Newton’s Iteration Method for Solving the Nonlinear Matrix Equation
Abstract
:1. Introduction
2. Preliminaries
3. Newton’s Iteration Method and Its Convergence Analysis for Solving (1)
3.1. Newton’s Iteration Method
3.2. Convergence Analysis
4. Numerical Experiments
- IT is the number of iterations;
- CPU means the iterations’ running times in seconds;
- In [26], the authors solve Equation (1) when by different methods:–IFI—inversion-free iteration;–BFPI—basic fixed-point iteration;
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, W.L.; Kamen, E.W. Stabilizability of linear systems over a commutative normed algebra with applications to spatially-distributed and parameter-dependent systems. SIAM J. Control Optim. 1985, 23, 1–18. [Google Scholar] [CrossRef]
- Anderson, W.N.; Morley, T.D.; Trapp, G.E. Ladder networks, fixpoints, and the geometric mean. Circuits Syst. Signal Process. 1983, 2, 259–268. [Google Scholar] [CrossRef]
- Pusz, W.; Woronowicz, S.L. Functional calculus for sesquilinear forms and the purification map. Rep. Math. Phys. 1975, 8, 159–170. [Google Scholar] [CrossRef]
- Anderson, W.N.; Kleindorfer, G.B.; Kleindorfer, P.R.; Woodroofe, M.B. Consistent estimates of the parameters of a linear system. Ann. Math. Stat. 1969, 40, 2064–2075. [Google Scholar] [CrossRef]
- Ouellette, D.V. Schur complements and statistics. Linear Alg. Appl. 1981, 36, 187–295. [Google Scholar] [CrossRef] [Green Version]
- Erfanifar, R.; Sayevand, K.; Esmaeili, H. A novel iterative method for the solution of a nonlinear matrix equation. Appl. Numer. Math. 2020, 153, 503–518. [Google Scholar] [CrossRef]
- Meini, B. Efficient computation of the extreme solutions of X + A*X−1A = Q and X − A*X−1A = Q. Math. Comput. 2001, 71, 1189–1204. [Google Scholar] [CrossRef]
- Engwerda, J.C.; Ran, A.C.M.; Rijkeboer, A.L. Necessary and sufficient conditions for the existence of a positive definite solution of the matrix equation X + A*X−1A = Q. Linear Alg. Appl. 1993, 186, 255–275. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.H.; Lancaster, P. Iterative solution of two matrix equations. Math. Comput. 1999, 68, 1589–1603. [Google Scholar] [CrossRef] [Green Version]
- Ding, F.; Chen, T. On iterative solutions of general coupled matrix equations. SIAM J. Control Optim. 2006, 44, 2269–2284. [Google Scholar] [CrossRef]
- Caliò, F.; Garralda-Guillem, A.I.; Marchetti, E.; Galán, M.R. Numerical approaches for systems of Volterra–Fredholm integral equations. Appl. Math. Comput. 2013, 225, 811–821. [Google Scholar] [CrossRef]
- Marino, G.; Xu, H.K. A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 2006, 318, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Li, C.H.; Tam, P.K.S. An iterative algorithm for minimum cross entropy thresholding. Pattern Recognit. Lett. 1998, 19, 771–776. [Google Scholar] [CrossRef]
- Fital, S.; Guo, C.H. A note on the fixed-point iteration for the matrix equations X ± A*X−1A = I. Linear Alg. Appl. 2008, 429, 2098–2112. [Google Scholar] [CrossRef] [Green Version]
- Ullah, M.Z. A new inversion-free iterative scheme to compute maximal and minimal solutions of a nonlinear matrix equation. Mathematics 2021, 9, 2994. [Google Scholar]
- Zhang, H. Quasi gradient-based inversion-free iterative algorithm for solving a class of the nonlinear matrix equations. Linear Alg. Appl. 2019, 77, 1233–1244. [Google Scholar]
- Zhang, H.M.; Ding, F. Iterative algorithms for X + ATX−1A = I by using the hierarchical identification principle. J. Frankl. Inst.-Eng. Appl. Math. 2016, 353, 1132–1146. [Google Scholar]
- Long, J.H.; Hu, X.Y.; Zhang, L. On the Hermitian positive definite solution of the nonlinear matrix equation X + A*X−1A + B*X−1B = I. B. Braz. Math. Soc. 2008, 39, 371–386. [Google Scholar] [CrossRef]
- Vaezzadeh, S.; Vaezpour, S.M.; Saadati, R.; Park, C. The iterative methods for solving nonlinear matrix equation X + A*X−1A + B*X−1B = Q. Adv. Differ. Equ. 2013, 2013, 229. [Google Scholar] [CrossRef] [Green Version]
- Sayevand, K.; Erfanifar, R.; Esmaeili, H. The maximal positive definite solution of the nonlinear matrix equation X + A*X−1A + B*X−1B = I. Math. Sci. 2022. [Google Scholar] [CrossRef]
- Hasanov, V.I.; Hakkaev, S.A. Convergence analysis of some iterative methods for a nonlinear matrix equation. Comput. Math. Appl. 2016, 72, 1164–1176. [Google Scholar] [CrossRef]
- Weng, P.C.Y. Solving two generalized nonlinear matrix equations. J. Appl. Math. Comput. 2021, 66, 543–559. [Google Scholar] [CrossRef]
- Huang, B.; Ma, C. Some iterative methods for the largest positive definite solution to a class of nonlinear matrix equation. Numer. Algorithms 2018, 79, 153–178. [Google Scholar] [CrossRef]
- Ortega, J.M.; Rheinboldt, W.C. Iterative Solution of Nonlinear Equations in Several Variables; SIAM: Philadelphia, PA, USA, 2000. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- He, Y.M.; Long, J.H. On the Hermitian positive definite solution of the nonlinear matrix equation . Appl. Math. Comput. 2010, 216, 3480–3485. [Google Scholar]
Method | IT | CPU | Res |
---|---|---|---|
BFPI | 10 | 0.003025 | 6.2142 × 10 |
IFI | 15 | 0.004163 | 4.8205 × 10 |
NIM | 7 | 0.018660 | 2.6335 × 10 |
Method | IT | CPU | Res |
---|---|---|---|
BFPI | 16 | 0.003165 | 4.1922 × 10 |
IFI | 23 | 0.005886 | 6.9625 × 10 |
NIM | 9 | 0.004179 | 4.3841 × 10 |
Method | Computational Complexity |
---|---|
BFPI | |
IFI | |
NIM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.-Z.; Yuan, C.; Cui, A.-G.
Newton’s Iteration Method for Solving the Nonlinear Matrix Equation
Li C-Z, Yuan C, Cui A-G.
Newton’s Iteration Method for Solving the Nonlinear Matrix Equation
Li, Chang-Zhou, Chao Yuan, and An-Gang Cui.
2023. "Newton’s Iteration Method for Solving the Nonlinear Matrix Equation
Li, C. -Z., Yuan, C., & Cui, A. -G.
(2023). Newton’s Iteration Method for Solving the Nonlinear Matrix Equation