Universities as an External Knowledge Source for Industry: Investigating the Antecedents’ Impact on the Importance Perception of Their Collaboration in Open Innovation Using an Ordinal Regression-Neural Network Approach
Abstract
:1. Introduction
2. Research Background and Conceptual Framework
3. Study Setting and Data Collection
4. Research Approach
4.1. Research Framework Constructs and Their Measurement
4.2. Setting up the Mathematical Modeling
4.2.1. The Ordinal Regression Modeling
4.2.2. The ANN Modeling
4.2.3. Performance Measures
5. Data Analysis and Results
5.1. The Ordinal Regression Analysis
5.2. The ANN Analysis
6. Discussion and Conclusions
6.1. Concluding Remarks
6.2. Limitations and Direction for Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bennet, D.; Bennet, A. Organizational Survival in the New World: The Intelligent Complex Adaptive System; Butterworth-Heineniann: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Duong, P.A.N.; Voordeckers, W.; Huybrechts, J.; Lambrechts, F. On external knowledge sources and innovation performance: Family versus non-family firms. Technovation 2022, 114, 102448. [Google Scholar] [CrossRef]
- Bigliardi, B.; Ferraro, G.; Filippelli, S.; Galati, F. The influence of open innovation on firm performance. Int. J. Eng. Bus. Manag. 2020, 12, 1–14. [Google Scholar] [CrossRef]
- Fernandes, S.; Cesário, M.; Barata, J.M. Ways to open innovation: Main agents and sources in the Portuguese case. Technol. Soc. 2017, 51, 153–162. [Google Scholar] [CrossRef]
- Lichtenthaler, U. Open innovation: Past research, current debates, and future directions. Acad. Manag. Perspect. 2011, 25, 75–93. [Google Scholar]
- Villasalero, M. Multi-Business Firms, Knowledge Flows and Intra-Network Open Innovations. J. Knowl. Econ. 2018, 9, 162–179. [Google Scholar] [CrossRef] [Green Version]
- Chesbrough, H. Open Innovation: The New Imperative for Creating and Profiting from Technology; Harvard Business School Press: Boston, MA, USA, 2003. [Google Scholar]
- Dahlander, L.; Gann, D.M.; Wallin, M.W. How open is innovation? A retrospective and ideas forward. Res. Policy 2021, 50, 104218. [Google Scholar] [CrossRef]
- Bellucci, A.; Pennacchio, L. University knowledge and firm innovation: Evidence from European countries. J. Technol. Transf. 2016, 41, 730–752. [Google Scholar] [CrossRef] [Green Version]
- D’Este, P.; Amara, N.; Olmos, J. Fostering novelty while reducing failure: Balancing the twin challenges of product innovation. Technol. Forecast. Soc. Change 2016, 113, 280–292. [Google Scholar] [CrossRef]
- Du, J.; Leten, B.; Vanhaverbeke, W. Managing open innovation projects with science based and market-based partners. Res. Policy 2014, 43, 828–840. [Google Scholar] [CrossRef]
- Huang, S.; Chen, J.; Liang, L. How open innovation performance responds to partner heterogeneity in China. Manag. Decis. 2018, 56, 26–46. [Google Scholar] [CrossRef]
- West, J.; Bogers, M. Leveraging External Sources of Innovation: A Review of Research on Open Innovation. J. Prod. Innov. Manag. 2014, 31, 814–831. [Google Scholar] [CrossRef]
- Villasalero, M. University knowledge, open innovation and technological capital in Spanish science parks: Research revealing or technology selling? J. Intellect. Cap. 2014, 15, 479–496. [Google Scholar]
- West, J.; Bogers, M. Open innovation: Current status and research opportunities, Innovation: Management. Policy Pract. 2016, 19, 43–50. [Google Scholar]
- Parmentola, A.; Ferretti, M.; Panetti, E. Exploring the university-industry cooperation in a low innovative region. What differences between low tech and high tech industries? Int. Entrep. Manag. J. 2021, 17, 1469–1496. [Google Scholar] [CrossRef]
- Baban, C.F.; Baban, M.; Rangone, A. Outcomes of Industry—University Collaboration in Open Innovation: An Exploratory Investigation of Their Antecedents’ Impact Based on a PLS-SEM and Soft Computing Approach. Mathematics 2022, 10, 931. [Google Scholar] [CrossRef]
