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Abstract: In this paper, the problem of the existence and uniqueness of solutions for a nonlinear
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example is presented to illustrate the effectiveness of the obtained results.
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1. Introduction

In this paper, we discuss a class of nonlinear fractional-order coupled system with
time delay:

ABCDUm (t) =h(t, m(t — ¢(t)),q(t — o (t)), t € [ :=[0,T],T >0
ABCDHq(t) =k(t,m(t = ¢(1)),q(t — (1)), t € ] := [0,T], 1)

(n+9)(0) =~ (m+q)(T), [ Ot q)(s)is=E,0<a<b<T

where “‘BCD(”)‘+ is an Atangana—-Baleanu fractional derivative operator in Caputo’s sense
of order t € {1, u}, ,u € (0,1], h, k : [0,T] x R? — R are the first-order continuous
differentiable functions with respect to t, and ¢(t) and o (t) are the time-varying delays
satisfying 0 < ¢(t) <¢, 0<o(t) <o, whereg,c >0,(isa nonnegative constant.

In the past decades, fractional-order systems have become an active research topic.
Because fractional derivatives introduce convolutional integrals with power law mem-
ory kernels, fractional-order models are more accurate than integer-order models in
practice [1]. Furthermore, fractional derivatives have shown their superiority in describing
processes and materials involving memory and genetic property, for example in electro-
magnetism, mechatronics, and supercapacitors [2—6]. Until now, many scholars have
extensively studied the existence, uniqueness, and stability of solutions for fractional-order
systems [7-13]. For example, in [14], authors discussed the finite-time stability of fractional-
order delayed hopfield neural networks. In [15], the global Mittag-Leffler stability was
investigated for fractional-order complex-valued impulsive BAM neural networks.

It should be noted that the fractional operators in the above literature involve singu-
larities in their kernels. However, this singularity presents some difficulties for scientists
seeking to best simulate real-world phenomena. In order to overcome the difficulty, some
researchers have proposed new fractional operators that do not contain singular kernels. In
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the work done by Atangana and Baleanu, the most famous fractional derivative that does
not contain singularities appears, namely the ABC-fractional derivative [16]. The important
applications of the ABC-fractional derivative can be found in [17-22]. For example, in [22],
based on ABC-fractional derivative, several fractional masks for image denoising have
been proposed. Hasib Khan et al. [23] considered a fractional L-V model involving three
different species of ABC-fractional derivatives. Simultaneously, in [24], the existence result
and stability criterion of the fuzzy-volterra integro-differential equation in the sense of
ABC-fractional derivative was derived.

On the other hand, integral boundary conditions have extensive applications in regu-
larizing ill-posed parabolic backward problems in time partial differential equations [25].
In addition, integral boundary conditions also play an important role in the study of com-
putational fluid dynamics for blood flow problems [26]. Recently, the existence results of
fractional-order systems with integral boundary conditions have extensively been studied by
many researchers. In [27], some sufficient conditions for the existence theorems for solutions
of fractional-order differential equations with nonlocal and average type integral boundary
conditions were obtained. Ahmad et al. [28] discussed a coupled system of nonlinear frac-
tional differential equations in the Caputo fractional derivative sense with coupled boundary
conditions for the existence and uniqueness of solutions of the type:

CDYm(t) = f(t,m(t),q(t)), t€[0,T], T>0
CDYq(t) = h(t,m(t),q(t)), te[0,T],
(m+q)(0) =—(m+q)(T), fcd(m—q)(s)ds:a,0<c<d<T

where f,h : [0,T] x R — R are continuous functions. D , is the Caputo fractional
derivative with order u € {A, v}, A,y € (0,1], and a is nonnegative constant.

