelligent force tracking controller lowers the issue of force fighting by focusing on the rigid
coupling effect. To verify the effectiveness of the proposed strategy, simulations are performed in the
Matlab/Simulink environment. The result shows that the proposed intelligent control strategy not
only reduces initial force fighting, but also improves load-rejection performance and output-trajectory
tracking performance.

Keywords: motion synchronization; electro-mechanical actuator; hydraulic actuator; intelligent
control; PID control

MSC: 93C85; 93C42

1. Introduction

One of the main issues in the study on flight vehicle control nowadays is actuator
failure [1,2]. A thorough research has recently been conducted to describe every possible
issue that could arise with a flight vehicle system [3]. The primary flight control systems
have adopted hybrid actuation systems to increase reliability and safety. One such example
is the Airbus A320, which uses a hybrid actuation system to power the aileron, rudder, and
elevator [4]. The actuators are an important component of the flight control system due to
their responsibility for controlling the motion of the aircraft’s control surface [5]. For a long
time, hydraulic power was the only source of power for actuators to drive the aircraft’s
control surface. Later, safety and reliability became the most important topics in the flight
control system. With the advancement of the aircraft industry, a similar redundant actuation
configuration was introduced to meet the requirements of safety and reliability. Later, it
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was found that safety risk is still a problem when common-mode/common-cause errors
occur in similar redundant actuation systems. It put limitations on further advancement
in the safety and reliability of similar redundant actuation systems [6,7]. Further progress
in research on redundant actuation systems gave us the idea to introduce an electro-
mechanical actuator into redundant actuation systems along with a hydraulic actuator so
that the aircraft industry can overcome the problem of common-mode and common-cause
error and enhance the reliability and safety of redundant actuation systems [8,9].

Finally, the progress in research helped us to develop a heterogeneous drive actuation
system (hybrid actuation system) composed of electro-hydraulic servo actuators (SHA)
and electro-mechanical actuators (EMA), which improves the safety and reliability of the
actuation part of aircraft [10]. The research on more electric aircraft (MEA) has enabled the
ability to increase reliability by introducing electric motors, electrical distribution systems,
generator drives, actuators, and power electronics [11,12]. A combination of SHA and EMA
helped to develop an SHA/EMA hybrid actuation system that fulfils the demand for high
safety and reliability. Furthermore, it reduces common-mode and common-cause errors,
ultimately resulting in an increase in the robustness and efficiency of the aircraft’s actuation
system [13].

The past research helped us to develop an SHA/EMA hybrid actuation system (HAS),
but there are still some problems associated with the SHA/EMA hybrid actuation system,
and these problems must be addressed. The SHA and EMA both have different dynamics.
They produce different displacement output under the same pilot command input signal,
and their output force is also different under the same input signal. This is happening due
to the different working principles of SHA and EMA [14]. There will be an intercoupling
effect (between EMA and SHA) when both actuators are connected to the aircraft control
surface via rigid coupling. Force fighting occurs when the control surface of an aircraft
is pushed together by both actuators. The difference in output force of two dissimilar
redundant actuators is referred to as “force fighting”. Force fighting affects the tracking
efficiency of the aircraft control surface, and can result in damage to the control surface [7].
So, the aviation industry needs to design a controller that can solve the problem of force
fighting and easily synchronize the motion of two actuators. Salman did some efforts to
solve this problem of force by using different types of control techniques [15–19]. It was
found that synchronization is an important task in motion control to reduce force fight-
ing [20,21]. Later, the aviation industry started to focus on the design of synchronization
controllers. An average actuator force difference and real actuator force were imported
into the integrator to eliminate force fighting by producing a position demand offset in
order to achieve synchronous output force from two unlike actuators [22]. The studies
have also demonstrated the design of controllers that encounter the static force fighting
for an HAS (hybrid actuation system) composed of an EMA and SHA [14,23]. Moreover,
for further improvement in tracking control precision and accuracy, uncertainties, external
disturbances, and nonlinear dynamics, along with the coupling effect between EMA and
EHSA, must be considered while designing the controller. The motion-state synchroniza-
tion method is an efficient way to deal with the problem of forces fighting between the
two different actuators. Motion-state synchronization can be used to keep such actuators’
motion states, such as displacement, velocity, acceleration, jerk, etc., stable [7]. Rehman
has focused the motion synchronization for electro-hydrostatic and servo-hydraulic hybrid
actuation systems using different types of control techniques [24–28]. Wang made some
efforts to propose sensor-less control for motion synchronization of the hybrid actuation
system [29–31]. Progress in the research of hybrid actuation systems helped Cochoy et al. to
develop a force equalization controller by employing state signals of displacement, velocity,
and force [8], according to the ideal hypothesis which states that all contributed signals are
important to develop a controller. Getting these state variables allows the created hybrid
actuation system to predict the system movement. However, it is tough to acquire the entire
state signals of a physical actuation system in an airplane. In order to deal with this matter,
an HAS (hybrid actuation system) test bench was developed to achieve all-state signals
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by introducing several sensors [10]. However, this method would significantly raise the
weight and cost of the actuators which would limit their application. In the current research,
a nested-loop intelligent control technique is presented that is comprised of trajectory, force
controller, and position controller for each actuator.