- Baban, C.F.; Baban, M.; Rangone, A. Investigating determinants of industry-university collaboration in an open innovation context: Comparative evidence from an exploratory study. Sci. Technol. Soc. 2021, 26, 482–502. [Google Scholar] [CrossRef]
- Abiodun, O.I.; Jantan, A.; Omolara, A.E.; Dada, K.V.; Mohamed, N.A.; Arshad, H. State-of-the art in artificial neural network applications: A survey. Heliyon 2018, 4, e00938. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Kwon, H.-B.; Pati, N. Exploring the relative impact of R&D and operational efficiency on performance: A sequential regression-neural network approach. Expert Syst. Appl. 2019, 137, 420–431. [Google Scholar]
- Cao, H. Entrepreneurship education-infiltrated computer-aided instruction system for college Music Majors using convolutional neural network. Front. Psychol. 2022, 13, 900195. [Google Scholar] [CrossRef]
- Cheng, L.; Yin, F.; Theodoridis, S.; Chatzis, S.; Chang, T. Rethinking Bayesian Learning for Data Analysis: The art of prior and inference in sparsity-aware modeling. IEEE Signal Process. Mag. 2022, 39, 18–52. [Google Scholar] [CrossRef]
- Feng, Q.; Feng, Z.; Su, X.; Bai, Y.D.; Ding, B.Y. Design and Simulation of Human Resource Allocation Model Based on Double-Cycle Neural Network. Comput. Intell. Neurosci. 2021, 2021, 7149631. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Han, Z.; Li, M.; Wang, X.; Zhao, W. Sentiment evolution with interaction levels in blended learning environments: Using learning analytics and epistemic network analysis. Australas. J. Educ. Technol. 2021, 37, 81–95. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Jia, T. Humanization of nature: Testing the influences of urban park characteristics and psychological factors on collegers’ perceived restoration. Urban For. Urban Green. 2023, 79, 127806. [Google Scholar] [CrossRef]
- Sutrisna, M.; Tjia, D.; Wu, P. Developing a predictive model of construction industry-university research collaboration. Constr. Innov. 2021, 21, 761–781. [Google Scholar] [CrossRef]
- Hajek, P.; Henriques, R. Modelling innovation performance of European regions using multi-output neural networks. PLoS ONE 2017, 12, e018575. [Google Scholar] [CrossRef] [Green Version]
- Prokop, V.; Stejskal, J.; Mikusova Merickova, B.; Odei, S.A. Revealing the importance of international and domestic cooperation by using artificial neural networks: Case of European radical and incremental innovators. Eur. J. Innov. Manag. 2023, 26, 531–563. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, H.-B. Synergistic effect of R&D and exports on performance in US manufacturing industries: High-tech vs. low-tech. J. Model. Manag. 2021. ahead-of-print. [Google Scholar]
- Cohen, W.M.; Levinthal, D.A. Absorptive Capacity: A New Perspective on Learning and Innovation. Source Adm. Sci. Q. 1990, 35, 128–152. [Google Scholar]
- Etzkowitz, H.; Leydesdorff, L. The dynamics of innovation from national systems and mode 2 to a triple helix of university-industry-government relations. Res. Policy 2000, 29, 109–123. [Google Scholar] [CrossRef]
- Leydesdorff, L. The Triple Helix, Quadruple Helix, …, and an N-Tuple of Helices: Explanatory Models for Analyzing the Knowledge-Based Economy? J. Knowl. Econ. 2012, 3, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Rybnicek, R.; Königsgruber, R. What makes industry-university collaboration succeeds? A systematic review of the literature. J. Bus. Econ. 2019, 89, 221–250. [Google Scholar] [CrossRef] [Green Version]
- Kafouros, M.I.; Forsans, N. The role of open innovation in emerging economies: Do companies profit from the scientific knowledge of others? J. World Bus. 2012, 47, 362–370. [Google Scholar]
- Walsh, J.P.; Lee, Y.N.; Nagaoka, S. Openness and innovation in the US: Collaboration form, idea generation and implementation. Res. Policy 2016, 45, 1660–1671. [Google Scholar] [CrossRef]