To the best of our knowledge, there exists very little work on the existence of the
solutions for nonlinear coupled delayed systems involving ABC-fractional derivatives with
integral boundary conditions, which is valuable in blood flow problems and regularizing
ill-posed parabolic backward problems. In response to the above-mentioned discussions,
we study the existence and uniqueness of solutions for a nonlinear ABC-fractional order
coupled delayed system with coupled boundary conditions. Different from the existing
literature, the salient contributions are summarized as the following two aspects. (1) Based
on fixed point theory, a new criterion for ensuring the existence and uniqueness of solutions
of the nonlinear ABC-fractional order coupled delayed system is obtained. Furthermore, an
example is presented to illustrate the effectiveness of the theoretical results. (2) Considering
the universality of delay in real systems, time-varying delays ¢(t) and o(t) are considered
in system (1). Different from the coupling function considered in [27,28], we study the
concept that the coupled systems with time-varying delays and the time-varying delays in
the coupling function are different, which is more general.

The paper includes a major update to the theory of fractional order coupled differential
equations, and is structured as follows. In Section 2, we introduce some auxiliary lemmas
and definitions, which are required for building our theorems. In Section 3, we obtain the
main results for the system (1) by utilizing the Contraction Mapping Principle and Schae-
fer’s fixed point theorem. Eventually, in Section 4, one example is given to demonstrate
our results.

2. Preliminaries

In this section, we introduce some auxiliary lemmas and definitions. Let C[c, d] be the
space that consists of all the first-order continuous derivative functions defined on [c, d].
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Definition 1 ([29]). The ABC-fractional derivative of a function m(t) € Cllc,d],0 <1 < 1is

B(1) s —i(t —s)
ABCpy: _ !
D'(u(s)) = 1 7[/0 u (s)El[ - ds, ()
where B(1) = (1 —1) + ﬁ satisfies the property B(0) = B(1) = 1, and E, is called the Mittag-
Leffler function defined by the series

=9 Zk

E(z) = _—,
(2) k;) T(k+1)
here Re(z) > 0 and I'(-) is the gamma function.

Definition 2 ([30]). The ABC-fractional integral of a function u(t) € L'[c,d], d > ¢, A € [0,1)
is

ABIA (u(s)) = B u(s) + BOOT(A) /OS u(s)(t —s)*ds, 3)
in which T'(-) is the gamma function.

Lemma 1. (Schaefer’s fixed point theorem (see [31], p. 29)) In the Banach space ¥, let ©® : ¥ — ¥
be a completely continuous operator, and the set A = {x € ¥|x = O(x),0 < ¢ < 1} is bounded.
Then, © has a fixed point in ¥.

Lemma 2. (Arzeld-Ascoli theorem [32]) A subset of C[a, b] is compact if and only if it is closed,
bounded and equicontinuous.

Lemma 3. ( Contraction Mapping Principle [31]) Let T be a contraction operator on a complete
metric space Q); then, there exists a unique point z € Q) satisfying T(z) = z.

Lemma 4. Let H, K, u, v € C'[0,T]. Then, the solution of the following fractional-order
coupled system,

ABCDUm(t) =H(t), t € ] := [0, T],
ABCDHg(+) =K(t), t € ] := [0, T], @)

(m+9)(0) = (m+g)(T), [+ q)(s)is = ¢,

is given by
m(t) = %E;H(t) + B(t)[l“(z) /Ot(t—s)‘_lH(s)ds—l- ;{—;(26)‘14@) + 73(1)}@
T — 1— U " T _
X /0 (T — S) 1H<S)ds + 7K(T) -+ m/o (T — S)y 1K(S)d5>

)
z 1 br1—u L s -
W= /(B() (SHB(t)F(t)/o(S*ﬂ) H(8)a9
—QK(S) — % /OS(S - ﬁ)ﬂ—lK(ﬁ)dﬁ) ds}, )
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and
q(t) = MK(t) + m /Ot(t — ) K(s)ds + ;{—; GB([)‘H(T) + W
x /OT(T )T H(s)ds + Z(_PZ;K(T) + W /OT(T - s)ﬂ-lK(s)ds>
_bEa + bia /abGBE)LH(S) * W/os(s -9
x H(8)d9 — ;(_Vg‘K(s) - B(y)"r(y) /Os(s - 19)#11<(19)m9> ds}. ©)

