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Abstract: For a vertex and edge weighted (VEW) graph G with a vertex weight function fG let
Wα,β(G) = ∑{u,v}⊆V(G)[α fG(u)× fG(v) + β( fG(u) + fG(v))]dG(u, v) where, α, β ∈ R and dG(u, v)
denotes the distance, the minimum sum of edge weights across all the paths connecting u, v ∈ V(G).
Assume T is a VEW tree, and e ∈ E(T) fails. If we reconnect the two components of T − e with
new edge ε 6= e such that, Wα,β

(
Tε\e = T − e + ε

)
is minimum, then ε is called a best switch (BS) of

e w.r.t. Wα,β. We define three notions: convexity, discrete derivative, and discrete integral for the
VEW graphs. As an application of the notions, we solve some BS problems for positively VEW trees.
For example, assume T is an n-vertex VEW tree. Then, for the inputs e ∈ E(T) and w, α, β ∈ R+,
we return ε, Tε\e, and Wα,β

(
Tε\e

)
with the worst average time of O(log n) and the best time of O(1)

where ε is a BS of e w.r.t. Wα,β and the weight of ε is w.

Keywords: discrete derivative; discrete integral; best switch; convex graph; weighted total distance;
weighted tree

MSC: 05C12; 05C22; 68Q25; 05C05; 68W05

1. Introduction and Notations

Unlike Euclidean space, which is equipped with coordinate systems, we cannot stay at
a network node and visualize where we are and how to achieve our goal. On the other hand,
analyzing a network using local information can lower the cost of tasks [1–6]. Preprocessing
may help to establish a network coordinate for local tasks and reach the destination step
by step.

This paper defines discrete derivative, discrete integral, and convexity notions for
vertex and edge-weighted graphs, which will help with local tasks. To do that, we choose
the common definition of distance for edge-weighted graphs in the literature, which can
be generalized or modified to satisfy metric properties. Applying the notions above, we
design and solve some tree-related problems.

Unless otherwise stated, we assume a graph is weighted (vertices and edges) and
connected without loops or multiple edges. Then, by saying that a graph G is ( fG, wG)-
weighted, the vertex weight function is fG and the edge weight function is wG. The
weight of a path PG(v1, vn) = v1v2 . . . vn in G is ∑n−1

i=1 wG(vivi+1). And dG(u, v) denotes the
distance between u, v ∈ V(G), that is, the weight of the minimum weight paths across all
the paths connecting u and v. Note that the distance of a vertex with itself is zero, and the
distance between two vertices is infinite if they are not connected with a path. By saying
a graph is positively weighted, we mean both vertex and edge weights are positive. We
define the following numerical invariant for a ( fG, wG)-weighted graph G,

Wα,β(G) = ∑{u,v}⊆V(G)
[α fG(u)× fG(v) + β( fG(u) + fG(v))]dG(u, v), α, β ∈ R.
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And for A, B ⊆ V(G), and v ∈ V(G), we define

fG(A) = ∑
x∈A

fG(x), σG(v) = ∑
x∈V(G)

dG(v, x), hG(v) = ∑
x∈V(G)

fG(x)dG(v, x),

dG(A, B) = ∑
a ∈ A

∑
b ∈ B

dG(a, b).

And for the given subgraphs H and K of G, let:

dG(H, K) = ∑
u ∈ V(H)

∑
v ∈ V(K)

dG (u, v), fG(H) = ∑
a∈V(H)

fG(a).

Definition 1. For a tree T and uv ∈ E(T), T − {uv } has two components. We name the
components Tv

u and Tu
v with u ∈ V(Tv

u ) and v ∈ V(Tu
v ) . As an extension for the later notation to

subtrees, if xy ∈ V(Tv
u ), [Tv

u ]
y
x and [Tv

u ]
x
y denotes the components of Tv

u − {xy} and so on. Also,
set nT(Tv

u ) = |V(Tv
u )| and nT(Tu

v ) = |V(Tu
v )|.

By Definition 1 V(T) = V(Tv
u ) ∪V(Tu

v ) and nT(Tv
u ) + nT(Tu

v ) = |V(T)|. We remind
the reader that NG(x) denotes a vertex x′s neighbors.