- Rajalo, S.; Vadi, M. University-industry innovation collaboration: Reconceptualization. Technovation 2017, 62–63, 42–54. [Google Scholar] [CrossRef]
- Ankrah, S.; AL-Tabbaa, O. Universities-industry collaboration: A systematic review. Scand. J. Manag. 2015, 31, 387–408. [Google Scholar]
- Figueiredo, N.; Fernandes, C. Cooperation University-Industry: A Systematic Literature Review. Int. J. Innov. Technol. Manag. 2020, 17, 2130001. [Google Scholar] [CrossRef]
- Mascarenhas, C.; Ferreira, J.J.; Marques, C. University-industry cooperation: A systematic literature review and research agenda. Sci. Public Policy 2018, 45, 708–718. [Google Scholar] [CrossRef] [Green Version]
- Carayannis, E.G.; Campbell, D.F.J. Open innovation diplomacy and a 21st century fractal research, education and innovation (FREIE) ecosystem: Building on the Quadruple and Quintuple Helix innovation concepts and the “Mode 3” knowledge production system. J. Knowl. Econ. 2011, 2, 327–372. [Google Scholar] [CrossRef]
- Alexander, A.T.; Miller, K.; Fielding, S. Open for business: Universities, entrepreneurial academics and open innovation. Int. J. Innov. Manag. 2015, 19, 1540013. [Google Scholar]
- Chesbrough, H. From Open Science to Open Innovation; Science Business Publishing, Institute for Innovation and Knowledge Management UC: Berkeley, CA, USA, 2015; pp. 1–16. [Google Scholar]
- Johnston, A. Open innovation in science: Assessing the formation and function of SME-university collaborations through the proximity matrix. Ind. Innov. 2022, 29, 310–332. [Google Scholar] [CrossRef]
- Vicente-Saez, R.; Gustafsson, R.; Van den Brande, L. The dawn of an open exploration era: Emergent principles and practices of open science and innovation of university research teams in a digital world. Technol. Forecast. Soc. Chang. 2020, 156, 120037. [Google Scholar] [CrossRef]
- Un, C.A.; Rodríguez, A. Local and global knowledge complementarity: R&D collaborations and innovation of foreign and domestic firms. J. Int. Manag. 2018, 24, 137–152. [Google Scholar]
- Leydesdorff, L.; Ivanova, I. “Open innovation” and “triple helix” models of innovation: Can synergy in innovation systems be measured? J. Open Innov. 2016, 2, 11. [Google Scholar]
- Chesbrough, H.; Bogers, M. Explicating open innovation: Clarifying an emerging paradigm for understanding innovation. In New Frontiers in Open Innovation; Chesbrough, H., Vanhaverbeke, W., West, J., Eds.; Oxford University Press: Oxford, UK, 2014; pp. 3–28. [Google Scholar]
- Huizingh, E.K.R.E. Open innovation: State of art and future perspectives. Technovation 2011, 31, 2–9. [Google Scholar] [CrossRef]
- Greco, M.; Grimaldi, M.; Cricelli, L. An analysis of the open innovation effect on firm performance. Eur. Manag. J. 2016, 34, 501–516. [Google Scholar] [CrossRef]
- Lam, J.C.K.; Hills, P.; Ng, C.K.W. Open innovation: A study of industry-university collaboration in environmental R&D in Hong Kong. Int. J. Technol. Knowl. Soc. 2013, 8, 83–102. [Google Scholar]
- Suhada, T.A.; Ford, J.A.; Verreynne, M.L.; Indulska, M. Motivating individuals to contribute to firms’ non-pecuniary open innovation goals. Technovation 2021, 102, 102233. [Google Scholar] [CrossRef]
- Johnston, A. Open innovation and the formation of university-industry links in the food manufacturing and technology sector: Evidence from the UK. Eur. J. Innov. Manag. 2021, 24, 89–107. [Google Scholar] [CrossRef] [Green Version]
- Dahlander, L.; Gann, D.M. How open is innovation? Res. Policy 2010, 39, 699–709. [Google Scholar]
- Galan-Muros, V.; Davey, T. The UBC ecosystem: Putting together a comprehensive framework for university-business cooperation. J. Technol. Transf. 2019, 44, 1311–1346. [Google Scholar] [CrossRef]