Proof. Applying the operators {!%I' and {!5I* on both sides of the fractional differential
equations in (4), respectively, we have

1—1 L t e
m(t) = ‘B(Z)’H<t>+‘3(2)r‘(2>/O<f—5> "H(s)ds + Cy, )
I e H ! — 1K (s)ds
10 = g KO+ gomgy Jo KOs +C ®)

where C1,C, € R.
Furthermore, in light of the boundary conditions of the system (4), we can con-
clude that

G+C = —;{;(_L;H(T)‘FB(JF([)/()T(T_S)l_lH(S)ds
1_7;4 K ! — ) 1K (s)ds
KD gt fy (79K

and

C—C = bia{g—/ab(lB(_[)lH(s)—kB(l)}(l)/Os(s—ﬁ)l1H(19)d19

~ 500 K~ BTG Jy €~ K)o}

Then, we can deduce that

(g T 1
& = 2 (5 Hm + e fy 9 HEM B <
i T _ g 1 [b/1—y 1—pu

+7B(y)r(y)/o (T —5)" 1K(s)ds> +b_a—b_a/a (B(l) H(s) ~ g K
_ L [ gyt S R RO s
g O HEM g [ o K(@)ao )as .

and

ol 11—y L T e 1—p
C = 2{ 2(3(1)H(T)+B(1)r(1)/0 (T —s)' " H(s)ds + 5 EK(T)

" T _ ¢ 1 v/ 11— 1—pu
+7B(V)T(V)/O (T —s)F 1K(s)ds> - b—ﬁb—a/a (B(L) H(s) — 5 KG)

R ARV I R AR
B(l)r(l)/o( 9)~'H(8)d8 B(y)F(y)/(J(S 9)H K(ﬂ)dﬂ)ds}.

The proof is completed. [J

+
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3. Main Results

In this section, we prove the existence and uniqueness of solutions for the
problem (1). We consider the space Q = C!(E,R) x C}(E,R) (E = [—¢, T] N [—0,T))
equipped with the norm

[(m,g) || = [[mlleo +[lqlle = sup [m(£)] + sup |q(t)],
te[—¢,T] te[—o,T]

for (m,q) € Q. Furthermore, according to Lemma 4, we construct the operator ® : ) — Q)
for the problem (1), where ®; : Q — C!(E, R) (i = 1,2) and

O, 4)(1) = (@1 (m,4) (1), @2(m, ) (1), ©)
@1 q)(t) = 5ot~ 1Ca+ gy m(t = (6) gt = (1)

L

+W /Ot<t — s)‘*lh(s,m(s —6(s)),q(s —c(s)))ds, (10)

and
Ouma)t) = gt~ §O+ kMt~ (1) g(t (1)
+W /ot(t —5)" k(s m(s — 6(s)),q(s — o(s)))ds. (1)
in which
G = ;(_l)lh(T,m(T — (1), (T — o(T)) + %(_Vglk(T,m(T (T a(T — o(T)))
+W /oT(T =)' h(s,m(s = ¢(s)),q(s — o(s)))ds
g (7= 9K s = ) ats — ols))is,

Cy = /ﬂb <1B(_1)Lh(s,m(s —¢(s),q(s —0o(s))) — ;(_yglk(sfm(s =¢(s)).q(s —o(s)))

(s — 0)TR(8, m(8 — 6(9)), q(8 — o(8)))d0

L
TBOTO) /0

" s .
“BOOTR) '/0 (s — P k(8, m(8 — ¢(0)),q(0 — U(ﬁ)))dﬂ) ds.

