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Abstract: The linguistic time-series forecasting model (LTS-FM), which has been recently proposed,
uses linguistic words of linguistic variable domains generated by hedge algebras (HAs) to describe
historical numeric time-series data. Then, the LTS-FM was established by utilizing real numeric
semantics of words induced by the fuzziness parameter values (FPVs) of HAs. In the existing
LTS-FMs, just the FPVs of HAs are optimized, while the used word set is still chosen by human
experts. This paper proposes a co-optimization method of selecting the optimal used word set that
best describes numeric time-series data in parallel with choosing the best FPVs of HAs to improve
the accuracy of LTS-FMs by utilizing particle swarm optimization (PSO). In this co-optimization
method, the outer loop optimizes the FPVs of HAs, while the inner loop optimizes the used word
set. The experimental results on three datasets, i.e., the “enrollments of the University of Alabama”
(EUA), the “killed in car road accidents in Belgium” (CAB), and the “spot gold in Turkey” (SGT),
showed that our proposed forecasting model outperformed the existing forecasting models in terms
of forecast accuracy.

Keywords: linguistic time series; hedge algebras; linguistic logical relationship; particle swarm
optimization; forecasting model

MSC: 37M10; 62M10; 68W25

1. Introduction

The human ability to predict future events and phenomena has attracted the interest of
the scientific community for many years, with many forecasting methodologies proposed
based on observed historical data. In particular, the forecasting method based on time-
series analysis has been investigated by numerous researchers using various models, such
as ARMA, ARIMA, and so on. In time-series forecasting models, future values can be
forecasted based on only past data. The characteristics of time-series data, such as trends,
seasonality, stability, outliers, etc., have been considered to establish forecasting models for
future values.

The fuzzy time series proposed by Q. Song and B. S. Chissom [1–3] is a forecasting
method of time-series analysis that combines the principles of the fuzzy set theory proposed
by L. A. Zadeh [4] with traditional time-series techniques. The fuzzy time series is particu-
larly useful in handling the uncertainty, vagueness, and imprecision of data, which is often
encountered in real-world applications. The approach allows for modeling the uncertainty
and vagueness of the data by representing the relationships between linguistic variables as
fuzzy sets rather than crisp sets. In a fuzzy time series, the forecasted values are not simply
single-point estimates, but rather a range of values that reflect the uncertainty in the data.
This provides a more realistic and robust representation of future trends in the time series,

Mathematics 2023, 11, 1597. https://doi.org/10.3390/math11071597 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11071597
https://doi.org/10.3390/math11071597
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6828-4885
https://orcid.org/0000-0002-3736-5957
https://doi.org/10.3390/math11071597
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11071597?type=check_update&version=1


Mathematics 2023, 11, 1597 2 of 14

especially when dealing with non-linear and complex data. Fuzzy time series have been
applied in a variety of domains, including finance, economics, environmental science, and
engineering, where traditional time-series methods may not be adequate. Recently, many
proposed models use optimization algorithms, such as genetic algorithm [5,6], particle
swarm optimization (PSO) [7,8], etc., to optimize forecasting model parameter values to
improve the forecasting accuracy.

People often use natural language as a tool to communicate effectively with each
other. They also store and process recorded information through linguistic variables with
their values. Linguistic values are also used by humans to forecast events occurring in
nature and society so that they can better prepare for future planning. In addition to the
fuzzy set theory for handling linguistic variables, hedge algebras (HAs), proposed by
N. C. Ho and W. Wechler [9,10], exploit the order-based semantics structure of the word
domains of linguistic variables, which provides a mathematical formalism for generating
the computational semantics of words that can be applied to solve real-life application
problems in various domains, such as image processing [11], fuzzy control [12], data
mining [13–17], etc. HAs are qualitative models; therefore, they need to be quantified by
measurable quantities based on qualitative semantics. The words of linguistic variables
convey their qualitative semantics in relation to the other words in the whole variable
domain. Because the linguistic words of a variable are interdependent, they only disclose
their full qualitative semantics in the comparative context of the whole variable domain. The
fuzziness measure of linguistic words [18] is the crucial concept of fuzzy information and
plays an important role in quantification by hedge algebras. The quantitative or numerical
semantics of a word induced by its fuzziness measure is the semantically quantifying
mapping (SQM) value that is the basis for generating computational semantics for solving
real-world application problems. Recently, hedge algebras have been applied to solve
time-series forecasting problems in such a way that historical numeric time-series data
are transformed into linguistic data by using the real numeric semantics of words defined
based on their corresponding SQM values. Then, the LTS-FMs were established [19–22].

