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Abstract: The design of pumping stations in a water distribution network determines the investment
costs and affects a large part of the operating costs of the network. In recent years, it was shown that
it is possible to use flow distribution to optimize both costs concurrently; however, the methodologies
proposed in the literature are not applicable to real-sized networks. In these cases, the space of
solutions is huge, a small number of feasible solutions exists, and each evaluation of the objective
function implies significant computational effort. To avoid this gap, a new method was proposed
to reduce the search space in the problem of pumping station design. This method was based on
network preprocessing to determine in advance the maximum and minimum flow that each pump
station could provide. According to this purpose, the area of infeasibility is limited by ranges of the
decision variable where it is impossible to meet the hydraulic constraints of the model. This area of
infeasibility is removed from the search space with which the algorithm works. To demonstrate the
benefits of using the new technique, a new real-sized case study was presented, and a pseudo-genetic
algorithm (PGA) was implemented to resolve the optimization model. Finally, the results show
great improvement in PGA performance, both in terms of the speed of convergence and quality of
the solution.
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1. Introduction

Unquestionably, the water distribution service directly affects the quality of life of
people around the world [1,2]. However, this process constitutes one of the most significant
expenses in the budget of any city [3,4]. The main reason is the high energy consumption
of the water distribution network (WDN). Specifically, pumping stations (PSs) require a
significant amount of energy to transport water to consumers [4]. Therefore, improving
the efficiency of these systems allows for significant energy and economic savings [2,5].
Furthermore, the price of electricity has been increasing globally. Consequently, optimizing
PS design and operations is crucial for achieving a cost-effective WDN.

The design of PSs has short- and long-term consequences [6]. In the immediate
term, determining the investment cost for constructing physical structures and acquiring
equipment can be done. In the long term, establishing most of the operating conditions
throughout the life of the project is performed. Thus, the design of PSs must be optimized
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after considering the operational variables in the network [7,8]. The design of a PS includes
selecting the number, model, type of pump, accessories, and control system [6]. This set
of decisions involves many possible combinations and, therefore, can be expressed as a
mathematical optimization problem to minimize the investment and operating costs [7].

Different optimization problems were proposed to achieve a minimal amount of
energy consumed by PSs from different perspectives [1,2,7]. These models differ in the
decision variables used to build their objective functions and constraints. For this purpose,
the authors used different approaches, such as the trade-off method between reliability and
energy efficiency [9], maximizing energy production [10], minimizing maintenance and
energy costs [11,12], location and minimization of the leakage [13], multi-criteria-based
approach to minimize the operational costs and operational lack of service and maximize
the pressure uniformity and network resilience [14], individual analysis for each design and
operation option available by using binary variables [15], and/or calculating the equivalent
flow and equivalent volume to approximate the annual costs [8], among other techniques.
However, despite all efforts, this problem has not been fully resolved due to its complexity,
high level of non-linearity, and the vast space of solutions restricted by hydraulic conditions
that ensure a minimum quality of service (minimum pressure) [1,2,16]. Consequently, the
development of effective operational strategies in addition to appropriate mathematical
models based on comprehensive knowledge about the system and efficient computationally
guided search methods are essential for the application of these techniques to real-world
WDN problems.

More recently, interest in the determination of the optimal flow distribution as an
effective tool in the design of PSs has been growing [5,7,17], mainly when this calculation
is driven through the setpoint curve (SC) [18]. The setpoint curve represents the required
dynamic head (Hc) for every flow rate (Q) in the PS to satisfy the minimum pressure service
in the nodes of the network. The main characteristic of this curve is that the resistance
produced by consumption nodes is replaced by a constant value that is the minimum service
pressure for consumption nodes at any time instant. More details about its mathematical
construction can be found in [19].