In this paper, the following conditions are assumed to be true:
(A7) For any (t, m, q) € ] x R?, there exist continuous positive functions «;, B; €
CY([0,T],R), i =1, 2, 3, such that

w1 (t) + az () [|mlleo + a3 (t) g0,
B1(t) + Ba(t)lmleo + B3 (E) 14l co-

=
~~
~~
3
~~
~
|
"
—~
~
~—
e
~—~
~
|
(o)
~—~
~
~—
~—
~—
VAN VAN
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(Ap) Forany (t, m, q) € J x R2, there exist positive constants v;, #;, i = 1, 2, such that

|h(t,ma(t —c(t)),q1(t — o(t))) — h(t, ma(t — 6(t)), g2(t — o (t)))]
< mllm —mafle + 72(l91 — 92[co/

|k(t,my(t —g(t), q1(t — o (t))) — k(t, ma(t — 6(t)), g2(t — o (t)))]
< mlimy —malleo +12/[1 — g2l

For computational convenience, we define

B 5(1 _ [) Tt L(bHrl _ ai+1)
VU = YRGY T EBOTH) T 26— )BT +2)’ (12)
o~ 50— T p(or T —at )
> = TuB(u T IBGOT(0 T 20— a)BGOT(+2)° (1%

Theorem 1. Assume that (A1) holds, vy and vy are defined by (12) and (13), and if the following
condition holds,

0<m, 12 <1, (14)

where

. 1—1: T 1—pu TH
= ol (5 + iy +2) 1l (i + e +22)

B 1—1 T 1—pu TH
= |“3|°°(B(l) MO ES)) +2”1> + Hﬁ3||°°<B(;4) T BGOTG 1) +2”2)'

then the problem (1) has at least one solution.

Proof. We complete the proof in three steps.

Step 1. We declare that the operator ® : () — () is completely continuous, which
means that © is continuous and maps any bounded subset of (2 to a relatively compact
subset of (). Due to the continuity of the functions / and k, the operator © : (3 — Q) is
continuous. Let Y C Q) be bounded. Then, for any (m,q) € Y, t € ], there exist positive
constants a1, a, by and b, such that

ay[|ml|eo + a2l o, (15)
by[[m]|eo + b2]|q|co- (16)

IN A
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Firstly, by using (10), it is not difficult to obtain that

1©1 (1, 9) |
L t -
S s (=9 s m(s = (6)) (s — o (9)] + s

It m(t = (), (e = 00|+ 5{ 5 (G 1T (T = (T, (T = o(T)

IN

2

TBOTO

*W /oT(T — ) k(s,m(s — g(s)),q(s — o (s)))|ds

1—p
+W|k(T,m(T —¢(T)),q(T - ‘T(T>))|) +
1—1 1-p

[ (ot mts = (o)l = o)+ (s ms (61,965 — ()

(6= 01 (o, m(8 = c(6)),9(0 — o(0))) 4o

[T 5 s (s — g(s)), (s — o)l

N
—_

2

TBOT)

j s _
BTG /0 (s — 8)" 1|k(z9,m(19—g(ﬂ)),q(ﬂ—a(l‘))))|dl9)ds}. (17)

Next, by virtue of the inequality (15), we deduce

g et = (6), (¢ = o)< o (ol + nall),

sty s s (s — (o)) (s — o(6)) s

Tl
= m(ﬂl\lm\lw+azllqllw). a8)

Similar to the procedures of (18), we can get

L

13 (g T (T = (T, = oM gt [ (=5

s m(s = (6))a(s — ots))las )+ [ (G lhts s — (61, a6 — ()

(5= )" (8, m(8 — (8)) (6 — o(0)))le ) ds |

S

2
TBOTO) /o

5(1—1) T (b — )
< (mllmlle + ”2””7”“’)( 4B() T 3BOTH) T 20—a)BT( +2))' (19)