In LTS-FMs, instead of partitioning historical data into intervals, a datum of the
historical data is assigned a linguistic word based on the nearest real numeric semantic.
By doing so for all historical data, the numeric time series is transformed into an LTS. The
linguistic words used to describe historical data are used to define the logical relationship
between the data of the current year and those of the next year. Then, the linguistic logical
relationships (LLRs) and linguistic logical relationship groups (LLRGs) are established. The
fuzzy forecasted values are induced and, finally, based on them, the corresponding crisp
forecasted values are computed. It can be seen that the SQM values of words determined
by the FPVs of HAs are crucial in establishing LTS-FMs. Obtaining an optimal set of
FPVs is not a trivial task, so an optimization algorithm should be applied to obtain it
automatically. Among the optimization algorithms, PSO is efficient and is applied to
solving many real-world problems [7,8,14,16,21]. It needs few algorithm parameters, so it is
easy to implement. In [21], the FPVs of HAs were automatically optimized for LTS-FMs by
applying PSO. However, the word set used to describe numeric time-series data was chosen
by human experts, so the selected words may not have reflected the nature of the historical
data. To overcome this drawback, this paper presents a method of selecting an optimal
word set that best describes numeric time-series data in parallel with optimizing the FPVs
of HAs by applying a co-optimization algorithm of particle swarm optimization (Co-PSO).
In Co-PSO, the outer loop optimizes the FPVs of HAs, while the inner loop optimizes the
used word set. The experimental results for three datasets, i.e., the “enrollments of the
University of Alabama” (EUA), the “killed in car road accidents in Belgium” (CAB), and
the “spot gold in Turkey” (SGT), showed that our proposed forecasting model had better
forecasting accuracy than the existing models.

The remainder of this paper is organized as follows. Section 2 briefly restates the
theory of hedge algebras and some concepts related to LTS-FM and PSO. The proposed
forecasting model, called COLTS, is introduced in Section 3. In Section 4, some experiments
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with three datasets and discussions about the forecasted results are addressed. Finally, the
summary of this work and some suggestions for future work are provided in Section 5.

2. Background
2.1. A Brief Introduction of Hedge Algebras

Each linguistic domain of variable X , denoted by Dom(X ), consists of a word set
that can be generated from two generator words, e.g., “cold” and “hot”, by the action of
linguistic hedges on them. For example, with two hedges of “very” and “rather”, the words
generated by the action of two those hedges on the two generator words of “cold” and “hot”
can be “very cold”, “rather cold”, “very hot”, “very very hot”, and so on. It can be observed
that they are linearly ordered and are comparable, e.g., “very cold” ≤ “cold” ≤ “rather cold”
≤ “hot” ≤ “very hot” ≤ “very very hot”.

From the above intuitive observation, Ho et al. introduced hedge algebras (HAs) in
1990 [9,10], a mathematical structure that can directly manipulate the word domain of X .
An HA of X , denoted by AX , is an order-based structure AX = (X, G, C, H, ≤), where
X ⊆ Dom(X ) is a word set of X ; G = {c−, c+} is a set of two generators, where c− ≤ c+;
C = {0, W, 1} is a set of three constants satisfying the order relationship 0 ≤ c− ≤ W ≤
c+ ≤ 1, where 0, 1, and W are the lowest, highest, and neutral constants, respectively; a
set of hedges of H = H− ∪ H+, where H− and H+ are the negative and positive hedges,
respectively; and ≤ is an operator that indicates the order relation between the inherent
word semantics of X .

String representation can be used to represent the words in X, so a word x ∈ X is
either c or ωc, where c ∈ {c−, c+}, ω = hn . . . h1, hi ∈ H, i = 1, . . . , n. H(x) denotes all words
generated from x, so H(x) = {ωx, ω ∈ H}. If all hedges in H are linearly ordered, all words
in X are also linearly ordered. In this case, linear HA is achieved. Hereafter, some main
properties of the linear Has are presented:

• The signs of the negative generator c− and the positive generator word c+ are
sign(c− = −1 and sign(c+) = +1, respectively;

• Every h ∈ H+ increases the semantic of c+ and has sign(h) = +1, whereas, every h ∈ H-

decreases the semantic of c− and has sign(h) = −1;
• If hedge h strengthens the of hedge k, the relative sign between h and k is sign(h, k) = +1.

On other hand, if the hedge h weakens the semantic of the hedge k, sign(h, k) = −1.
Thus, the sign of a word x = hnhn−1 . . . h2h1c is specified as follows:

sign(x) = sign(hn, hn−1) × . . . × sign(h2, h1) × sign(h1) × sign(c).

Based on the word sign, if sign(hx) = +1, x ≤ hx, and if sign(hx) = −1, hx ≤ x.
Based on the syntactical semantics of words generated by HAs, the words in H(x),

x ∈ X, induced from x, have had their semantics changed by the hedges in H, but they still
convey the original semantics of x. Therefore, H(x) can be considered as the fuzziness of x
and the diameter of H(x) is considered as the fuzziness measure of x, denoted by fm(x).

Assume that AX is a linear HA. The function fm: X→ [0, 1] is the fuzziness measure of
the words in X, provided that the following properties are satisfied [13]:

(F1): fm(c−) + fm(c+) = 1 and ∑h∈H f m(hu) = f m(u), for ∀u ∈ X;
(F2): fm(x) = 0 for all H(x) = x, especially, fm(0) = fm(W) = fm(1) = 0;
(F3): ∀x, y ∈ X, ∀h ∈ H, the proportion f m(hx)

f m(x) = f m(hy)
f m(y) is called the fuzziness

measure of hedge h, denoted by µ(h).
From the properties of (F1) and (F3), fm(x), where x = hn . . . h1c and c ∈ {c−, c+}, is

computed as fm(x) = µ(hn) . . . µ(h1)fm(c), where ∑h∈H µ(h) = 1. For a given word in X, its
fuzziness measure can be computed when the values of fm(c) and µ(hj) ∈ H are specified.