In particular, Gutiérrez et al. [7] implemented a novel methodology based on the
concurrent minimization of capital expenditures (CAPEX) and operating expenses (OPEX)
using the optimization of flow distribution. They proposed a mathematical optimization
model with three types of decision variables: (1) the fractions of flow provided by each
PS, (2) the model of the pumps, and (3) the number of fixed and variable speed pumps.
To solve the model, a pseudo-genetic algorithm proposed by [20] was used. The authors
presented a case study to demonstrate the advantages of the method. The results indicate
that despite the large number of combinations presented in the network, it appears to
be possible to find feasible solutions, avoid oversizing the pumps, and adjust the flows
contributed by the PSs to the changes in the consumption pattern of the network for 24 h.
However, this methodology still has room for improvement. First, using the SC in each
objective function evaluation ensures that the solution fulfills the minimum head by using
the minimum energy expenditure. Nevertheless, each evaluation of a solution involves
examining all nodes in an iterative way. Thus, the computational cost is high, and the
optimization algorithm loses search capacity as the network grows. Second, each solution
to the problem includes a decision variable that determines the flow contribution of each
pumping station. This variable can take values between 0% and 100% of the total flow
demanded by the network in each period, but depending on the topology of the network,
many of these solutions are a priori infeasible.

In general terms, real water distribution networks contain many nodes, pipes, and
accessories. One of the significant challenges faced by state-of-the-art methods used to
optimize the design of pumping stations is the application of the methods described above
in networks of real size [1,2,16]. Traditionally, the pumps are selected based on an operation
point and, later, their operation is optimized once the equipment is selected. In contrast,
this work proposed an approximation to the operation mode of the pump in the planning
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phase based on optimizing the energy and cost in the WDN. This new approach can help
to better select the pumping equipment. In this context, the method proposed by Gutiérrez-
Bahamondes et al. [7] is limited by the size of the network. To avoid this problem, this
study proposed an automatic pre-processing strategy to accelerate the heuristic search
processes of evolutionary algorithms applied to the problem posed in [7]. Several main
advantages of this strategy can be described: (1) it reduces the computational burden,
(2) it rules out infeasible solutions during the evaluation process in any period, and (3) it
finds a set of solutions close to the optimal design of the pumping station. The newly
proposed method was validated using a real-world case study, and its performance was
evaluated and compared with the original method. EPANET [21] was used to evaluate the
hydraulic behavior of the hydraulic network, while the optimization model was solved
using a pseudo-genetic algorithm (PGA).

The remainder of the paper is organized into several sections: (1) Section 2 describes
the mathematical model of the original method and the infeasibility problem, followed
by an explanation of the pre-processing strategy. The developed methodology was then
applied to a case study, and an optimization method was implemented. (2) Section 3
provides the results in which 100 experiments were executed and analyzed. The use of the
preprocessing strategy improved the quality of solutions and speed of convergence. (3) The
conclusions of the research can be found in Section 4.

2. Materials and Methods

This work proposed a new method to accelerate the process of searching for solutions
to the problem posed by [7] and includes several improvements:

− A new constraint was added to the mathematical optimization model. For each PS,
this equation allows us to discard all pump models that, due to their specifications,
did not manage to supply at least the maximum flow rate during the analysis period.

− The method used network preprocessing to determine in advance the maximum
and minimum flow that each PS could provide. This procedure made it possible to
limit the search space for solutions to the problem, thus eliminating areas of total
infeasibility. An area of infeasibility is limited by ranges of the decision variable
where it is impossible to meet the hydraulic constraints of the model. Our proposed
method maps these ranges before starting the optimization process, accelerating the
convergence of the algorithm using infeasibility maps (IMs).

− This study combined the use of the SC with the mapping of infeasibility zones to rule
out unfeasible solutions during the evaluation process in any period, thus avoiding
unnecessary hydraulic simulations when it was detected that part of the solution was
not viable. Consequently, the IMs reduce the search space of the optimization algo-
rithm. Reducing the search space to increase computational efficiency is a significant
challenge faced when optimizing water networks

2.1. Mathematical Model

First, for a better understanding, the mathematical optimization model proposed
by [7] is briefly presented in this section. This model was based on the optimization of
flow rate injection, which was based on the use of the SC concept. The SC curve can be
defined as a theoretical curve that indicates the minimum energy (in terms of pressure
head) required for pumping stations to meet the minimum pressure required for each
demand in the network, namely, it is a representation of the pressure head versus the flow
at a given point in the system.