Finally, by means of the inequality (16), we can also derive

1(1/1—pu u T _
{5 (B W™ = (D), (T = T b [T =5
b —
k(s (s = c(6)) (s — o )ls ) 5 [ (GBI mts = et (s = ots))
M ° -
g [ 0k, m(0 — c(0)),0(6 — o(9) a0 ) s |
51— p) T p(b ! — attl)
< b+ lilo) (P + s * 20 G ) 0
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Therefore, combining with (17)—(20), we can obtain

|@1<m,q>||ms<a1|m|m+az||q||oo>(;;)‘+ r )m)

+(b1[[mleo + b2l[glleo)v2 +

Similarly, we can also get the above inequality for ||@;(m, 7)(t)||c, that is

1©2(m,q)[|le < (u1||m||w+a2||q||oo)vl+2(b§_a)
- I
0l + balallo) (505 + gty +o2)

Then,

1©(m, )|l = [|©1(m, ) [co + ©2(1,9) ||

< (ﬂ1||m||oo+ﬂ2|q|00)(1B(_t)l + B(L)F€i+1) +2v1>

+oalmlo + bl (55 + g
1 © 2 ©
B(w) ~ B()I(p+1)
which shows that the operator @ is uniformly bounded.
Step 2. We declare that ©® maps the bounded set into the equicontinuous set of (). For
any (m,q) € Y,and t; > t, t1,t € [0, T], one can derive

4

b—a’

+ 2Uz> +

|©1(m,q)(t1) — ©1(m,q)(t2)]
< ‘%h(tlrm(tl —¢(t1)),q(t1 —o(t1))) — %h(tzlm(fz —¢(t2)),q(t2 — o(t2)))

TBOTW)

“EOT ./otz(fz =)' (s, m(s — ¢(5)), (s — o(s)))ds

/Ot2 [(t1 =)~ = (t2 =)' "Jh(s,m(s — ¢(s)), q(s — o(s)))ds

[ 1= 5 s m(s = 6(6)), s — o(s))ds

L

S}W

+m /tt (1 =)' th(s,m(s — ¢(s)),q(s — o(s)))ds
1—t) +t — 1t

2t
< @l +algle) (prar 2 ) 0 s

Similarly, we can obtain
|©2(m, ) (£1) — ©@a2(m, 4) (t2)]

2(h —t)! + 1] — 1)
< (bl||m||oo+52||ﬁl||oo)< B(y)l"(;Hrll) :

)-)O,CZS th — .

Therefore, by the Arzeld-Ascoli theorem, the operator ® : (2 — () is completely continuous.
Step 3. We claim that the set K = {(m,q) € Q|(m,q) = ¢O(m,q),0 < ¢ < 1} is
bounded. Let (m,q) € K, then (m,q) = {®(m,q),0 < § < 1. Forany t € |, we get

m(t) = §O1(m,q)(t), q(t) = {O2(m,q)(t).

In virtue of the assumption (A1), we deduce
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[mllo = ¢ll®1(m,9)|le0
1—1 T
(||1X1Hoo+||062Hoo||m||oo+HasHooHﬂiHoo)( + +v1>

IN

B(1)  B(W)T(+1)
HB1l + Ballolimlle + [Ballolilo)on + 555,

Sl1©2(m, ) oo
(laalleo + [lazloolfm]|eo + llaz oo llqlco) 01 + (]| B1lleo

Hlpallelimllo + Bslloliled) (Jrb + oo +02) + gy

19l

IN

As a result, we obtain that

Imls + gl
1—1t T 1—u TH
. ”"‘”'""(B(z)*er(+1>““1)+”51”°°(B<m+ s )

+— + {uaznm( +1) +2v1) + IIﬁzHoo( (;)‘ +2v;
|

s I+ {""‘3“""(18@1 + s )
TH

B(uw)I'(p+1)

Hence, by applying the condition (14), we can get

*”53”°°(B< £y +201) |l

1)