Semantically quantifying mapping (SQM) [13] of AX is a mapping of v : X → [0, 1] ,
provided that the following conditions are satisfied:

(SQM1): It preserves the order-based structure of X, i.e., x ≤ y→ v(x) ≤ v(y), ∀x ∈ X ;
(SQM2): It is one-to-one mapping and v(x) is dense in [0, 1].
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Let fm be a fuzziness measure on X, ∑−1
i=−q µ(hi) = α, ∑

p
i=1 µ(hi) = β, α, β > 0, and

α + β = 1. v(x) is computed recursively based on fm as follows:

(1) v(W) = θ = f m(c−), v(c−) = θ − α f m(c−) = β f m(c−), v(c+) = θ + α f m(c+);

(2) v
(
hjx

)
= v(x) + sign

(
hjx

)(
∑

j
i=sign(j) f m(hix)−ω

(
hjx

)
f m

(
hjx

))
, where j ∈ [−qˆp]

= {j: −q ≤ j ≤ p & j 6= 0} and

ω(hjx) = 1/2[1 + sign(hjx)sign(hphjx)(β− α)] ∈ {α, β}.

The SQM values of words are the basis of computing the real numerical semantics of
words, and then a time series is transformed into LTS.

2.2. Linguistic Time Series-Forecasting Model

Based on the theory of hedge algebras, Hieu et al. [19] introduced the concept of LTS
and its application to the enrollment forecasting problem. The quantitative (numerical)
semantics, known as SQM values, of linguistic words were directly used to establish the
LTS-FM. Specifically, the numerical semantics of words were linearly transformed to the
real numerical semantic domain of the universe of discourse (UD) of the linguistic variable.
Thus, each datum of a time series, whether recorded in numerical or linguistic values,
could be naturally associated with the corresponding real numerical semantics of the used
linguistic words of the LTS. These are also the distinguishing and outstanding properties of
LTS compared with fuzzy time series.

In order to have a theoretical basis for proposing a forecasting model, in this subsection,
some concepts of LTS proposed by Hieu et al. [19] are presented.

Definition 1 ([19]). (LTS) LetX be a set of natural linguistic words of variable X defined on the
UD to describe its numeric values. Then, any chronological series L(t), t = 0, 1, 2, . . . , where L(t) is
a finite subset ofX, is called a linguistic time series.

Definition 2 ([19]). (LLR) Suppose Xi and Xj are the linguistic words representing the data at
time t and t + 1, respectively. Then, there exists a relationship between Xi and Xj called a linguistic
logical relationship (LLR), denoted by

Xi → Xj

Definition 3 ([19]). (LLRG) Assume that there are LLRs, such as

Xi → Xj1,

Xi → Xj2,

. . .

Xi → Xjn.

Then, they can be grouped into a linguistic logical relationship group (LLRG) and are
denoted by

Xi → Xj1, Xj2, . . . , Xjn.

In [19], Hieu et al. also presented a forecasting model called LTS-FM. The procedure
of an LTS-FM is depicted in Figure 1.
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In Figure 1, the LTS-FM procedure includes six steps, which can be briefly described
as follows (for more detail, please see [19,22]):

Step 1. Determine the UD of the linguistic variable, the syntactical semantics, and the
FPVs of the associated Has, and choose the used linguistic words to describe the designated
time series;

Step 2. Calculate the quantitative semantics of the used words;
Step 3. Map the quantitative semantics of the used words to the real domain of the

UD to obtain the real numerical semantics;
Step 4. Transform the designated time series into LTS. For each specified datum, its

semantics are specified based on the nearest real semantic;
Step 5. Establish the LLRs of words, then group them into the LLRGs;
Step 6. Forecast based on LLRGs, then compute the crisp forecasted values.
The evaluation measures of the forecasting models are the mean-square error (MSE),

the root-mean-square error (RMSE), and the mean-absolute-percentage error (MAPE) which
are calculated as follows:

MSE =
1
n ∑n

i=1(Fi − Ri)
2, (1)

RMSE =
√

MSE, (2)

MAPE =
1
n ∑n

i=1

∣∣∣∣ Fi − Ri
Fi

∣∣∣∣× 100%. (3)

where n denotes the number of forecasted data, and Fi and Ri are the forecasted and real
data at the time i, respectively.