Next, the main assumptions, simplifications, and limitations of the model are detailed.
First, it should be understood that the SC concept does not deal explicitly with pumps as
hydraulic machines; therefore, we started with the assumption that all the related curves
(such as flow rate versus pumping head, efficiency, and power) were not known. The use
of the SC allowed us to determine the energy required at the source without considering
specific pump head-flow curves. That is, we were only dealing with the energy supplied
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by the pumping station. One SC curve was available for each supply source. Second, this
work assumed that a direct injection network was optimized. That is, the network was fed
directly from groundwater or did not have a high enough elevation for tanks to be installed.
Third, the location of each possible pumping station was defined previously and was not
part of the problem. Fourth, the method required a pump model database containing all
the characteristic coefficients of each pump and the purchase costs of all accessories and
control systems necessary to build the physical structure. Finally, it is important to note that
to simplify the calculation of the total costs, the design of the stations was parameterized
according to the established modular design. The mathematical notation, decision variables,
objective function, and constraints are presented below.

2.1.1. Mathematical Notation

− Nt: total number of time steps in the optimization process.
− Nps: total number of PSs in the network.
− Nb: total number of pump models available in the data set.
− Fa: amortization factor.
− r: interest rate.
− Np: total number of project life periods.
− H0,i, Ai: characteristic coefficients of the pump head installed in PSi.
− Ei, Fi: characteristic coefficients of the performance curve of the pump installed in PSi.
− Qi,j,k: represents the discharge of pump k during time step j in PSi.
− pi,j: energy cost in PSi during the time step j.
− Υ: specific gravity of water.
− ∆tj: discretization interval of the optimization period.
− mi,j: the number of FSPs running in PSi at time step j.
− ni,j: the number of VSPs running in PSi at time step j. These values depend on the

selected pump model and the system selected to control the operation point.
− NB,i: total number of total pumps.
− HBmax: maximum head of the largest pump available in the data set.
− Hmax,i: maximum head supplied by PSi during time analysis.
− Cpump, i: purchase cost of a pump installed in PSi.
− ni: number of frequency inverters in PSi.
− Cfacility,i: cost of accessories including pipes in PSi.
− Ccontrol,i: sum of a pressure transducer, flowmeter, and programmable logic controller

cost for PSi.

2.1.2. Decision Variables

− Xij: percentage of the flow supplied from PSi at each time step j.
− mi: number of fixed speed pumps in PSi.
− bi: ID of the pump model to be installed in PSi in the range [1,Nb].

2.1.3. Objective Function

The optimization model minimizes the sum of the capital (CAPEX) and operational
(OPEX) costs at the same time. Equation (1) presents the total annualized cost of the project
in which Fa is the amortization factor, which applies an interest rate r during Np periods.

F = Fa·CAPEX + OPEX (1)

Fa =
r·(1 + r)Np

(1 + r)Np−1 (2)
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The CAPEX and OPEX are calculated according to Equations (3) and (4), respectively.

CAPEX =
Nps

∑
i=1

(
NB,i·Cpump,i + ni·Cinv,i + Cfacility,i + Ccontrol,i

)
(3)

OPEX =
Nt

∑
j=1


Nps

∑
i=1


mi,j

∑
k=1

γ·
(

Ho,i −Ai·Q2
i,jk

)
(

Ei − Fi·Qi,j,k

) +

nj,i

∑
k=1

γ·
(

Ho,i·αi,j,k −Ai·Q2
i,jk

)
(

Ei
αi,j,k
− Fi

α2
i,j,k
·Qi,j,k

)
·pi,j

∆tj

 (4)

2.1.4. Constraints

The optimization model is restricted by continuity and momentum equations and by
minimum head requirements in the demand nodes. Equations (5) and (6) guarantee that
the total flow supplied by the PS will be equal to the flow demand.

xi,j ≥ 0∀i, j (5)

Nps

∑
i=1

xi,j = 1∀j (6)

H0,i ≥ Hmax,i∀PSi (7)

Equation (7) was incorporated into this work. The new method determines a subset
made up only of the pump models capable of delivering the minimum head and flow to
reach the service levels required by the network. The search range of the decision variable
associated with the pump model, i.e., bi, is then limited to the previously defined set.

All intermediate details about the hydraulic calculations of the objective function can
be found in reference [7].