- Razak, A.A.; Murray, P.A.; Robert, D. Open innovation in universities: The relationship between innovation and commercialisation. Knowl. Process Manag. 2014, 21, 260–269. [Google Scholar]
- Wikhamn, B.R. Designing Lightweight Open Innovation: A Conceptualisation of How Large Firms Engage with Small Entrepreneurial Firms. Int. J. Innov. Manag. 2021, 25, 2150103. [Google Scholar] [CrossRef]
- Lopes, A.P.V.B.V.; Ferrarese, A.; De Carvalho, M.M. Open innovation in the research and development process: An analysis of the cooperation between automotive companies and universities. Gestão Produção 2017, 24, 653–666. [Google Scholar]
- Baban, C.F.; Baban, M. Main dimensions of open innovation between industry and university: An exploratory approach in a Romanian environment. In Proceedings of the ICERI 2018 Conference, Seville, Spain, 12–14 November 2018; pp. 9726–9734. [Google Scholar]
- Saguy, I.M.; Sirotinskaya, V. Challenges in exploiting open innovation’s full potential in the food industry with a focus on small and medium enterprises (SMEs). Trends Food Sci. Technol. 2014, 38, 136–148. [Google Scholar] [CrossRef]
- Galati, F.; Bigliardi, B.; Petroni, A. Open innovation in food firms: Implementation strategies, drivers and enabling factors. Int. J. Innov. Manag. 2016, 20, 1650042. [Google Scholar] [CrossRef]
- Quiñones, R.; Caladcad, J.A.; Quiñones, H.; Caballes, S.A.; Abellana, D.P.; Jabilles, E.M.; Himang, C.; Ocampo, L. Open Innovation with Fuzzy Cognitive Mapping for Modeling the Barriers of University Technology Transfer: A Philippine Scenario. J. Open Innov. Technol. Mark. Complex. 2019, 5, 94. [Google Scholar] [CrossRef] [Green Version]
- Bigliardi, B.; Galati, F. Which factors hinder the adoption of open innovation in SMEs? Technol. Anal. Strateg. Manag. 2016, 28, 869–885. [Google Scholar] [CrossRef]
- Costa, J.; Neves, A.R.; Reis, J. Two Sides of the Same Coin. University-Industry Collaboration and Open Innovation as Enhancers of Firm Performance. Sustainability 2021, 13, 3866. [Google Scholar] [CrossRef]
- Laursen, K.; Salter, A. Open for innovation: The role of openness in explaining innovation performance among UK manufacturing firms. Strateg. Manag. J. 2006, 27, 131–150. [Google Scholar] [CrossRef]
- DiGiovanna, S. Industrial Districts and Regional Economic Development: A Regulation Approach. Reg. Stud. 1996, 30, 373–386. [Google Scholar] [CrossRef]
- Cainelli, G.; Mazzanti, M.; Montresor, S. Environmental innovations, local networks and internationalization. Ind. Innov. 2012, 19, 697–734. [Google Scholar]
- Băban, C.F.; Băban, M. An Orchestration Perspective on Open Innovation between Industry-University: Investigating Its Impact on Collaboration Performance. Mathematics 2022, 10, 2672. [Google Scholar] [CrossRef]
- Laursen, K.; Salter, A. The paradox of openness: Appropriability, external search and collaboration. Res. Policy 2014, 43, 867–878. [Google Scholar] [CrossRef] [Green Version]
- Hair, J.; Anderson, R.; Tatham, R.; Black, W. Multivariate Data Analysis, 8th ed.; Cengage Learning: Andover, UK, 2019. [Google Scholar]
- Leiponen, A.; Helfat, C.E. Innovation objectives, knowledge sources, and the benefits of breadth. J. Strat. Mgmt. J. 2010, 31, 224–236. [Google Scholar] [CrossRef] [Green Version]
- Cristo-Andrade, S.; Franco, M.J. Cooperation as a vehicle for innovation: A study of the effects of firm size and industry type. Eur. J. Innov. Manag. 2020, 23, 329–347. [Google Scholar] [CrossRef]
- Hewitt-Dundas, N.; Gkypali, A.; Roper, S. Does learning from prior collaboration help firms to overcome the ‘two-worlds’ paradox in university-business collaboration? Res. Policy 2019, 48, 1310–1322. [Google Scholar] [CrossRef]
- ***-Eurostat Indicators on High-Tech Industry and Knowledge-Intensive Services. Annex 3-High-Tech Aggregation by NACE Rev.2. Available online: http://ec.europa.eu/eurostat/cache/metadata/Annexes/htec_esms_an3.pdf (accessed on 2 September 2022).