2. Problem Description

The SHA, EMA, and control surface are the key components of a hybrid actuation
system (HAS), and are depicted in Figure 1. An electrically-driven actuator that controls
the flow of hydraulic fluid to an actuator is known as a servo-hydraulic actuator (SHA).
Powerful hydraulic cylinders are frequently controlled by servo valves using a very small
electrical signal. Servo valves have good post-movement damping qualities and can offer
fine control of position, velocity, pressure, and force. An electro-mechanical actuator (EMA)
is a tool that uses an electric motor to transform electricity into mechanical force. Electric
motors turn a spindle in a rotating motion by using an electric current. Through the
employment of gears, this rotating motion is transformed into linear motion. usv and um
are used as an input control signal for SHA and EMA, respectively. The EMA and SHA
are rigidly coupled to the aircraft control surface. SHA has a servo valve as an actuating
element, while EMA has an electric motor. When two actuators push the control surface of
an aircraft together, they produce force fighting. Force fighting is the difference between
the output forces of two actuators. Force fighting can be eliminated when two actuators
contribute equally to driving the control surface. The SHA is faster than the EMA; that
is the reason for force fighting. EMA is slower because the response time of the motor is
large as compared to the servo valve. Force fighting can be removed by synchronizing
the motion of two actuators so they contribute equally to drive the control surface of the
aircraft. Mathematically it is given by:

Force Fighting = Ff ight = Fs − Fm (1)

Ff ight = Fs − Fm = ks(xs − xc)− km(xm − xc) (2)

Ff ight = Fs − Fm = k(xs − xm) ∴ km = ks = k (3)

where Fs is force delivered by SHA, Fm is force delivered by EMA, xs is displacement given
by SHA, xm is displacement given by EMA, and xc is linear motion of aircraft’s control
surface. The analysis of Equation (3) shows that a hybrid actuation system will have no
force fighting when both actuators have the same displacement, provided the transmission
stiffness is the same for both actuators.
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3. Mathematical Model of Hybrid Actuation System (HAS)

The hybrid actuation system is composed of the control surface, electro-mechanical
actuator, and servo-hydraulic actuator, which will be modeled one by one.

3.1. Modelling of Aircraft’s Control Surface

According to the law of motion, the dynamics involved in the motion of the control
surface of the aircraft are given by:

(Fs + Fm)rc = jc
..
θc + Fairrc (4)

Fs = ks(xs − xc) (5)

Fm = km(xm − xc) (6)

where jc is inertial moment and rc is the radial displacement which appears during angular
motion θc. The ks is the stiffness coefficient for SHA and km is the stiffness coefficient for
EMA. It is found that the magnitude of angular displacement is very small. In such scenar-
ios, θc and xc (linear movement of aircraft control surface) can be taken to be linear [32],
and given by the relationship:

xc = θcrc (7)