2.3. Standard PSO

In 1995, Kennedy and Eberhart introduced an optimization method, so-called particle
swarm optimization (PSO) [22,23]. This is a swarm intelligence-based optimization method
that has been applied to solve a lot of real-world problems. It mimics the way the birds
fly to find food sources. The birds in the swarm will follow the leader who is the nearest
to the food source. Suppose that a swarm S = {x1, x2, . . . , xN} with N particles, with each
particle’s position being Xt

i at generation t computed as follows:

Xt+1
i = Xt

i + Vt+1
i , (4)

where Vt+1
i is xi’s velocity at generation t + 1, computed as follows:

Vt+1
i = ω×Vt

i +c1 × r1 ×
(

Pt
i − Xt

i ) + c2 × r2 ×
(

Pt
g − Xt

i

)
, (5)

where Pt
g and Pt

i are the best global and local solutions found so far, respectively; r1 and r2
are two random numbers uniformly distributed in [0, 1]; and c1, c2, and ω are self-cognitive
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coefficient, social cognitive coefficient, and inertia weight, respectively. The standard PSO
is described in brief as follows:

Step 1: Initialize a swarm S with two random vectors, the position vector X and
velocity vector V. Initialize the number of cycle constants N and the cycle variable t;

Step 2: Calculate each particle’s objective value f (Xt
i );

Step 3: Check each particle’s objective. If the current position Xt
i is better than the

personal best Pt
i then update Pt

i with Xt
i ;

Step 4: Check if there exists the best particle position in the current cycle whose
objective value is better than the objective value of the global best Pt

g, then update Pt
g with

the best particle position;
Step 5: Update each particle’s velocity Vt

i by Equation (4) and move to its new position
Xt

i by Equation (5);
Step 6: Terminate if variable t reaches the maximum number of cycles; otherwise, let

t = t + 1 and go to Step 2.

3. Improve the LTS-FM by the Co-Optimization of PSO

In this subsection, a hybrid LTS-FM integrated with particle swarm co-optimization
(COLTS) is presented. In the LTS-FMs, the word set in the domain of a linguistic variable is
generated automatically by hedge algebras associated with a linguistic variable. Therefore,
the cardinality of the generated word set is unlimited. However, in a specific period, a
given number of words are selected to describe the numeric time series. The number of
automatically generated words depends on the max specificity level k of the words specified
by human experts, and the maximum word length in the word domain is equal to k.

In the proposed optimization model of LTS presented in [21], the word set used to
describe the historical numeric time-series data (so-called used word set) should be selected
intuitively by human experts before the fuzziness parameter value optimization processes.
Hence, the used word set depends on the human expert’s intuition and may not be optimal.
To select the optimal used word set to best describe historical numeric time-series data
from the linguistic variable domain, an optimization process should be executed. The FPVs
should be optimized in parallel with the word set’s selection to select the best numerical
semantics of used words. Therefore, a co-optimization process for concurrently selecting
the optimal used word set and FPVs is applied by utilizing PSO. Specifically, the co-
optimization process includes inner and outer loops. The inner loop (inner PSO) optimizes
the used word set, while the outer loop (outer PSO) optimizes the FPVs. Real encoding
is used for both the outer and inner loops. Specifically, as in other applications of hedge
algebras [11–17], in our experiments, only two linguistic hedges (Little and Very) are used to
generate the word set of the linguistic variable domain, so the number of optimized FPVs
is only 2. They are the fuzziness measure of one of two generator words (e.g., fm(c−)) and
the fuzziness measure of one of two hedges (e.g., µ(Little)). From the constraints of fm(c−)
+ fm(c+) = 1 and µ(Little) + µ(Very) = 1, it can be inferred that fm(c+) = 1 − fm(c−) and
µ(Very) = 1− µ(Little). Each particle of the outer loop Yt

i = {fm(c−), µ(Little)}, i = 1, . . . ,
N, in the swarm represents those two FPVs. For the inner loop, each particle corresponds
to a solution represented as an array of real numbers pi =

(
w1, . . . , wdw , wj ∈ [0, 1]

)
. Each

word xl of the used word set Xi is selected from word set Wset of XL by the zero-based
index, as follows:

Xt
i =

{
xl ∈Wset

∣∣l = ⌊
wj × |Wset|

⌋
, 0 ≤ l < |Wset|

}
(6)

where b·c denotes the integer part of a real number.
The details of all steps of the proposed co-optimization algorithm are as follows

(Algorithms 1 and 2):
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Algorithm 1. UWO (Gwmax, Wset, dw, δ)//Used word set-optimization procedure

Input:
Parameters: Gwmax, Wset, dw, δ;
// Gwmax is the number of generations, Wset is the word set of XL, dw is the cardinality of the

used word set selected from Wset, δ is a set of FPVs.
Output: The optimal word set SGwmax−1

g and the associated best MSE value;
Begin

Randomly initialize a swarm W0 = {Y0
i ; V0

i | i = 1, . . . , M, |Y0
i |= dw};

//Yt
i is a subset of index values in interval [0, |Wset|], where |Wset| is the cardinality of Wset,

|Yt
i | is the number of elements of Yt

i .
Sort the elements of Y0

i ;
For each particle xi in swarm do begin

Implement the LTS forecasting procedure from Step 2 to Step 6 based on δ and Y0
i ;

Evaluate the value of the MSE of xi by Equation (1);
Assign the personal best position S0

i of xi to the current position;
End;
Assign the global best position S0

g to the best position in current swarm;
t = 1;

Repeat
For each particle xi in swarm do begin

Compute new velocity Vt
i of xi by Equation (5);

Compute new position Yt
i of xi by Equation (4);

Sort the elements of Yt
i ;

Implement the LTS forecasting procedure from Step 2 to Step 6 based on δ and Yt
i ;

Evaluate the value of the MSE of xi by Equation (1);
If Yt

i is better than Yt−1
i then

Update St
i of xi based on the value of MSE;

End;
End;
Update St

g based on the values of MSE;
t = t + 1;

Until t = Gwmax;
Return the best position SGwmax−1

g and its best MSE value;
End.