1— :
T ||0c1||<>o(m+ BOT(+1) (1+1) +Zvl> +||ﬁ1||oo<B(V +m+2vz) + e
7 — 5 ,

where

s = minfa —y[nazuo(;m‘ b T T2 Iﬁzl[w(;(;;
*agarger +22) )1 1= (50 + sraes + )
1

1)
+”'83H°O(B(_V;)l " B(M)FT(}; +1) +2U2>} }

Then, the set K is bounded. Hence, in view of Lemma 1, the operator ® has at least
one fixed point; that is, the system (1) has at least one solution. O

Theorem 2. Assume that the hypothesis (A;) holds. Then, the system (1) has a unique solution if
the following condition holds:

1-1 r ; — 4, TH )
(5 * s +2) 1 (g * g +22) <0 @

where v = max{y1, 72}, = max{n,n2}, v1 and v, are defined by (12) and (13).

Proof. Consider the operator ® : (2 — () defined by (1) and let

11 T S
M (55 + g +201) + Me (55 + mter +202) + 55

1135 + moteen +201) + 1 (505 + setteD +202)

p:

4
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where My = sup,( 1 [1(t,0,0)|, and My = sup,( 1y [k(t,0,0)|. Then, we declare that
©B, C By, where B, = {(m,q) € Q: [|(m,q)| < p}. Forany (m,q) € B,, we get

1©1(m,9) =
< g e m(e = (0),q(0 = 6(0)) = h(1,0,0) + )
+m /Of(t —5) " H|h(s,m(s —g(s)),q(s — o(s))) — h(s,0,0)| + M;]ds

w3 { s — 3 (g [T mle = (), = (0) = h(T,0,0)| + My

o) @ [T s m(s — (), a5 — 0(6)) ~ hi(5,0,0)] + Ml

+1 B [1k(T, m(t —¢(t)),q(t = ¢(t))) = k(T,0,0)[ + M]

g [ (T = ks mls = 6(6), (s = o(6)) ~ K(50,0) + Ml

- (g(‘[)‘uh@,m(s — 6(5)), (s — 7(5))) — h(5,0,0)| + My ds

| (6= 0y (6, m(8 — ¢(8)), (8 — (8)) ~ h(1,0,0)| + MJdo

2

TBOI
11—

—[lk(s,m(s —¢(s s—0(s))) —«l(s T
()[u (s = ¢(5)). (s = 0())) = k(s,0,0) | + Ma] ~ geyrrs

(s = 001 (6, (8 — (), (8 — 6(0))) — K(1,0,0)| + Mald ) s |

< (v(5a + mamesn + ) + ) s + lalls)

1—1 T
+Ml(Bu) T BTG

Similarly, for any (m,q) € B,, we can also deduce

+1) +Ul) +M2U2+2(bfa)'

lex0mlle < |15k + grrrars + ) + 7| (el + gl

+M (1_”+ TV +v)+MU +
\B(u) " B(u)I(u+1) 2 i

Hence, for (m,q) € B,, we can obtain

2(b—a)’

1©(m,9) | = (101 (1, 4)o + |O2(1,9) o
1—1: T — U TH
= [”(B()* BT (i + >“”1)+’7( ) <u>r<u+1>“"2ﬂ

X (|[mloo + [|q]lco) ( l+1 +2v1>
1—p T* 4
+M ( + + 2v ) + —— <e¢,
\B(w) " B(uT(u+1)  "?) "b-a

which proves that @ maps B, into itself.
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Now, we claim that the operator ® is a contraction mapping. Let (m1,41), (m2,q2) € Q,
€ [0, T]. We can derive

[©1(m1,q1) — O1(m2,42)]|

< gl m(t = (), qa(t = o(6) = h(t, ma(t = 6(6), g2(t ~ (1))
—I—B(l)lr(l)'/O'f(t—s)l—l|h(s,m1(s—g(s)),ql(s_a(s)))
—h(s,ma(s —¢(s)),q2(s —o(s)))|ds + Cs + C¢ + C7 + Cs, 22)
in which
e - iBol)"“T'”“(T—9<T>>fq1<T—a<T>>>—h(T,mzw—g(T»,qz(T—o(T)m
+W /0T<T—S>‘*1\h<s,m1<s—g<s>>,q1<s—a<s>>>