3.2. Mathematical Model of SHA

The servo-valve actuator consists of the servo valve, hydraulic cylinder, and additional
accessories. The servo valve is a very effective element for fluid transmission control and
widely used in many applications for controlling the transmission of fluid where the end
result is motion control through fluid power [33,34]. According to previous studies, the
dynamics of a servo valve and a hydraulic cylinder is given by [14]:

xsv = ksvusv (8)

Qsv = ksqxsv − ksc p f (9)

where xsv is displacement of the spool of the servo valve, usv is an input signal to the coil of
the servo valve and ksq is flow/opening gain, and ksc is flow/pressure gain.

The force dynamics and the flow dynamics of a servo-hydraulic actuator is given
by [14,35]:

Qsv = Aj
.
xs +

vj
4Ej

.
p f + kac p f

Fj = mj
..
xs + Bj

.
xs + Fs

(10)

where Aj is piston effective area, p f is load pressure, vj is piston effective volume, kac is the
leakage coefficient, Ej is the oil bulk modulus, Fj = Aj p f is the force provided by the jack,
mj is the piston mass, and Bj is damping coefficient.

Define x1 = [x11, x12, x13]
T =

[
xs,

.
xs,

..
xs
]T as the state vector of SHA system and let

suppose u1 = usv. The state space form of SHA can be given as:

ΩSHA =


.
x11 = x12.
x12 = x13.
x13 = f1(x1) + g1 + σ1u1

(11)

where:

f1(x1) = −
4Ejkhs(ks + kac)

mjvj
x11 −

4Ej A2
j + 4EjBj(ks + kac) + vj

mjvj
x12 −

4Ejmj(ks + kac) + Bjvj

mjvj
x13
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g1 =
4Ejkhs

(
ksq + kac

)
mjvj

xc −
khs
mj

.
xc

σ1 =
4AjEjksqksv

mjvj

3.3. Mathematical Model of EMA
The electrical dynamics of an electric motor which is present in an electro-mechanical actuator,

is given by [10,36]:

um = kmωm + Lm
dim
dt

+ Rmim (12)

Tm = kbmim (13)

Rm, im, and Lm are resistance, current, and inductance of armature, respectively. kbm is back-emf
constant, ωm is the angular velocity, and Tm is electro-magnetic torque. The torque provided by the
motor is converted into load torque and inertial dynamics and overcomes the damping dynamics.

Tm − TL = jm
dωm

dt
+ Bmωm (14)

where jm is total inertia, Bm is damping constant, and TL is load torque. The transition relationship
between rotational and translational parts is given by:{ .

xm = 1
ηmkgm

ωm

TL = 1
ηmkgm

Fm
(15)

where ηm is transmission efficiency and kgm is transmission coefficient.

Let suppose state vectors for an electro-mechanical actuator are x2 = [x21, x22, x23]
T =

[
xm,

.
xm,

..
xm
]T

and control input is u2 = um. The state space for EMA is given by:

ΩEMA =


.
x21 = x22.
x22 = x23.
x23 = f2(x2) + g2 + σ2u2

(16)

where:

f2(x2) = −
Rmkms

Lm jmk2
gmη2

m
x21 −

kbmkmk2
gmη2

m + Lmkms + RmBmk2
gmη2

m

Lm jmk2
gmη2

m
x22 −

BmLm + jmRm

jmLm
x23

g2 =
Rmkms

Lm jmk2
gmη2

m
xc +

kms

jmk2
gmη2

m

.
xc

σ2 =
kbm

Lm jmkgmηm

4. Nested-Loop Intelligent Control Strategy
It is very difficult to synchronize an SHA/EMA system with just one controller due to inconsis-

tent dynamics between SHA and EMA. So, a nested-loop intelligent control strategy is proposed for
SHA/EMA systems. This proposed technique is made up of a trajectory generator, force controller,
and position controller as shown in Figure 2. Where Xtr is the reference position,