As shown in the UWO and PSCO_FPVO algorithms, the PSCO_FPVO algorithm
optimizes the FPVs and runs as an outer iteration of COLTS. Each particle of PSCO_FPVO
represents a given FPV set Xt

i = { f m(c−), µ(Little)}, which is the input of UWO. In turn,
UWO finds the optimally used word set from word set Wset of XL based on the given FPV
set as its input. Each particle of UWO represents a given used word set. The output of
UWO includes the local best used word set contained in SGwmax−1

g corresponding to the
input FPV set and the associated local best MSE value. The output of PSCO_FPVO includes
the best FPV set contained in PGmax−1

g and the global best used word set W*
set, which is the

best found solution so far.
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Algorithm 2. PSCO_FPVO//Fuzziness parameter value optimization

Input: The designated time-series dataset D;
Parameters: N, Gmax, Gwmax, the syntactical semantics of HAs, kmax, dw;

//Gmax and Gwmax are the number of generations of outer and inner PSO, respectively; kmax is
the maximum word length; dw is the used word set’s cardinality.
Output: The optimal FPVs PGmax−1

g and the best-used word set W*
set;

Begin
Generate the word set Wset of XL with the maximum word length kmax utilizing HA;
Randomly initialize a swarm S0 = {X0

i ; V0
i | i = 1, . . . , N}, where X0

i =
{

f m
(
c−

)
, µ(Little)

}
;

//Xt
i is a set of FPVs

//The best used word set W*
set and the best MSE value MSE*

(W*
set, MSE*) = (∅, +∞);

For each particle xi do begin
(W*

set, MSE*) = UWO(Gwmax, Wset, dw, δ = X0
i ); //call the inner PSO

F0
i = MSE*; //Fitness value associated with particle xi

Assign the personal best position P0
i of xi to the current position;

End;
Assign the global best position P0

g the best position in current swarm;
t = 1;
Repeat

For each particle xi do begin
Compute new velocity Vt

i of xi by Equation (5);
Compute new position Xt

i of xi by Equation (4);
(Wtmp_set, MSE) = UWO(Gwmax, Wset, dw, δ = Xt

i ); //call the inner PSO
Ft

i = MSE; //Fitness value associated with particle i
If Ft

i is better than Ft−1
i then begin

Update the personal best Pt
i of xi based on Ft

i ’s value;
If MSE is better than MSE* then begin

(W*
set, MSE*) = (Wtmp_set, MSE);

Update the global best position Pt
g;

End;
End;

End;
t = t + 1;

Until t = Gmax;
Return the best position PGmax−1

g and W*
set;

End.

4. Experimental Studies and Discussion

The experiments aim to show the necessity of optimizing the used linguistic word
set to describe a numeric time series in parallel with optimizing FPVs, and our proposed
forecasting models outperformed the models used for comparison. To show the efficiency
of our proposed models, their experimental results on the three forecasting problems of the
EUA, CAB, and GT were evaluated and compared with those proposed by Uslu et al. [6],
Chen et al. [8], and Phong et al. [21]. The objective function of the optimization problem
is the MSE. The values of MSE, RMSE, and MAPE were used to evaluate the forecasting
models used for comparison.

In the experiments, our proposed forecasting models were implemented using the
C# programming language running on Microsoft Windows 10 64 bit with the hardware
configuration of an Intel Core i5-8250U 1.6 GHz CPU integrated with 8 GB of RAM. Each
experiment was attempted five times. Then, the smallest obtained MSE values were chosen
as the forecasting accuracy.

To limit the running time, the parameter values of the optimization algorithm were set
as in the existing forecasting models; for the inner iteration, the number of cycles was 100
and the number of particles was 30, and for the outer iteration, the number of cycles was 30
and the number of particles was 20. By trial and error and our experience in applying PSO
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in our previous studies, for both inner and outer iterations, the Inertia weightωwas 0.4,
and both the self-cognitive factor c1 and the social cognitive factor c2 were 2.0.

4.1. Forecast the “Enrollments of the University of Alabama”

To show the efficiency of the proposed LTS-FM described above, it was applied
to forecast the EUA, as shown in Table 1. As in the counterparts, the UD of the EUA
was U = [13,000, 20,000] and the number of linguistics used to describe the numeric time
series was 16. Instead of partitioning U into the intervals in the existing methods, it was
transformed into linguistic words to form an LTS in our proposed forecasting methods.
The linguistic word set was generated by the associated hedge algebras, so its cardinality
was not limited. In fact, in a specific period, the number of words used to describe the
numeric time series was limited. Therefore, PSO was applied to select the best used word
set to improve the accuracy of the forecasting model.