- Agresti, A. Categorical Data Analysis, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Larasati, A.; DeYong, C.; Slevitch, L. Comparing Neural Network and Ordinal Logistic Regression to Analyze Attitude Responses. Serv. Sci. 2011, 3, 304–312. [Google Scholar] [CrossRef] [Green Version]
- Chan, F.T.S.; Chong, A.Y.L. A SEM-neural network approach for understanding determinants of interorganizational system standard adoption and performances. Decis. Support Syst. 2012, 54, 621–630. [Google Scholar] [CrossRef]
- Nisbet, R.; Miner, G.; Elder, J. Handbook of Statistical Analysis and Data Mining Applications; Elsevier: Burlington, MA, USA, 2009. [Google Scholar]
- Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997, 39, 43–62. [Google Scholar] [CrossRef]
- Gutiérrez, P.A.; Pérez-Ortiz, M. Sánchez-Monedero, J.; Fernández-Navarro, F.; Hervás-Martínez, C. Ordinal Regression Methods: Survey and Experimental Study. IEEE Trans. Knowl. Data Eng. 2016, 28, 127–146. [Google Scholar]
- Norušis, M.J. IBM SPSS Statistics 19 Advanced Statistical Procedures Companion; Prentice Hall: Upper Saddle River, NJ, USA, 2012. [Google Scholar]
- Ranganathan, P.; Pramesh, C.S.; Aggarwal, R. Common pitfalls in statistical analysis: Logistic regression. Perspect. Clin. Res. 2017, 8, 148–151. [Google Scholar]
- Kumar, K. Users’ Satisfaction on SC/ST Book Bank Scheme through Ordinal Logistic Regression Analysis. Libr. Philos. Pract. 2021, 5644, 1–22. [Google Scholar]
- Huang, W.; Stokes, J.W. MtNet: A Multi-Task Neural Network for Dynamic Malware Classification. In Detection of Intrusions and Malware, and Vulnerability Assessment; DIMVA 2016, Lecture Notes in Computer Science; Caballero, J., Zurutuza, U., Rodríguez, R., Eds.; Springer: Cham, Switzerland, 2016; Volume 9721. [Google Scholar]
- Nielsen, M.A. Neural Networks and Deep Learning; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Du, K.-L.; Swamy, M.N.S. Neural Networks and Statistical Learning, 2nd ed.; Springer: London, UK, 2019. [Google Scholar]
- Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 2008, 29, 617–663. [Google Scholar] [CrossRef]
- Ghana Sheila, K.; Deepak, S.N. Review on Methods to Fix Number of Hidden Neurons in Neural networks. Math. Probl. Eng. 2013, 2013, 425740. [Google Scholar]
- Stathakis, D. How Many Hidden Layers and Nodes. Int. J. Remote Sens. 2009, 30, 2133–2147. [Google Scholar] [CrossRef]
- Thomas, A.J.; Petridis, M.; Walters, S.D.; Gheytassi, S.M.; Morgan, R.E. On Predicting the Optimal Number of Hidden Nodes. In Proceedings of the 2015 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 7–9 December 2015; pp. 565–570. [Google Scholar]
- Huang, C.-B.; Babri, H.A. Upper Bounds on the Number of Hidden Neurons in Feedforward Networks with Arbitrary Bounded Nonlinear Activation Functions. IEEE Trans. Neural Netw. 1998, 9, 224–229. [Google Scholar]
- Huang, C.-B. Learning Capability and Storage Capacity of Two-Hidden-Layer Feedforward Networks. IEEE Trans. Neural Netw. 2003, 14, 274–281. [Google Scholar]
- Cheng, J.; Wang, Z.; Pollastri, G. A neural network approach to ordinal regression. In Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–8 June 2008; pp. 1279–1284. [Google Scholar]
- Arnastauskaitė, J.; Ruzgas, T.; Bražėnas, M. A New Goodness of Fit Test for Multivariate Normality and Comparative Simulation Study. Mathematics 2021, 9, 3003. [Google Scholar] [CrossRef]
- Erlemann, R.; Lindqvist, B.H. Conditional Goodness-of-Fit Tests for Discrete Distributions. J. Stat. Theory Pract. 2022, 16, 8. [Google Scholar]
- IBM. SPSS Modeler 18 Algorithms Guide. Available online: http://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/18.0/en/AlgorithmsGuide.pdf (accessed on 1 October 2022).