—h(s,ma(s = ¢(s)),42(s — o (s)))]ds,

Co = 2(b1_11) ZoNn /ah 5= (e, m (6 = (9)), (0 — (6)

1 1—1
2(b—a) B(1)

(8, my(8 — ¢(9)), 42(8 — o(8)))|ddds +

X /ﬂbh(sffm(s —6(s),q1(s = (s))) = h(s,mi(s = 6(s)), q1(s — o (s)))|ds,

1

c, = ﬁ(f)'k(rr’ my(T —¢(T)),q1(T — o(T))) = k(T, mz(T — ¢(T)), 42(T — o(T)))|

il o (T s = o) m(s - o)
~Hels =) 9l
Cs = o [ s 0 k66— (010~ o(6))

1 1-p
2(b—a) B(p)

/ [k(s,m1(s = ¢(s)), q1(s — 0(s))) = k(s, ma(s = ¢(s)), g2(s — a(s))) |ds.

(8, mzw gw)) 42(6 — 0(9)))|dods +

Firstly, by applying (Az), we can get

1—1

B(1)
1—1
W('ﬂ“ml —maleo +72/191 — q2[|0), (23)

[t ma(t = ¢(8)), q1(t = o(£))) = h(t, ma(t — (1)), g2(t — o(£)))]

IN

B(l)lr(l)/ot(t—s)i1|h(s,ﬁ11(5_Q(S)),ql(s—(j(s)))
—h(s,ma(s — ¢(s)),q2(s — o (s)))lds
M(Vl|lml_m2||m+7z||Q1—q2|oo). (24)

IN



12 of 15

Mathematics 2023, 11, 1634

Next, similar to (23), it follows from the assumption (A;) that

! [W(T, m (T = ¢(T)),q1(T — o(T))) = k(T ma(T — ¢(T)), 42T — o(T)))|

4B(1)
1 T
+W /o (T =) (s, mi(s — c(s)),q1(s — o(s)))
—h(s,my(s — ¢(5)),q2(s — (s))) |ds
(25)

5(1—1) T
= ( 4B(1) 4B(1)F([)>(71”m1 — 2l + 712[[91 — 92[e0),

and

1 1 b s 17
b—a) B([)r(l)/a /0(5—19) (8, m1 (9 = (9)), q1.(9 — o(8)))
—h(ﬁ,mz(ﬁ—g(ﬁ))/‘b(ﬁ—0(19)))|d19ds+2(b1a)13(_[)[

X /f\h(s,ml(s —¢(5)),q1(s —(s))) — h(s,mi(s —g(s)),q1(s — o(s)))|ds
l(bl+1 _ az+l)
< 2(b —a)B()T (1 +2) (71l —m2 |l + 72191 — 92/ c0)- (26)

Furthermore, we can also obtain

K [k(T, my (T = 6(T)), q1(T = o(T))) = k(T, mo(T = (T)), 42(T — o(T)))|

4B(u)
T
*W /0 (T =) |k(s,m1(s — 6(5)), g1 (s — 0(5)))
—K(s,m2(5 — (5)), 3205 — 7(s)))Ids
5(1 — ;4) TH
( 4B(n) | 4B(OT() ) (mllm = male + 120191 — 4210, @7)

and

1 4 b -
A A LR CIICREOl
(8, m2(® (), 42(0 — o(9))) d0ds + 7k

[ s s = e(6)) s~ 0(6))) — K, ma(s — €(5))aa(s — ()

pH+1 _ gutl
K ) Sl = malls + plln = gal). 8)