2.2. Infeasibility Maps

The decision variable xij determines the fraction of flow that PSi contributes during
period j. This variable can have a range from 0 to 100 (expressed as a percentage) for which
0 indicates that the PS did not supply water in that period; in contrast, a value of 100
indicated that all the flow was supplied by a single PS in the period. Therefore, a huge
number of possible combinations exist, and many of them are infeasible solutions.

The main causes of infeasibility are listed below:

1. The distribution of flow generates sectors of the network where it is not possible to
reach the minimum required pressures.

2. Some of the PSs must provide a pressure greater than the maximum head of the
largest pump that exists in the available catalog.

3. The sum of the flows supplied is greater than the demand.

Each additional evaluation of the objective function supposes an increase in the com-
putational effort made by the optimization algorithm. For this reason, this study proposed
to analyze the network previously used to establish minimum and maximum limits for the
variable xi,j. Thus, it was possible to avoid the evaluation of infeasible solutions, which
could be ruled out using hydraulic criteria before starting the optimization process. Unfor-
tunately, the non-linearity of the relationships between the hydraulic variables did not allow
these values to be fixed, but this value could be expressed as a function of the piezometric
head of a reference PS (PSref). This reference pumping station could be any of the pumping
stations in the network. Furthermore, PSref supplied all the water that was not provided by
the rest of the PSs.

Before executing the optimization algorithm, for each PSi different from PSref, it was
possible to build a graph called the “Infeasibility Map” (IM), such as the one presented in
Figure 1.
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Figure 1. Infeasibility map for PSi.

The horizontal axis represents the flow provided by PSi (QPSi). It could have values
between zero and the total flow demanded by the network.

The vertical axis represents the head of PSref (Href). For any Href, all points to the left
of the minima curve (red color) are infeasible. This infeasibility was due to the fact that
it was not possible to reach the minimum height required in all the nodes of the network.
Similarly, at any point to the right of the maximum curve (green color), the head required
by PSi always exceeded the maximum head of the largest pump available in the catalog
(HBmax), and therefore, it would also be infeasible.

The green area of the graph is the bounded search region (BSR), which represents a set
of combinations for which it was not possible to previously check infeasibility. That is, the
BSR contained both feasible and infeasible points. Therefore, the optimization algorithm
was in charge of traversing this space. Consequently, it was possible to use an IM to rule
out a large number of combinations by previously limiting the range of the variable xij.

Finding these curves for all possible combinations can generate a high computational
cost. Specifically, the number of hydraulic simulations increases significantly as the number
of pumping stations grows. However, it is possible to estimate the maximum and minimum
curves via randomly sampling combinations of pumping station flows using the Monte
Carlo method [22]. Using this method greatly simplifies the proposed method.

The curves are used by the optimization algorithm in each evaluation of the objective
function. In this new method, the value of xij represents a fraction of the difference between
the highest value of the maximum flow curve and the lowest value of the minimum flow
curve. It is important to note that this range is always less than the total demand. Therefore,
it represents a search space reduction for any network, regardless of the topology.

Figure 2 shows the use of the IM with two PSs. The red line represents the SC calculated
for a PSi different from PSref [18]. From the solution, the intersection of the input flow xij
and the respective SC could be obtained. If the resulting point was within the blue region,
the solution could not be discarded. Otherwise, the solution was irrefutably infeasible.
Outside this range, it would have been impossible to achieve a technically feasible solution.

The method presented in this work does not depend on the number of pumping
stations. It could be applied to any problem with at least two PSs. For example, Figure 3
shows the decoding process in a network with three PSs: (1) PS1, (2) PS2, and (3) PS3.

Analogous to the case of Figure 2, it was necessary to select a PSref. PS1 was selected as
the reference station after which the minimum and maximum curves for PS2 and PS3 were
calculated. The limits defined by the curves allowed for generating the BSR for each PSi. In
Figure 3, blue and green areas represent the BSRs for PS3 and PS2, respectively. Regarding
the flow supplied by each PSi, x3j, and x2j represent the total percentage of flow supplied
by PS3 and PS2, respectively. Consequently, PS1 must supply the remaining flow with the
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head Hps1. Note that each supply source had its own SC. Consequently, the SC was found
for both pumping stations.
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The use of IMs allows for reducing the number of hydraulic simulations carried out
during the optimization process. The newly proposed method involves using IMs to rule
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out solutions during the evaluation of a solution when at least one period is infeasible. In
this way, the hydraulic calculation stops, and the solution is penalized depending on the
number of periods elapsed until finding the infeasibility.