.
Xtr is the reference

velocity, and
..
Xtr is the reference acceleration signal. u1 and u2 are position controller’s output of the

SHA and the EMA, respectively. u11 and u21 are the outputs of the force controller for the SHA and
the EMA, respectively.
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4.1. Trajectory Generator
The trajectory-based systems perform well in the desired motion tracking application; that

is why a trajectory is designed. The desired motion is achieved by a trajectory generator which
generates position (xtr), velocity

( .
xtr
)
, and acceleration

( ..
xtr
)

signals. The desired trajectory designed
by [24,37,38] is used. It is the second order-transfer function which is given by:

xtr =
ω2

tr
s2 + 2ξtrωtrs + ω2

tr
xr (17)

where

ωtr = Reference natural frequency
ξtr = Reference damping factor
xr = Reference input signal

The ideal trajectory is depicted in the left portion of Figure 3, while the realistic and practical
trajectory is depicted in the right portion. There are two saturation thresholds: one for acceleration
and one for velocity. The maximum speed is ±0.12 m/s, while the maximum acceleration is ±2 m/s.
According to the dynamics of EHA, two trajectory parameters are set.
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4.2. Position Controller
The position controller is made up of two parts: an intelligent position controller and feed-

forward control. Both work together to improve the position tracking performance of the SHA/EMA
system. The feed-forward control responds to disturbances in a predefined manner. It is designed to
predict the behavior of the system. It responds before an error occurs. In this way, it helps to control
sluggish dynamics and delay in the SHA/EMA system. The feed-forward control is designed for both
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SHA and EMA to follow a desired trajectory so that the system can be synchronized. Feed-forward
controllers for SHA and EMA are given by:

uSHA =
1

ksvksq

[
Aj

.
xtr +

1
Aj

(
vj

4Ej
+ kce

)(
mj

..
xtr + Bj

.
xtr + Fs

)]
(18)

uEMA = kmkgmηm
.
xtr +

(Lms + Rm)

kbm

[
(jms + Bm)kgmηm

.
xtr +

1
kgmηm

Fm

]
(19)

The use of fuzzy logic to control position is gaining popularity in recent days [39–41]. That
is why a fuzzy logic-based PID controller is used for the position. The performance is enhanced
due to the variable gain of tuning parameters that vary with the help of membership functions. The
advantage is overcoming time delays and dealing with models that are not precise and accurate. The
intelligent position tracking controller consists of two parts, such as a PID controller and a fuzzy logic
controller. The PID controller is given by (20) while a proper range of each tuning parameter is found
by using a mechanism which is given in (21).

un =
(

K′pG1 + G2

)
e(t) +

(
K′iC1 + C2

) t∫
0

e(t) +
(
K′dD1 + D2

) .
e(t) ∴ n ∈ {SHA, EMA} (20)

Kz = (Kzmax − Kzmin)K′z + Kzmin ∴ z ∈ {P, I, D} (21)

where C1 = Kimax − Kimin, C2 = Kimin, G1 = Kpmax − Kpmin, G2 = Kpmin, D1 = Kdmax − Kdmin,
D2 = Kdmin, K′p, K′i , and K′d are the tuning parameters which are tuned by a fuzzy logic controller.
Subscript z represents a type of tuning parameter; it may be derivative, integral, or proportional.

The fuzzy logic produces the desired value of tuning parameters according to input of error
ep and change in error (

.
ep). The position error (ep) and change in position (

.
ep) is fed into the

fuzzy position controller, and the control inputs to the actuator can be determined from fuzzy rules
presented in Table 1. Fuzzy input sets are mapped to a set of linguistic labels: negative big (NB),
negative small (NS), zero (ZE), positive small (PS), and positive big (PB), over the ranges of the input
variables. The output fuzzy sets correspond to the labels: small (S), medium small (MS), big (B),
and medium big (MB) over the two output variable ranges. Table 1’s fuzzy rules are separated into
four sections. Rising times are dominated by region 1 (the red region). Region 2 (the yellow region)
predominates at its greatest overshoot time. The dominant region in the convergence stage is region 3
(light black). Region 4 (the white region) rules at steady state. There are four basic building blocks in
the fuzzy logic controller. 1© Rule base 2© Inference mechanisms 3© Fuzzification 4© Defuzzification.
1© Rule base: keeps information in the form of rules and a set of rules for the proposed system is

given in Table 1. Each rule shows the states of membership functions. The membership functions are
given in Table 2 and graphically presented in Figure 4.