Table 1. Comparative simulation of the enrollments forecast in the case of 16 used words and a
maximum word length of 5.

Year Enrollments CCO6 [5] HPSO [7] Uslu et al.
[6]

Chen et al.
[8]

Phong et al.
[21] COLTS3 COLTS4 COLTS5

1971 13,055
1972 13,563 13,714 13,555 13,650 13,469 13,515 13,515 13,562 13,598
1973 13,867 13,714 13,994 13,650 13,952 14,001 14,001 13,759 13,900
1974 14,696 14,880 14,711 14,836 14,596 14,800 14,800 14,722 14,817
1975 15,460 15,467 15,344 15,332 15,439 15,509 15,509 15,412 15,445
1976 15,311 15,172 15,411 15,447 15,241 15,509 15,509 15,464 15,487
1977 15,603 15,467 15,411 15,447 15,925 15,509 15,509 15,464 15,487
1978 15,861 15,861 15,411 15,447 15,880 15,752 15,752 15,798 15,877
1979 16,807 15,831 16,816 16,746 16,801 16,693 16,693 16,799 16,805
1980 16,919 17,106 17,140 17,075 17,009 16,949 16,949 16,975 16,995
1981 16,388 16,380 16,464 16,380 16,260 16,779 16,779 16,431 16,323
1982 15,433 15,464 15,457 15,504 15,435 15,553 15,553 15,412 15,445
1983 15,497 15,172 15,447 15,431 15,212 15,509 15,509 15,464 15,487
1984 15,145 15,172 15,447 15,077 15,282 15,132 15,132 15,286 15,221
1985 15,163 15,467 15,332 15,297 15,344 15,132 15,132 15,312 15,241
1986 15,984 15,467 16,027 15,848 15,714 15,752 15,752 15,824 15,898
1987 16,859 16,831 16,746 16,835 16,833 16,693 16,693 16,833 16,825
1988 18,150 18,055 18,211 18,145 18,016 17,888 17,888 18,193 18,205
1989 18,970 18,998 19,059 18,880 18,937 18,911 18,911 18,833 18,845
1990 19,328 19,300 19,059 19,418 19,345 19,439 19,439 19,246 19,389
1991 19,337 19,149 19,059 19,260 19,147 19,307 19,307 19,143 19,253
1992 18,876 19,149 19,059 19,031 19,152 19,043 19,043 18,936 18,981

MSE 35,324 31,722 31,684 23,710 22,403 22,403 9755 6332
RMSE 187.95 178.11 178.00 153.98 149.68 149.68 98.77 79.57
MAPE 1.13% 0.84% 0.90% 0.73% 0.72% 0.72% 0.49% 0.40%

To facilitate a significant comparison with the existing methods, seven, fourteen, and
sixteen linguistic words were, in turn, used to describe U, and to show the significance
of the word length; the maximum word length was, in turn, limited to 3, 4, and 5. The
best MSE and MAPE values in accordance with the best word set selected by the inner
iteration of the linguistic word optimization process and the best FPVs optimized by the
outer iteration are shown in Table 2. It can be seen that, with the same number of used
words, the higher the maximum word length was, the better the MSE value we obtained.
However, this was not absolutely true when slightly increasing the number of used words.
In the case of a maximum word length of 3, the LTS-FMs with 14 used words were better
than that with 16 used words when compared by both the MSE and MAPE values. The
cause of this situation will be analyzed more deeply in a future study. It may be attributed
to the limitation of the cardinality of the word domain of the linguistic variable. According
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to the theory of HAs [9,10], when limiting the maximum word length to 3 and 2 linguistic
hedges, the number of words in the word domain generated by the associated HAs is only
17. In the case of 16 used words, to choose 16 words out of 17, PSO does not have much
choice, and among them, at least one word has semantics that are suitable for the natural
distribution of time-series data, leading to worse forecasted results than those obtained in
the case of 14 used words. In the case of maximum word lengths of 4 and 5, the higher the
number of used words was, the better the MSE value we obtained. Therefore, the best MSE
was reached in the case of 16 used words and a maximum word length of 5.

Table 2. The MSE values of the first-order LTS-FMs with different numbers of words and different
maximum word lengths.