The number of nodes and pipes in the network is the main cause of computational
slowdown because the hydraulic motor calculates each node and each pipe in each iteration
of the algorithm. This new procedure saves a large number of hydraulic simulations. This
is important in the case of large networks because the computing time can be extremely
high. Consequently, the application of the presented method is aimed at optimizing large
networks. However, it could also be used in small networks without the need for changes.

2.3. Case Study

To apply the methodology described above, one case study was conducted. Figure 4a
shows the topology of a WDN located in the city of Curicó (Chile). The network model
was proposed by [23]. The network contained 7630 nodes and 8359 pipes. The network
had 2 pumping stations working, PS1 and PS2. However, due to the growth of the city,
the pumping equipment was old and susceptible to replacement. There is the possibility
of putting a third water source into operation, located at PS3. The node with the lowest
elevation was 190 m, and the elevation of the largest node was approximately 295 m. The
minimum operating pressure was 15 m for all network nodes. Information about the nodes
and pipelines can be found in the Supplementary Materials.
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The total demand of the network was provided by the three pumping stations, where
Q1 was the flow provided by PS1, Q2 was the flow provided by PS2, and Q3 was the flow
provided by PS3. Figure 4b shows the modular design proposed by [7]. This scheme was
used later to carry out the CAPEX calculations.

The hydraulic analysis was conducted for one day, and the time was divided into
periods of one hour. A time pattern was used to characterize the time variation in demand,
providing multipliers that were applied to the base demand to determine the actual demand
in a given period. Figure 5 shows the 24 h use pattern.

To calculate the OPEX, Table 1 shows the hourly electricity rate used for each PS in
the network. On the other hand, all the necessary coefficients to estimate the CAPEX were
obtained from [7].
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Figure 5. Demand pattern for the Curicó network.

Table 1. Electricity for the case study (EUR/kWh).

Time (h) PS1 PS2 PS3

1–8 0.094 0.092 0.09
9–18 0.133 0.131 0.129
19–22 0.166 0.164 0.162
23–24 0.133 0.131 0.129

To perform the optimization process, a database with 67 pump models was used. The
maximum flow rate of the pumps in the database varied between 9 L/s and 50.7 L/s. The
annualized costs of these models were calculated using an interest rate of 5% per year and
a projection time of 20 years. This led to an amortization factor of Fa = 7.92%.

2.4. Optimization Method

The solution space of the case study was 10104. Consequently, the use of a computa-
tional method was required to solve the optimization model. Specifically, this work used a
pseudo-genetic algorithm (PGA) developed by the authors of [20] to solve problems of an
integer nature. Unlike a traditional genetic algorithm (GA), the PGA is based on an integer
coding of the solution, and each decision variable can store different values represented by
alphanumeric variables.

The objective of the work was to demonstrate that the use of IMs improves the
performance of the optimization algorithm. For this comparison to be fair, the resolution
of the proposed model was carried out using the same algorithm used by [7]. In this way,
it was possible to directly compare the proposed methodologies and avoid unnecessary
biases. In addition, the same parameters of population size (P), crossover frequency (Pc),
and mutation frequency (Pm) recommended by the authors in previous works [24] were
considered, specifically, population size (P = 100), crossover frequency (Pc = 90%), and
mutation frequency (Pm = 5%).

The PGA was implemented using JMetalPy, which is an open-source Python library
for solving single-objective and multi-objective optimization problems. It was inspired by
the JMetal library, written in Java, and it implements evolutionary, local-search-based, and
hybrid algorithms to solve various optimization problems [25]. Specifically, the Python 3.8
programming language was used. The objective function call was implemented according
to the guidelines described in [12]. The hydraulic simulations were carried out using the
programmer’s toolkit of EPANET [21]. This system can conduct massive simulations and
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is integrated with the hydraulic network solver. To ensure a minimum level of statistical
confidence in the results, 100 experiments were performed and analyzed.

Finally, to carry out the experiments, a computer with an Intel(R) Xeon(R) Gold 5218
CPU @ 2.30 GHz, 2300 Mhz, 16 main processors, and 32 logical processors equipped with
the Windows 10 Pro operating system was used. The average time per execution was 21 h.

