Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties
Abstract
:1. Introduction
2. Graphene Twistronics Design
3. Results and Discussion
4. Machine Learning Prediction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Dirac Velocity | |
k | momentum measured from the layer’s Dirac point |
momentum orientation relative to the x axis | |
unit cell area | |
tq | Fourier transform of the tunneling amplitude t(r) |
G1, G2 | Summed over reciprocal lattice vectors |
one of the two zero energy state of and of the isolated layer | |
Counterflow conductivity | |
Density Of States of the twisted bilayer | |
Temperature | |
Reflectance | |
Angle of incidence |
References
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J.; Natesan, A.; Katkar, V. Graphene-Based Metasurface Refractive Index Biosensor For Hemoglobin Detection: Machine Learning Assisted Optimization. IEEE Trans. Nanobioscience 2022. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Surve, J.; Parmar, J.; Armghan, A.; Aliqab, K.; Altahan, B.R.; Ahmed, K.; Bui, F.M.; Al-Zahrani, F.A. Graphene-Based H-Shaped Biosensor with High Sensitivity and Optimization Using ML-Based Algorithm. Alex. Eng. J. 2023, 68, 15–28. [Google Scholar] [CrossRef]
- Khan, M.E.; Khan, M.M.; Cho, M.H. Recent Progress of Metal-Graphene Nanostructures in Photocatalysis. Nanoscale 2018, 10, 9427–9440. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Liu, C.; Hu, B.; Deng, X.; Wang, X. Tunable Plasmonic Absorber in THz-Band Range Based on Graphene “Arrow” Shaped Metamaterial. Results Phys. 2019, 15, 102777. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J.; Aliqab, K.; Alsharari, M.; Armghan, A. SARS-CoV-2 Detecting Rapid Metasurface-Based Sensor. Diam. Relat. Mater. 2023, 132, 109644. [Google Scholar] [CrossRef]
- Olabi, A.G.; Abdelkareem, M.A.; Wilberforce, T.; Sayed, E.T. Application of Graphene in Energy Storage Device—A Review. Renew. Sustain. Energy Rev. 2020, 135, 110026. [Google Scholar] [CrossRef]
- Fardoost, A.; Vanani, F.G.; Amirhosseini, A.; Safian, R. Design of a Multilayer Graphene-Based Ultrawideband Terahertz Absorber. IEEE Trans. Nanotechnol. 2017, 16, 68–74. [Google Scholar] [CrossRef]
- Cen, C.; Chen, Z.; Xu, D.; Jiang, L.; Chen, X.; Yi, Z.; Wu, P.; Li, G.; Yi, Y. High Quality Factor, High Sensitivity Metamaterial Graphene—Perfect Absorber Based on Critical Coupling Theory and Impedance Matching. Nanomaterials 2020, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Rahmanshahi, M.; Noori Kourani, S.; Golmohammadi, S.; Baghban, H.; Vahed, H. A Tunable Perfect THz Metamaterial Absorber with Three Absorption Peaks Based on Nonstructured Graphene. Plasmonics 2021, 16, 1665–1676. [Google Scholar] [CrossRef]
- Patel, S.K.; Charola, S.; Parmar, J.; Ladumor, M.; Ngo, Q.M.; Dhasarathan, V. Broadband and Efficient Graphene Solar Absorber Using Periodical Array of C-Shaped Metasurface. Opt. Quantum Electron. 2020, 52, 250. [Google Scholar] [CrossRef]
- Ogawa, S.; Shimatani, M.; Fukushima, S.; Okuda, S.; Matsumoto, K. Graphene on Metal-Insulator-Metal-Based Plasmonic Metamaterials at Infrared Wavelengths. Opt. Express 2009, 26, 5665–5674. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.K.; Parmar, J.; Katkar, V. Graphene-Based Multilayer Metasurface Solar Absorber with Parameter Optimization and Behavior Prediction Using Long Short-Term Memory Model. Renew. Energy 2022, 191, 47–58. [Google Scholar] [CrossRef]
- Muhammad, N.; Tang, X.; Tao, F.; Qiang, L.; Zhengbiao, O. Broadband Polarization-Insensitive Absorption by Metasurface with Metallic Pieces for Energy Harvesting Application. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2019, 249, 114419. [Google Scholar] [CrossRef]
- Poorgholam-Khanjari, S.; Zarrabi, F.B. Reconfigurable Vivaldi THz Antenna Based on Graphene Load as Hyperbolic Metamaterial for Skin Cancer Spectroscopy. Opt. Commun. 2021, 480, 126482. [Google Scholar] [CrossRef]
- Xu, Z.; Dong, X.; Bornemann, J. Design of a Reconfigurable MIMO System for THz Communications Based on Graphene Antennas. IEEE Trans. Terahertz Sci. Technol. 2014, 4, 609–617. [Google Scholar] [CrossRef]