Maximum
Word Length

Evaluation
Method

Number of
Used Words

Number of
Used Words

Number of
Used Words

7 14 16

3
MSE 24,111 19,989 22,415

MAPE 0.80% 0.63% 0.72%

4
MSE 21,284 10,853 9758

MAPE 0.74% 0.50% 0.49%

5
MSE 19,795 9639 6332

MAPE 0.72% 0.44% 0.40%

To show the efficiency of our proposed LTS-FMs with co-optimization PSO in compar-
ison with other forecasting models, the best experimental results of the proposed LTS-FMs
with maximum word lengths of 3, 4, and 5, denoted by COLTS3, COLTS4, and COLTS5,
respectively, were compared with the state-of-the-art LTS-FM of Phong et al. [21] and
the existing FTS-FMs, such as the CCO6 model of Chen and Chung, applying a genetic
algorithm [5], HPSO [7], applying a PSO algorithm, Uslu et al. [6], considering the number
of iterations of a fuzzy logical relationship, and Chen et al. [8], applying PSO and a new
defuzzification technique. The experimental results and their comparative presentation are
shown in Table 1 and visualized in Figure 2. By analyzing the experimental results shown
in Table 1, it can be recognized that our proposed LTS-FM with a word length of 3 (COLTS3)
had the same MSE and MAPE values as the LTS-FM proposed by Phong et al. [21] and had
better MSE and MAPE values than those of FTS-FMs CCO6 [5], HPSO [7], Uslu et al. [6],
and Chen et al. [8]. Meanwhile, both COLTS4 and COLTS5 had better MSE and MAPE
values than those of the compared forecasting models. Recall that the word set used to
describe the numeric time-series data in the LTS-FM proposed in [21] was chosen by human
experts. Therefore, it depended on their cognitive recognition. To achieve a better result,
they could also perform some trial and error to obtain the best word set. The number
of cycles and the number of particles of the PSO in [21] were too large, at 1000 and 300,
respectively. Based on the comparison results described above, it can be stated that the
proposed LTS-FMs were better than the FTS-FMs and the COLTS5 was the best.
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Figure 2. Comparison chart of the forecasted values of the EUA of the compared forecasting models.

4.2. Forecast the “Killed in Car Road Accidents in Belgium”

The proposed LTS-FMs were also applied to the CAB’s problem to evaluate them
again. The minimum and maximum values of the historical data of CAB observed from
1974 to 2004 were 953 and 1644, respectively. Thus, the UD was defined as U = [900, 1700].
The number of used words was set to 17, which was equal to the number of intervals
in [6,8].

It is easy to see from the comparison results in Table 3 that the MSE values of COLTS3,
COLTS4, and COLTS5 were, in turn, 794, 444, and 421, which were much better than those of
the compared forecasting methods of Uslu et al. [6] and Chen et al. [8], which were 1731 and
1024, respectively. When comparing by the MAPE values, we can also see that all three of
our LTS-FMs, COLTS3, COLTS4, and COLTS5, had better MAPE values than those of Uslu
et al. and Chen et al. [6,8], respectively. Therefore, our proposed LTS-FMs outperformed
the FTS-FMs presented in [6,8] in forecasting the problem of CAB. In addition, among our
three LTS-FMs, COLTS5 was better than COLTS4 and, in turn, COLTS4 was better than
COLTS3. Therefore, the statement “with the same number of used words, the longer the
maximum word length is, the better MSE value we obtain” presented above is also true for
the CAB problem.
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Table 3. Comparative simulation of CAB forecast in the case of 16 used words and a maximum word
length of 5.

Year Actual Data Uslu et al. [6] Chen et al. [8] COLTS3 COLTS4 COLTS5

1974 1574
1975 1460 1506 1451 1498 1495 1464
1976 1536 1453 1490 1500 1502 1515
1977 1597 1598 1622 1555 1592 1610
1978 1644 1584 1575 1593 1638 1623
1979 1572 1584 1593 1579 1568 1568
1980 1616 1506 1585 1593 1582 1610
1981 1564 1584 1582 1557 1560 1583
1982 1464 1506 1513 1485 1464 1462
1983 1479 1453 1494 1474 1471 1474
1984 1369 1375 1393 1423 1367 1381
1985 1308 1383 1336 1352 1333 1315
1986 1456 1454 1419 1450 1440 1462
1987 1390 1453 1485 1411 1417 1428
1988 1432 1383 1384 1419 1399 1391
1989 1488 1509 1459 1474 1479 1483
1990 1574 1598 1585 1534 1572 1580
1991 1471 1506 1451 1498 1500 1468
1992 1380 1375 1369 1411 1367 1381
1993 1346 1383 1361 1377 1333 1323
1994 1415 1383 1437 1400 1392 1381
1995 1228 1231 1217 1213 1276 1250
1996 1122 1135 1152 1136 1139 1156
1997 1150 1180 1172 1134 1122 1131
1998 1224 1245 1211 1225 1225 1187
1999 1173 1135 1147 1160 1158 1187
2000 1253 1245 1245 1249 1244 1246
2001 1288 1284 1280 1227 1281 1253
2002 1145 1143 1148 1158 1130 1163
2003 1035 970 1028 1058 1032 1032
2004 953 970 953 964 987 982

MSE 1731 1024 794 444 421
RMSE 41.61 32.00 28.18 21.07 20.52
MAPE 2.29% 1.77% 1.68% 1.253% 1.250%

4.3. Forecast the “Spot Gold in Turkey”

The proposed LTS-FMs were applied once again to a more complex forecasting prob-
lem of SGT. The minimum and maximum of the historical data of SGT observed from
December 7th to November 10th were 30,503 and 62,450, respectively, so the UD was set
to [30,000, 63,000]. The number of used words was 16, which was equal to the number of
intervals in [6,8].