3. Results

The results compared the performance of the PS design method with and without
IMs. First, PS1 was selected as PSref and the IMs for the 24 periods were calculated
for each PSi. For example, Figure 6 shows the resulting IM for PS2 in the period of
greatest water demand (hour = 12). The orange zone represents the BSR and the remaining
area represents hydraulically infeasible solutions that were not used by the PGA in the
optimization process.
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Once the IMs were constructed, the algorithm searched only within the BSR. In
this space, it was not possible to determine in advance whether the solutions were feasi-
ble/infeasible. This choice depended exclusively on the characteristics of the network and
the hydraulic simulation to be executed. Both methods were compared. To increase the
statistical reliability of the results, 100 experiments were performed. Each experiment ran
100,000 objective function evaluations, and the final values obtained for each method were
compared. Note that the method presented in [7] performed one hydraulic simulation for
each period analyzed. Consequently, each full day (24 h) led to 24 hydraulic simulations.
However, the number of hydraulic simulations of the novel method presented in this work
depended on the number of feasible periods of the analyzed solution. Figure 7 shows
the results.

The blue dots represent the best solution obtained using the PGA with a search
space limited by the IMs. The green dots show the best solution obtained using the
PGA with the original method presented by [7], which utilized the complete search space.
Additionally, the shaded area represents the complete distribution of all experiments
simulated using IMs.

Note that the optimization algorithm converged to feasible solutions much faster when
IMs were used, and the value of the objective function in all experiments when using IMs
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was less than the best solution using the complete search space. Consequently, the results
demonstrate great improvement in the PGA performance when it was guided by IMs.
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It is important to highlight that the construction of the IMs also requires computational
effort prior to the optimization process. The number of hydraulic simulations of this
pre-processing will depend mainly on the number of pumping stations in the network.
Specifically, in the case study, 4.0 × 105 hydraulic simulations were needed. However,
this preprocessing was only executed once for the entire experiment and represented
a small percentage of the total simulations. For example, for the case study in which
100 experiments were executed, the generation of IMs represented approximately 2% of the
total number of simulations (2.0 × 108) and decreased in an inversely proportional manner
with the number of experiments executed.

Previously, the monetary difference in the solutions obtained by each method was high-
lighted. Next, we focused on the hydraulic difference between both solutions. Figures 8 and 9
show the 24 h analysis of the pumping scheme of each PSi for the best solution obtained by
the PGA with and without IMs, respectively.

In both figures, the bars represent the number of active pumps during each period,
and the dotted lines represent the total flow required by the network according to the
consumption pattern in Figure 5.

The best solution obtained using the PGA without IMs (Figure 7) would have re-
quired the operation of the third pumping station to meet the operating conditions of
the network. Notably, PS1, PS2, and PS3 would have had to be at least ten, two, and two
pumps, respectively. In contrast, when using the IMs, the PGA found many solutions in
which only PS1 and PS2 were needed. Both solutions were hydraulically feasible, but the
solution found using IMs was found to be more efficient, cheaper, and perfectly fit the
network requirements. This feature is important for decision-making because if the search
space is not correctly explored, unnecessary energy and building costs can be incurred.



Mathematics 2023, 11, 1582 12 of 16

Table 2details the total yearly costs for the best solutions achieved by the PGA without and
with IMs (Figures 8 and 9, respectively).
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The use of IMs led to a reduction in the cost of the solution by 71% relative to previous
solutions found without using a reduced search space. When analyzing the objective
function in detail, the main difference occurred in the CAPEX term. First, pumping stations
are expensive structures. Consequently, it is not profitable to activate the operation of
PS3 because it requires a high level of investment. Second, the optimized design without
IMs required 10 pumps running on PS1. This feature implies a high cost of purchasing
this equipment.
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Table 2. Cost comparison between the best solutions with and without IMs.