- Lucido, M. Electromagnetic Scattering from a Graphene Disk: Helmholtz-Galerkin Technique and Surface Plasmon Resonances. Mathematics 2021, 9, 1429. [Google Scholar] [CrossRef]
- Frieler, M.; Pho, C.; Lee, B.H.; Dobrovolny, H.; Naumov, A.V.; Akkaraju, G.R. Effects of Doxorubicin Delivery by Nitrogen-Doped Graphene Quantum Dots on Cancer Cell Growth: Experimental Study and Mathematical Modeling. Nanomaterials 2021, 11, 140. [Google Scholar] [CrossRef]
- Carr, S.; Massatt, D.; Fang, S.; Cazeaux, P.; Luskin, M.; Kaxiras, E. Twistronics: Manipulating the Electronic Properties of Two-Dimensional Layered Structures through Their Twist Angle. Phys. Rev. B 2017, 95, 075420. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Li, J.; Yin, J.; Xu, S.; Mullan, C.; Taniguchi, T.; Watanabe, K.; Geim, A.K.; Novoselov, K.S.; Mishchenko, A. In Situ Manipulation of van Der Waals Heterostructures for Twistronics. Sci. Adv. 2020, 6, eabd3655. [Google Scholar] [CrossRef]
- Andrei, E.Y.; MacDonald, A.H. Graphene Bilayers with a Twist. Nat. Mater. 2020, 19, 1265–1275. [Google Scholar] [CrossRef]
- Weckbecker, D.; Shallcross, S.; Fleischmann, M.; Ray, N.; Sharma, S.; Pankratov, O. Low-Energy Theory for the Graphene Twist Bilayer. Phys. Rev. B 2016, 93, 035452. [Google Scholar] [CrossRef] [Green Version]
- Mogera, U.; Kulkarni, G.U. A New Twist in Graphene Research: Twisted Graphene. Carbon N. Y. 2020, 156, 470–487. [Google Scholar] [CrossRef]
- Ren, Y.N.; Zhang, Y.; Liu, Y.W.; He, L. Twistronics in Graphene-Based van Der Waals Structures. Chin. Phys. B 2020, 29, 117303. [Google Scholar] [CrossRef]
- Wu, D.; Pan, Y.; Min, T. Twistronics in Graphene, from Transfer Assembly to Epitaxy. Appl. Sci. 2020, 10, 4690. [Google Scholar] [CrossRef]
- Liao, M.; Wei, Z.; Du, L.; Wang, Q.; Tang, J.; Yu, H.; Wu, F.; Zhao, J.; Xu, X.; Han, B.; et al. Precise Control of the Interlayer Twist Angle in Large Scale MoS2 Homostructures. Nat. Commun. 2020, 11, 2153. [Google Scholar] [CrossRef]
- Hu, G.; Qiu, C.-W.; Alù, A. Twistronics for Photons: Opinion. Opt. Mater. Express 2021, 11, 1377. [Google Scholar] [CrossRef]
- Deng, Y.; Oudich, M.; Gerard, N.J.R.K.; Ji, J.; Lu, M.; Jing, Y. Magic-Angle Bilayer Phononic Graphene. Phys. Rev. B 2020, 102, 180304. [Google Scholar] [CrossRef]
- Ciarrocchi, A.; Tagarelli, F.; Avsar, A.; Kis, A. Excitonic Devices with van Der Waals Heterostructures: Valleytronics Meets Twistronics. Nat. Rev. Mater. 2022, 7, 449–464. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, L.; Zhao, T. Study on Dynamic Characteristics of a Rotating Sandwich Porous Pre-Twist Blade with a Setting Angle Reinforced by Graphene Nanoplatelets. Mathematics 2022, 10, 2814. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Zou, J. Minnaert Resonances for Bubbles in Soft Elastic Materials. SIAM J. Appl. Math. 2022, 82, 119–141. [Google Scholar] [CrossRef]
- Deng, Y.; Liu, H.; Zheng, G.H. Mathematical Analysis of Plasmon Resonances for Curved Nanorods. J. Math. Pures Appl. 2021, 153, 248–280. [Google Scholar] [CrossRef]
- Zheng, G.H. Mathematical Analysis of Plasmonic Resonance for 2-D Photonic Crystal. J. Differ. Equ. 2019, 266, 5095–5117. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Recent Progress On The Mathematical Study Of Anomalous Localized Resonance In Elasticity. Electron. Res. Arch. 2020, 28, 1257–1272. [Google Scholar] [CrossRef]
- Wang, S.; Ren, C.; Tian, H.; Yu, J.; Sun, M. MoS2/ZnO van Der Waals Heterostructure as a High-Efficiency Water Splitting Photocatalyst: A First-Principles Study. Phys. Chem. Chem. Phys. 2018, 20, 13394–13399. [Google Scholar] [CrossRef]
- Wang, S.; Tian, H.; Ren, C.; Yu, J.; Sun, M. Electronic and Optical Properties of Heterostructures Based on Transition Metal Dichalcogenides and Graphene-like Zinc Oxide. Sci. Rep. 2018, 8, 12009. [Google Scholar] [CrossRef] [PubMed]
- COMSOL. COMSOL Multiphysics®, version 6.0; COMSOL: Stockholm, Sweden, 2021.