Table 1. Fuzzy rules for the fuzzy position controller.

Mathematics 2023, 11, x FOR PEER REVIEW 9 of 17 
 

 

Table 1. Fuzzy rules for the fuzzy position controller. 

Change of Error (𝒆ሶ 𝑷) 
Error 𝒆𝑷 Region 1  

NB NS ZE PS PB   

NB S S MS MS M Region 2  

NS S MS MS M MB   

ZE MS MS M MB MB Region 3  

PS MS M MB MB B   

PB M MB MB B B Region 4  
Note: NB: Negative big; NS: Negative small; PB: Positive big; PS: Positive small; ZE: Zero; S: Small; 
MS: Medium small; M: Medium; MB: Medium big; B: Big. 

Table 2. The fuzzy position controller’s membership functions. 

Parameters in Membership 
Function 

Membership Function 
pe  pe  pK ′ , iK ′ , dK′  

NB NS ZE PS PB NB NS ZE PS PB S MS M MB B 
ar −15 −10 −5 0 5 −75 −50 −25 0 25 0.1 0.15 0.30 0.5 0.7 
br −10 −5 0 5 10 −50 −25 0 25 50 0.15 0.3 0.5 0.7 1 
cr −5 0 5 10 15 −25 0 25 50 75 0.3 0.5 0.7 1 1.15 

p,
,
d

i
K

K
K

′
′

′

p
e

pe

 
Figure 4. Graphical presentation for membership function of fuzzy position controller. 

The fuzzy rules are kept the same to get different tuning parameters while member 
functions change. ② Fuzzy inference mechanisms: interfaces with the rule base and 
makes a decision to choose a proper value of the tuning parameter. ③ The fuzzification: 
Convert input into such forms that are interpretable and can be compared to the rules. ④ 
Defuzzification: it produces tuning parameter values based on the judgments of fuzzy 
interference processes.  

The triangular member function is used and is defined as: 
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Table 2. The fuzzy position controller’s membership functions.

Parameters in
Membership

Function

Membership Function

ep
.
ep K’

p,K’
i,K

’
d

NB NS ZE PS PB NB NS ZE PS PB S MS M MB B

ar −15 −10 −5 0 5 −75 −50 −25 0 25 0.1 0.15 0.30 0.5 0.7

br −10 −5 0 5 10 −50 −25 0 25 50 0.15 0.3 0.5 0.7 1

cr −5 0 5 10 15 −25 0 25 50 75 0.3 0.5 0.7 1 1.15
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The fuzzy rules are kept the same to get different tuning parameters while member functions
change. 2© Fuzzy inference mechanisms: interfaces with the rule base and makes a decision to choose
a proper value of the tuning parameter. 3© The fuzzification: Convert input into such forms that are
interpretable and can be compared to the rules. 4© Defuzzification: it produces tuning parameter
values based on the judgments of fuzzy interference processes.

The triangular member function is used and is defined as:

µr =


0 x ≤ ar

(x− ar)/(br − ar) ar < x < br

(cr − x)/(cr − br) br < x < cr

0 cr ≤ x

(22)

where r belongs to the following set [NB, NS, ZE, PS, PB, S, MS, M, MB, B].