OPEX CAPEX Fa • CAPEX + OPEX

PGA without IMs PGA with IMs PGA without IMs PGA with IMs PGA without IMs PGA with IMs

PS1 EUR 121 EUR 80.7 EUR 190,756 EUR 94,470 EUR 54,710 EUR 34,002

PS2 EUR 34 EUR 31 EUR 34,544 EUR 37,077 EUR 13,754 EUR 13,054

PS3 EUR 16 - EUR 85,618 - EUR 12,107 -

Total EUR 80,571 EUR 47,056

Consequently, the best solution would supply all water demands from stations PS1
and PS2, and it would not be necessary to activate a third pumping station. According
to the scheme in Figure 4, Table 3 shows the design specifications for pumping stations
1 and 2.

Table 3. Pump station designs for the case study.

PS1 PS2

ND1 350 250
(mm) ND2 125 125

ND3 350 250

L1 1.75 1.25
(m) L2 3.75 3.75

L3 3.50 2.50

mi 0 0
ni 6 3

H0 27.2632 27.2632
A −0.01416 −0.01416
E 0.06929 0.06929
F 0.00158 0.00158

Model ID GNI 50-13/7.5 GNI 50-13/7.5

ND1, ND2, and ND3 are the nominal diameters of the corresponding pipe p, which
is used for defining the diameters of elements such as isolation valves or check valves
according to the modular design presented in Figure 4b. Similarly, L1, L2, and L3 are the
lengths of pipes. Furthermore, Table 3 shows the number of fixed-speed pumps (mi) and
the number of variable-speed pumps (ni). H0, A, E, and F represent the characteristic and
efficiency curve coefficients. Finally, the last row displays the selected model pump from
the database. It is important to note that the final solution only considered variable-speed
pumps and ruled out fixed-speed pumps. The higher cost of this equipment could be offset
by the reduction in energy consumption during the years of the project’s life.

4. Conclusions

In the current context, improving the energy efficiency of pumping systems is a
priority since these pumping systems represent a considerable percentage of the operating
costs of any water supply company. Several approaches are described in the literature for
optimizing the energy consumption of a PS. One possibility is approximating the operation
mode of the pump(s) in the planning phase and optimizing the energy and cost in the
WDN. This approach can help to make a better selection of pumping equipment. However,
the computational cost is high, and the optimization algorithm loses search capacity as the
network grows.

This work presents a new pumping station design method that considers the use of
IMs for a better exploration of the search space. The method was applied to a real case
study and was compared with the same design method without considering the use of IMs.
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The use of IMs eliminates infeasible areas in the optimization process and improves the
performance of the algorithm, both in terms of convergence speed and in the quality of
the solutions. It is possible to highlight several findings after comparing the optimization
methods with and without IMs:

− The exhaustive construction of the IMs required a significant number of hydraulic
simulations. However, this procedure only needed to be done once, representing only
2% of the total number of simulations.

− When IMs were not used, the search space was too large, and the algorithm took
a long time to find feasible regions, which were usually local minima. The use of
IMs allowed for accelerating the convergence of the optimization algorithms, rapidly
evolving toward better solutions. Specifically, the number of simulations required by
the IM-guided algorithm managed to reduce the number of hydraulic simulations
necessary to achieve convergence in the case study by 60%.

− The use of IMs in the case study achieved savings of 71% compared with the solutions
obtained by the optimization algorithm when considering the complete search space.
Additionally, the 100 experiments ran using IMs had better solutions than the best
solution obtained using the PGA when no IMs were used. An inadequate exploration
of the solution space implies unnecessary cost overruns and non-optimal solutions for
a given problem.

Additionally, a new constraint was added to the model. In each evaluation of the
objective function, the variable that determines the pump model in each PS only allows for
selecting models from the catalog that have the maximum head required according to the
flow distribution established by the solution. This mechanism allows the changes made by
the PGA operators in these genes to always give rise to a new feasible solution.

The use of IMs guarantees that outside the bounded search region (BSR), there are no
feasible solutions. However, it is not possible to determine the feasibility or infeasibility of
solutions within this zone. In general terms, the search for global optima within the BSR
continues to be a complex problem.

Finally, in small networks in which hydraulic simulation is not very computationally
expensive, it could be possible to obtain solutions close to the global optimum by running
a considerable number of evaluations of the objective function in a very short time. The
construction of the IMs requires preprocessing of the network. Consequently, a limitation
of the method could be a decrease in efficiency in small networks. Therefore, the use of
IMs is only highly recommended when the analyzed network has a high number of nodes,
pipes, and components.
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