- Flach, P. Machine Learning: The Art and Science of Algorithms That Make Sense of Data; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Pinto, L.; Gopalan, S.; Balasubramaniam, P. Quantification on the generalization performance of deep neural network with tychonoff separation axioms. Inf. Sci. 2022, 608, 262–285. [Google Scholar] [CrossRef]
- Hand, D.J.; Till, R.J. A Simple Generalisation of the Area under the ROC Curve for Multiple Class Classification Problems. Mach. Learn. 2001, 45, 171–186. [Google Scholar]
- Lee, R.; Chen, I.-Y. The Time Complexity Analysis of Neural Network Model Configurations. In Proceedings of the 2020 International Conference on Mathematics and Computers in Science and Engineering (MACISE), Madrid, Spain, 18–20 January 2020; pp. 178–183. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2013. [Google Scholar]
- Tufféry, S. Data Mining and Statistics for Decision Making; John Wiley & Sons: Chichester, UK, 2011. [Google Scholar]
- Sesay, R.B.; Kpangay, M.; Seppeh, S. An Ordinal Logistic Regression Model to Identify Factors Influencing Students Academic Performance at Njala University. Int. J. Res. Sci. Innov. 2021, 8, 91–100. [Google Scholar] [CrossRef]
- Menard, S. Applied Logistic Regression Analysis, 2nd ed.; Sage: New York, NY, USA, 2002; Volume 106. [Google Scholar]
- O’Connell, A.A. Logistic Regression Models for Ordinal Response Variables; Sage Publications: Thousand Oaks, CA, USA, 2006. [Google Scholar]
- Spais, G.; Vasileiou, K. An ordinal regression analysis for the explanation of consumer overall satisfaction in the food-marketing context: The managerial implications to consumer strategy management at a store level. J. Database Mark. Cust. Strategy Manag. 2006, 14, 51–73. [Google Scholar] [CrossRef] [Green Version]
- Louviere, J.J.; Hensher, D.A.; Swait, J. Stated Choice Methods Analysis and Applications; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Frauke, G.; Fritsch, S. Neuralnet: Training of Neural Networks. R J. 2010, 2, 30–38. [Google Scholar]
- Riedmiller, M.; Braun, H. A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Proceedings of the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993; pp. 586–591. [Google Scholar]
- Williams, G. Data Mining with Rattle and R: The Art of Excavating Data for Knowledge Discovery; Springer: New York, NY, USA, 2011. [Google Scholar]
- Wendler, T.; Gröttrup, S. Data Mining with SPSS Modeler, 2nd ed.; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Laursen, K.; Salter, A. Searching high and low: What types of firms use universities as a source of innovation? Res. Policy 2004, 33, 1201–1215. [Google Scholar] [CrossRef]
- De las Heras-Rosas, C.; Herrera, J. Research Trends in Open Innovation and the Role of the University. J. Open Innov. Technol. Mark. Complex. 2021, 7, 29. [Google Scholar] [CrossRef]
- Haidar, H.; Evrard Samuel, K.; Boujut, J.-F. Influential factors of initiating open innovation collaboration between universities and SMEs: Systematic Literature Review. In Proceedings of the EURAM 2019 Exploring the Future of Management, Lisbon, Portugal, 26–28 June 2019; p. hal-02184337. [Google Scholar]
- Ankrah, S.N.; Burgess, T.F.; Grimshaw, P.; Shaw, N.E. Asking both university and industry actors about their engagement in knowledge transfer: What single-group studies of motives omit. Technovation 2013, 33, 50–65. [Google Scholar] [CrossRef]