4.3. Force Controller
The position controller tries to achieve motion synchronization between SHA and EMA by

improving position tracking performance, while the force controller (FC) tries to achieve motion
synchronization for SHA/EMA by improving force tracking performance. Force controller is a fuzzy
based PID controller. Its hybrid structure is shown in Figure 5.
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The D f 1 and D f 2 are input gains that convert input error into such a form which can conveniently

interface with a fuzzy logic controller. The
[
K′ph, K′ih, K′dh

]
and

[
K′pm, K′im, K′dm

]
are tuning gains by a

fuzzy logic controller for SHA and EMA, respectively. The
[
Kph, Kih, Kdh

]
and

[
Kpm, Kim, Kdm

]
are

tuning parameters of PID controllers for SHA and EMA, respectively. u11 and u21 are the output of
force controller, which are determined on the basis of fuzzy rules and membership function. The
fuzzy rules are given in Table 3 and the membership functions are given in Table 4. The error (e f )
and change in error (

.
e f ) are fed into the fuzzy force controller, and the control inputs to the actuator

can be determined from fuzzy rules presented in the Table 3. Table 3’s fuzzy rules are separated into
four sections. Rising times are dominated by region 1 (the red region). Region 2 (the yellow region)
predominates at its greatest overshoot time. The dominant region in the convergence stage is region
3 (light black). Region 4 (the white region) rules at steady state.

Table 3. Fuzzy rules for the Force controller.
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Table 3. Fuzzy rules for the Force controller. 

Change of Error fe  
Error fe  Region 1  

NB NS ZE PS PB   

NB M MB B B B Region 2  

NS MS M MB MB B   

ZE S MS M MB B Region 3  

PS S MS MS M MB   

PB S S S MS M Region 4  

Table 4. Membership functions for the force controller.

Parameters in
Membership

Function

Membership Function

ef
.
ef K’

ph,K’
ih,K’

dh,K’
im,K’

dm K’
pm

NB NS ZE PS PB NB NS ZE PS PB S MS M MB B S MS M MB B

ar −100 −10 −5 0 5 −100 −8 −4 0 4 0.1 0.15 0.3 0.5 0.7 0.87 0.90 0.92 0.95 0.97

br −10 −5 0 5 10 −8 −4 0 4 8 0.15 0.3 0.5 0.7 1 0.90 0.92 0.95 0.97 1

cr −5 0 5 10 100 −4 0 4 8 100 0.3 0.5 0.7 1 1.15 0.92 0.95 0.97 1 1.15

5. Result and Discussion
To evaluate the performance of the suggested intelligent control method, a mathematical model

for the hybrid actuation system of the SHA/EMA is developed in Matlab/Simulink. The simulations
are performed by using simulation parameters which are given in Table 5. In order to compare results
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between classical PID control (tuned via particle swarm optimization) and the proposed nested-loop
intelligent control strategy, the following notation will be used: CPID and CIntelligent for PID and the
proposed nested-loop intelligent control strategy, respectively.

Table 5. Parameters for SHA/EMA actuation systems.

SHA/EMA Parts Parameters Values Units

Servo-hydraulic
Actuator (SHA)

Gain Coefficient ksv 3.04× 10−4 m/A

Flow /opening gain ksq 2.7 m2/s

Flow / pressure gain ksc 1.75× 10−11 (
m3/s

)
Pa

Area of Piston Aj 1.1× 10−3 m2

Cylinder chamber volume vj 1.1× 10−4 m3

Mass of piston including chamber mj 25 Kg

Damping constant Bj 1× 104 N·s/m

Bulk modulus constant Ej 8× 108 Pa

Coefficient of Leakage kac 1× 10−11 (
m3/s

)
Pa

Electro-
mechanical

Actuator (EMA)

Bake emf constant km 0.161 V/(rad/s)