- Niu, K.; Li, P.; Huang, Z.; Jiang, L.J.; Bagci, H. Numerical Methods for Electromagnetic Modeling of Graphene: A Review. IEEE J. Multiscale Multiphysics Comput. Tech. 2020. [Google Scholar] [CrossRef] [Green Version]
- Bludov, Y.V.; Ferreira, A.; Peres, N.M.R.; Vasilevskiy, M.I. A Primer on Surface Plasmon-Polaritons in Graphene. Int. J. Mod. Phys. B 2013. [Google Scholar] [CrossRef] [Green Version]
- Kouroublakis, M.; Tsitsas, N.L.; Fikioris, G. Shielding Effectiveness of Ideal Monolayer Graphene in Cylindrical Configurations With the Method of Auxiliary Sources. IEEE Trans. Electromagn. Compat. 2022, 64, 1042–1051. [Google Scholar] [CrossRef]
- Surve, J.; Parmar, J.; Patel, S.K.; Jadeja, R. Comparative Analysis of Metasurface Array-Based Solar Absorber for Visible Region. Opt. Quantum Electron. 2021, 53, 696. [Google Scholar] [CrossRef]
- Gusynin, V.P.; Sharapov, S.G.; Carbotte, J.P. Magneto-Optical Conductivity in Graphene. J. Phys. Condens. Matter 2007, 19, 026222. [Google Scholar] [CrossRef] [Green Version]
- Castro Neto, A.H.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The Electronic Properties of Graphene. Rev. Mod. Phys. 2009, 81, 109–162. [Google Scholar] [CrossRef] [Green Version]
- Bistritzer, R.; MacDonald, A.H. Moiré Bands in Twisted Double-Layer Graphene. Proc. Natl. Acad. Sci. USA 2011, 108, 12233–12237. [Google Scholar] [CrossRef] [Green Version]
- Numan, A.B.; Sharawi, M.S. Extraction of Material Parameters for Metamaterials Using a Full-Wave Simulator [Education Column]. IEEE Antennas Propag. Mag. 2013, 55, 202–221. [Google Scholar] [CrossRef]
- Azad, A.K.; Kort-Kamp, W.J.M.; Sykora, M.; Weisse-Bernstein, N.R.; Luk, T.S.; Taylor, A.J.; Dalvit, D.A.R.; Chen, H.T. Metasurface Broadband Solar Absorber. Sci. Rep. 2016, 6, 20347. [Google Scholar] [CrossRef]
- Mahmud, S.; Islam, S.S.; Almutairi, A.F.; Islam, M.T. A Wide Incident Angle, Ultrathin, Polarization-Insensitive Metamaterial Absorber for Optical Wavelength Applications. IEEE Access 2020, 8, 129525–129541. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Katkar, V.; Parmar, J.; Al-Zahrani, F.A.; Ahmed, K.; Bui, F.M. Encoding and Tuning of THz Metasurface-Based Refractive Index Sensor with Behavior Prediction Using XGBoost Regressor. IEEE Access 2022, 10, 24797–24814. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Katkar, V.; Parmar, J. Optimization of Metamaterial-Based Solar Energy Absorber for Enhancing Solar Thermal Energy Conversion Using Artificial Intelligence. Adv. Theory Simul. 2022, 5, 2200139. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Jadeja, R.; Katkar, V.; Parmar, J.; Ahmed, K. Ultra-Wideband, Polarization-Independent, Wide-Angle Multilayer Swastika-Shaped Metamaterial Solar Energy Absorber with Absorption Prediction Using Machine Learning. Adv. Theory Simul. 2022, 5, 2100604. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Devlin, S.J. Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
Twist angles | 5° | 10° | 15° | |||
λ (μm) | 1.2 | 1.19 | 0.97 | |||
Δλ (nm) | 10 | 220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Armghan, A.; Alsharari, M.; Aliqab, K.; Alsalman, O.; Parmar, J.; Patel, S.K. Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties. Mathematics 2023, 11, 1579. https://doi.org/10.3390/math11071579
Armghan A, Alsharari M, Aliqab K, Alsalman O, Parmar J, Patel SK. Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties. Mathematics. 2023; 11(7):1579. https://doi.org/10.3390/math11071579
Chicago/Turabian StyleArmghan, Ammar, Meshari Alsharari, Khaled Aliqab, Osamah Alsalman, Juveriya Parmar, and Shobhit K. Patel. 2023. "Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties" Mathematics 11, no. 7: 1579. https://doi.org/10.3390/math11071579
APA StyleArmghan, A., Alsharari, M., Aliqab, K., Alsalman, O., Parmar, J., & Patel, S. K. (2023). Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties. Mathematics, 11(7), 1579. https://doi.org/10.3390/math11071579