- Arza, V. Channels, benefits and risks of public-private interactions for knowledge transfer: Conceptual framework inspired by Latin America. Sci. Public Policy 2010, 37, 473–484. [Google Scholar] [CrossRef]
- West, J. Localized Knowledge Flows and Asymmetric Motivations in Open Innovation. J. Innov. Econ. 2020, 2, 181–196. [Google Scholar] [CrossRef]
- Bruneel, J.; D’Este, P.; Salter, A. Investigating the factors that diminish the barriers to university-industry collaboration. Res. Policy 2010, 39, 858–868. [Google Scholar] [CrossRef]
- Ferreras-Méndez, J.L.; Newell, S.; Fernández-Mesa, A.; Alegre, J. Depth and breadth of external knowledge search and performance: The mediating role of absorptive capacity. Ind. Mark. Manag. 2015, 47, 86–97. [Google Scholar] [CrossRef]
- Torres de Oliveira, R.; Gentile-Lüdecke, S.; Figueira, S. Barriers to innovation and innovation performance: The mediating role of external knowledge search in emerging economies. Small. Bus. Econ. 2022, 58, 1953–1974. [Google Scholar] [CrossRef]
- Marzi, G.; Manesh, M.F.; Caputo, A.; Pellegrini, M.M.; Vlačić, B. Do or do not. Cognitive configurations affecting open innovation adoption in SMEs. Technovation 2022, 119, 102585. [Google Scholar] [CrossRef]
- Gilsing, V.; Bekkers, R.; De Bodas Freitas, I.M.; Van der Steen, M. Differences in technology transfer between science-based and development-based industries: Transfer mechanisms and barriers. Technovation 2011, 31, 638–647. [Google Scholar] [CrossRef]
- Meissner, D.; Carayannis, E.G. Value generation from industry-science linkages in light of targeted open innovation. J. Knowl. Manag. 2017, 21, 295–307. [Google Scholar]
- Maietta, O.W. Determinants of university-firm R&D collaboration and its impact on innovation: A perspective from a low-tech industry. Res. Policy 2015, 44, 1341–1359. [Google Scholar]
- Verbano, C.; Crema, M.; Venturini, K. The Identification and Characterization of Open Innovation Profiles in Italian Small and Medium-sized Enterprises. J. Small Bus. Manag. 2015, 53, 1052–1075. [Google Scholar] [CrossRef]
- Bodas Freitas, I.M.; Geuna, A.; Rossi, F. Finding the right partners: Institutional and personal modes of governance of university-industry interactions. Res. Policy 2013, 41, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Kanama, D.; Nishikawa, K. What type of obstacles in innovation activities make firms access university knowledge? An empirical study of the use of university knowledge on innovation outcomes. J. Technol. Transf. 2017, 42, 141–157. [Google Scholar] [CrossRef]
- Cao, W.; Mirjalili, V.; Raschka, S. Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation. Pattern Recognit. Lett. 2020, 140, 325–331. [Google Scholar] [CrossRef]
- Sharifi, H.; Liu, W.; Ismail, F.S. Higher education system and the ‘open’ knowledge transfer: A view from perception of senior managers at university knowledge transfer offices. Stud. High. Educ. 2014, 39, 1860–1884. [Google Scholar] [CrossRef]
Survey Design | |
---|---|
Data collection method | Self-administered survey |
Sampling design | Purposive sampling |
Total responses/Accepted responses | 100/98 |
Sample Attributes | |
(a) Industry type | |
Type of industry | Frequency (%) |
1 = High-tech industry (electronics) | 12.24 |
2 = Medium high-tech industry (automotive) | 38.78 |
3 = Low-tech industry (jewelry) | 48.98 |
(b) Firm size | |