Armature Inductance Lm 4.13× 10−3 H

Armature resistance Rm 0.54 Ω

Electro-magnetic coefficient kbm 0.64 Nm/A

Total inertia of rotating parts jm 1.136× 10−3 Kg·m2

Damping coefficient Bm 4× 10−3 Nm·s/rad

Transmission coefficient kgm 1.256× 103 rad/m

Transmission efficiency ηm 0.9

Control Surface

Connection
stiffness

SHA ks
1× 108 N/m

EMA km

Radial distance for control surface rcs 0.1 m

Moment of inertia for control surface jcs 6.0 Kg·m2

5.1. Results with Step Signal as Input Command
The step input command is given to a hybrid actuation system of SHA/EMA with an amplitude

of 30 (mrad). It is found that displacement of the control surface of SHA/EMA is controlled by
intelligent control strategy and follows the input signal better than the displacement of the control
surface of SHA/EMA controlled by the PID controller, as shown in Figure 6. To check the disturbance
rejection performance of the proposed intelligent control strategy against PID control for SHA/EMA,
a jerk load is applied when time is 2.5 s. It is found that the maximum deviation for intelligent control
strategy is 1 (mrad) using reference input signal while for PID control is 3 (mrad) using reference
input signal in region 1.
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In terms of disturbance rejection, the intelligent control technique performs better than PID
control. Following the completion of the jerk load, region 2 illustrates how the intelligent control
system swiftly locates an equilibrium position. Additionally, as demonstrated in Figure 7, the tracking
error for the suggested intelligent control technique is lower than that of PID control.
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The force fighting is basically the force difference between two different actuators such as
SHA and EMA. It is due to different dynamic characters of SHA and EMA. In Figure 8, region 1
represents initial force fighting. An initial force fighting for PID control is found to be 16.3 KN,
while for an intelligent control strategy, it is 3.7 KN. Similarly, when jerk load acts on control surface,
then force fighting for PID control is 9.7 KN while for intelligent control it is 8KN, as shown in
region 2 of Figure 8. A similar attitude is shown in region 3 of Figure 8. The result shows that the
SHA/EMA hybrid actuation system has less force fighting under proposed intelligent control strategy
as compared to PID control strategy.
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5.2. Results with Dynamic Signal as Input Command
The dynamic signal is given as an input command to a hybrid actuation system of SHA/EMA.

It is found that the displacement of the control surface of SHA/EMA controlled by the intelligent
control strategy follows the input command signal better than the displacement of the control surface
of SHA/EMA controlled by the PID controller, as shown in Figure 9.
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To check the disturbance rejection performance of the proposed intelligent control strategy
against PID control for SHA/EMA, a jerk load is applied when the time is 2.5 s. As shown in Figure 9,
the SHA/EMA actuation system under intelligent control strategy always follows the reference
command signal quickly, even after external force is applied. In order to carry out a better analysis of
tracking errors, two regions are taken, such as region 1 and region 2, as shown in Figure 10. Region
1 depicts the tracking error prior to the application of external load force, whereas region 2 depicts
the tracking error following the application of external load force. As illustrated in Figure 10, both
regions show that the tracking error produced by the SHA/EMA actuation system controlled by
intelligent control is always less than the tracking error produced by the SHA/EMA control system
controlled by PID.
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The force fighting is basically the force difference between two different actuators such as SHA
and EMA. It is due to the different dynamic characters of SHA and EMA. In Figure 11, the black
dotted line shows the force fighting by the SHA/EMA system which is controlled by intelligent
control strategy while the continuous red solid line shows the force fighting of the SHA/EMA system
which is controlled by PID. Figure 11 clearly shows that force fighting due to an intelligent control
system is less as compared to a PID control system.
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6. Conclusions
This paper focuses on intelligent control system design for hybrid actuation systems composed

of servo-hydraulic actuators and electro-mechanical actuators. A trajectory, force controller, and
position controller are also components of an intelligent control strategy of the nested loop kind. A
feed-forward controller and a PID controller with fuzzy logic are also parts of the position controller.
The outcomes have demonstrated that the feed-forward controller and position controller work
in tandem to synchronize the SHA and EMA and enable the control surface to move along the
appropriate trajectory with the least amount of force fighting. The outcome demonstrates that the
force controller further enhances SHA and EMA’s synchronization so that both can equally drive the
external aircraft control surface. The simulations have been done in Matlab/Simulink under different
conditions of external air load and pilot command signal. The results show that the SHA/EMA
system under the proposed nested-loop control strategy performs well as compared to the PID
control strategy.
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