The experimental results of our proposed LTS-FMs shown in Table 4 were compared
with those of Uslu et al. and Chen et al. [6,8], respectively. It can be seen in Table 4 that,
when compared by both the MSE and MAPE values, all three of our proposed LTS-FMs,
COLTS3, COLTS4, and COLTS5, outperformed the FTS-FMs of Uslu et al. and Chen
et al. [6,8], respectively, in forecasting the problem of SGT. When compared by the MSE
or RMSE values, COLTS5 was better than COLTS4, and COLTS3 was worse than COLTS4.
However, when compared by the MAPE value, COLTS5 was slightly worse than COLTS4.
In general, once again, we can state that, with the same number of used words, the longer
the maximum word length, the better the MSE value obtained.
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Table 4. The forecasted values of the SGT of our proposed FTS-FMs compared with those of existing
forecasting models.

Date Actual Spot Gold Uslu et al. [6] Chen et al. [8] COLTS3 COLTS4 COLTS5

7 December 30,503
8 January 33,132 32,740.18 32,341.38 32,023.45 33,145.28 33,317.23

8 February 35,201 34,882.78 34,479.36 34,437.4 34,368.77 34,748.84
8 March 38,529 37,409.66 38,605.47 38,926.53 37,751.7 38,047.16
8 April 38,300 39,894.23 38,203.34 39,174.45 38,551.01 38,697.57
8 May 36,142 37,023.88 37,406.67 36,597.27 36,770.38 37,115.76
8 June 35,837 37,409.66 36,749.36 35,157.36 35,971.07 36,465.34
8 July 37,074 37,409.66 36,452.85 37,719.55 37,151.04 37,608.49

8 August 32,955 32,740.18 31,805.51 33,950.38 32,537.23 32,693.81
8 September 33,277 34,882.78 34,335.42 34,437.4 33,745.95 33,755.9

8 October 38,295 37,409.66 38,120.71 37,719.55 38,545.47 38,720.65
8 November 38,677 37,023.88 37,402.31 37,804.25 38,551.01 38,697.57
8 December 40,724 39,894.23 40,726.33 40,381.42 40,353.8 40,187.07

9 January 43,985 43,666.21 44,515.67 43,539.13 44,427.03 43,640.45
9 February 49,931 49,662.4 49,800.77 47,966.48 50,125.47 49,223.14

9 March 50,823 51,971.99 50,962.66 51,420.1 50,985.28 51,307.51
9 April 46,167 45,938.07 45,869.8 46,046.6 46,786.96 46,273.1
9 May 46,716 46,435.4 46,548.24 46,526.57 47,031.66 46,568.11
9 June 47,337 46,435.4 47,067.02 46,526.57 47,031.66 46,568.11
9 July 46,088 46,435.4 47,653.83 46,526.57 47,031.66 46,568.11

9 August 45,839 46,435.4 46,473.59 46,526.57 47,031.66 46,568.11
9 September 48,053 46,435.4 46,238.3 47,966.48 48,255.15 48,043.13

9 October 49,592 49,662.4 48,330.41 50,213.13 50,501.27 50,458.94
9 November 53,693 51,971.99 54,338.06 52,866.27 53,035.95 53,317.76
9 December 54,553 54,188.41 54,509.96 54,270.66 54,472.2 54,596.41
10 January 53,022 54,188.41 53,663.01 53,483.95 54,472.2 53,323.23

10 February 53,613 54,188.41 54,183.79 54,232.71 54,472.2 53,031.02
10 March 55,031 54,188.41 54,471.07 54,270.66 54,472.2 54,304.20
10 April 55,181 54,188.41 55,887.68 55,209.21 55,316.72 54,836.46
10 May 60,300 60,069.32 60,030.78 60,575.56 61,184.06 60,631.89
10 June 62,100 60,069.32 59,888.46 61,171.38 62,123.95 60,829.09
10 July 60,500 59,849.5 61,610.89 61,181.67 61,184.06 60,914.75

10 August 59,200 60,069.32 60,079.84 59,725.21 59,495.78 59,526.34
10 September 61,250 60,069.32 61,520.74 61,894.46 61,184.06 61,480.46

10 October 62,450 62,437.15 60,797.52 62,393.89 62,123.95 61,339.03
10 November 61,600 59,849.5 61,945.8 61,894.46 61,184.06 61,339.03

MSE 1,030,692 805,291 504,909 332,503 302,749
RMSE 1015.23 897.38 710.57 576.63 550.23
MAPE 1.80% 1.55% 1.38% 0.98% 1.00%

5. Conclusions

In this study, we proposed a hybrid LTS-FM with a co-optimization procedure using
PSO to determine applicable fuzziness parameter values and the best word set describing
the observed data. When compared with the former studies, our proposed model achieved
better forecasting accuracies. Based on this research, we can continue studying to improve
the forecasted accuracy of the forecasting model and apply it to different forecasting appli-
cation problems with various datasets. In addition, research on better data representation
methods using LTS to improve the accuracy and the performance of the forecasting model
is a good idea for future work.
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