Size class | Frequency (%) |
1 = Small and medium-sized enterprises (10 to 249 employees) | 59.18 |
2 = Large enterprises (250+ employees) | 40.82 |
Estimate | Std. Error | Wald | df | Sig. | 95% Confidence Interval | |||
---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||
Threshold | [y = 1.00] | −3.213 | 0.935 | 11.811 | 1 | 0.001 | −5.045 | −1.381 |
[y = 2.00] | −1.894 | 0.722 | 6.871 | 1 | 0.009 | −3.309 | −0.478 | |
[y = 3.00] | 0.361 | 0.677 | 0.285 | 1 | 0.593 | −0.965 | 1.688 | |
[y = 4.00] | 2.899 | 0.765 | 14.340 | 1 | 0.000 | 1.398 | 4.399 | |
Location | x1 | 0.361 | 0.079 | 21.146 | 1 | 0.000 | 0.207 | 0.515 |
x2 | −0.026 | 0.048 | 0.297 | 1 | 0.586 | −0.120 | 0.068 | |
x3 | 0.220 | 0.065 | 11.596 | 1 | 0.0006 | 0.093 | 0.347 | |
x4 | −0.917 | 0.615 | 2.221 | 1 | 0.136 | −2.122 | 0.289 | |
[x5 = 1.00] | −0.603 | 0.806 | 0.559 | 1 | 0.454 | −2.183 | 0.977 | |
[x5 = 2.00] | 0.043 | 0.605 | 0.005 | 1 | 0.943 | −1.143 | 1.229 | |
[x5 = 3.00] | 0 a | . | . | 0 | . | . | . | |
Link function: complementary log-log. |
MLP Model | Architecture | Number of Neurons | Accuracy | AUC-ROC | ||||
---|---|---|---|---|---|---|---|---|
Training | Validation | Test | Training | Validation | Test | |||
SLFN | 1 hidden layer | 41 | 79.687% | 70.588% | 52.941% | 0.894 | 0.794 | 0.796 |
TLFN | 1st hidden layer | 15 | 82.812% | 76.47% | 70.588% | 0.900 | 0.858 | 0.881 |
2nd hidden layer | 8 |
Statistic | Partition | Fold | Mean | Standard Deviation | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | ||||
Accuracy (%) | Training | 87.500 | 67.045 | 86.364 | 85.393 | 65.909 | 81.818 | 82.022 | 81.818 | 80.682 | 62.500 | 78.105 (%) | 8.796 (%) |
Test | 50.000 | 70.000 | 60.000 | 66.667 | 60.000 | 70.000 | 66.667 | 60.000 | 70.000 | 60.000 | 63.333 (%) | 6.146 (%) | |
AUC-ROC | Training | 0.934 | 0.867 | 0.937 | 0.931 | 0.842 | 0.920 | 0.919 | 0.885 | 0.914 | 0.845 | 0.8994 | 0.0348 |
Test | 0.754 | 0.800 | 0.722 | 0.625 | 0.833 | 0.888 | 0.916 | 0.850 | 0.777 | 0.694 | 0.7859 | 0.0856 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Băban, M.; Băban, C.F.; Mitran, T. Universities as an External Knowledge Source for Industry: Investigating the Antecedents’ Impact on the Importance Perception of Their Collaboration in Open Innovation Using an Ordinal Regression-Neural Network Approach. Mathematics 2023, 11, 1671. https://doi.org/10.3390/math11071671
Băban M, Băban CF, Mitran T. Universities as an External Knowledge Source for Industry: Investigating the Antecedents’ Impact on the Importance Perception of Their Collaboration in Open Innovation Using an Ordinal Regression-Neural Network Approach. Mathematics. 2023; 11(7):1671. https://doi.org/10.3390/math11071671
Chicago/Turabian StyleBăban, Marius, Călin Florin Băban, and Tudor Mitran. 2023. "Universities as an External Knowledge Source for Industry: Investigating the Antecedents’ Impact on the Importance Perception of Their Collaboration in Open Innovation Using an Ordinal Regression-Neural Network Approach" Mathematics 11, no. 7: 1671. https://doi.org/10.3390/math11071671
APA StyleBăban, M., Băban, C. F., & Mitran, T. (2023). Universities as an External Knowledge Source for Industry: Investigating the Antecedents’ Impact on the Importance Perception of Their Collaboration in Open Innovation Using an Ordinal Regression-Neural Network Approach. Mathematics, 11(7), 1671. https://doi.org/10.3390/math11071671