S - )BT (i +2

Finally, combining with (22)-(28), we can conclude

||®1 (ml/ ql) - @1(7’”2, 42) ||oo

1—: T
- <fy< B() T BOT(+1) +v1> +’7”2> ([lm1 = m2lleo + [lq1 — g21le0),

where v = max{y1, 72}, 7 = max{#1, 2}, v; and v; are defined by (12) and (13). Similarly,

we can also get

@2(m1,q1) — O2(m2,q2)||

1—pu TH
(1(58 + smmprs ) + 7o) (lm = mls -+ gy = gl
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Hence, from the above inequalities, it follows that
1©(m1,q1) — O(m2, q2) ||
= [|@1(m1,q1) — ©1(m2, q2) |0 + [|@2(m1, 1) — O2(m2,42) [0
{ (1“ r 2v)+ (1"‘+ s +20>}
"Bw " BOrern ) TG BTt
x[[(my —ma), (q1 — q2)||-

In view of (21) and Lemma 3, we can find that ® has a unique fixed point, which is a
unique solution of the coupled system (1). O

4. Numerical Example

Example 1. Consider the following nonlinear fractional-order coupled system:
APDSm(t) =h(t,m(t — ()4t — o (1), t €] = [0,3],
ABDAg(e) =k(tm(t = (1)), q(t = o(1), t € ] := [0,3), 9
.3
(m+0)(0) == (n+0)3), [/ (n+9)(5)ds =2,
where ¢(t) = sint, o (t) = cost, 1 = 3,;4 = }1,{1 = 2,b = 2,5 =2,T =3.

Using the given data, we find that v1 = 0.97813256, vy = 0.99470521, where vy and v, are
respectively given by (12) and (13). In order to verify Theorem 1, let

_ 1 -t 4
h(t,m,q) = m(e + 10 —i—smm)
et tan"lm
k(t,m,q) = N cost+ 5 +sing |.

87t 672t

— 1 — —
o 20 = G o0 = geme ol B = g
Ba(t) = 2\/%’ Bs(t) = \/%. Clearly, h and k are the first-order continuous differen-
tiable functions with respect to t and satisfy the assumption (A1). Finally, by Matlab software, we

can obtain

™ (1_‘+ r +2v)+||/8 I (1_”+ L +zu)
2e\BW) " Bre+1 e\ B(u) " BuIp+1) 7
~ 0.76620146 < 1,

as]| (1_‘+ L +Zv)+||ﬁ I (1_”+ Tﬂ +20)
Me\BG) "B@Ir+1) We\B(u) " Bw)I(p+1) 7
~ 0.84265419 < 1.

Obviously, wq(t) =

Therefore, all the conditions of Theorem 1 are satisfied; that is, there exists at least one solution
for the system (29).
Next, in order to demonstrate the application of Theorem 2, we take

h(t,m,q) = — ( | +tan1> K(bm,g) = ——
M) = 0 T 02\ T+ |m| 1) U= ot
1

Observe that h and k are continuous and satisfy the condition (Ay) with y1 = v, = 15 = v and
nm = %, Y2 = 11—0, Hencen = 11—0. Through calculation, we can derive that

(2 tan~! m + 3 sin q) .

it r v _H L Uy | =
7(B(z) BTG T2 1) ( 5o BTG T2 2) 0.83238566 < 1.
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Thus, all the conditions of Theorem 2 are satisfied, and consequently there exists a unique
solution for the system (29).

5. Conclusions

In this work, we investigated the existence and uniqueness of solutions for a nonlin-
ear ABC-fractional order coupled delayed system with a new kind of coupled delayed
boundary condition. Based on fixed point theorems, a novel set of sufficient conditions to
guarantee the existence and uniqueness of solutions of the nonlinear ABC-fractional order
coupled delayed system are derived. Eventually, an example was presented to illustrate
the effectiveness of the obtained results. In real life, because the systems may be affected
by external random disturbances, many interesting results on the stability of stochastic
coupled system with time-varying delays have been published in recent years [33,34]. When
studying the existence of solutions for fractional-order coupled systems with time-varying
delays, it is necessary to add random disturbances terms, which will be a part of our future
work. In addition, future work will focus on the case of order of 1 < A < 2.
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