Using the above notation for a tree T let, NT = {(nT(Tv
u ), nT(Tu

v ))}uv∈E(T) and
FT = {( fT(Tv

u ), fT(Tu
v ))}uv∈E(T). For more detail nT(Tv

u ) and nT(Tu
v ) are the number of

vertices in Tv
u and Tu

v , respectively. And fT(Tv
u ) and fT(Tu

v ) are the total weight of vertices
in Tv

u and Tu
v , respectively.

For ease and based on the definition of Wα,β, we define two more distance-based
numerical graph invariants for a ( fG, wG)-weighted graph G as follows:

W×(G) = ∑{u,v}⊆V(G)
[ fG(u)× fG(v)]dG(u, v),

W+(G) = ∑{u,v}⊆V(G)
[ fG(u) + fG(v)]dG(u, v).

Indeed, W1,0(G) = W×(G), W0,1(G) = W+(G) and Wα,β(G) = αW×(G) + βW+(G).
Using the notations, the coordinate of T is shown and defined with

QT = {FT , NT , W×(T), W+(T)}

Assume T is a ( fT , wT)-weighted tree and e ∈ E(T). If e fails (removed from the edge
set), then we have T− e that has two components. If we reconnect the two components of
T− e with an edge, ε, we have T + ε− e. For ease, we will denote T + ε− e by Tε\e. Then ε

is called a switch of e and the tree Tε\e is called a switch. Moreover, if e 6= ε and Wα,β

(
Tε\e

)
is minimum, ε is called a best switch (BS) of e w.r.t. Wα,β. Note that Tε\e is a tree, e ∈ E(T),
and ε ∈ E(Tc).

Now suppose T is an n-vertex and positively weighted tree with coordinate QT . We
are interested in solving the following problem. Get T, QT , e ∈ E(T) and w, α, β ∈ R≥0

and return Tε\e, QTε\e , ε and Wα,β

(
Tε\e

)
, where ε is a BS of e w.r.t. Wα,β and w = wTε\e(ε).

(by w, α, β ∈ R≥0 we mean w > 0, α + β > 0, α ≥ 0, and β ≥ 0). We solve the problem
with the worst average time of O(log n) and the best average time of O(1). Clearly, using
the output of the problem, if we solve the problem with some complexities, we can keep
getting ei and wi+1, αi+1, βi+1 ∈ R≥0 and solve the problem on

(
(Tε1\e1

)
ε2\e2

. . .
)

εi\ei
with

the same complexities on T, i > 1. Changing edge weights within the positive range are
also supported in O(1)-time per change to update the coordinates QTεi\ei

at any meaningful
stage. The mentioned problem is the primary example that will solve in the application
section as an application of our tools in the following section. The problem can be seen
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as a generalization of [7–9] that has found some applications [6,10–12]. For some relevant
optimization problems over spanning trees, see [13–19]. This paper uses extensive notation
for more precise interaction, which may take some time to get used to. But our solutions
are natural, utilizing some calculus intuition behind the notations.

We might be able to partially compare our solution for the above problem with top
tree methods [7–9] (see the final section). Generalizing the top tree method solves the
problem above for some specified edges and fixed α, β with the same average complexity
as our solution. However, by changing α, β, in the top tree method, one needs to repeat the
preprocessing, which is expensive. We also compare our method to the swap edge problem
of spanning trees [20,21], which requires a conversion. See the last section for more details.

As the main topics of this paper, we have the following sections. We will define some
concepts and achieve some results. Applying the results, we find an efficient solution for
BS of positively weighted trees mentioned above. Our method is general, and we have
applied it to other problems [22].

2. Discrete Derivative and Integral

Discrete derivative, discrete integral, and convexity are three intuitive concepts for
weighted graphs that we define in this section. We have some results and general examples
specifically for trees.

Definition 2. Suppose G is a ( fG, wG)-weighted graph. The discrete derivative of a vertex
a ∈ V(G) toward x ∈ NG(v) is defined and denoted as follows:

f ′G
(→

ax
)
=

{
fG(x)− fG(a)

dG(x,a) dG(x, a) 6= 0,
fG(x)− fG(a) dG(x, a) = 0.

(1)

We say f ′G is consistent if dG(x, a) = 0 results in f ′G
(→

ax
)
= 0, ax ∈ E(G).

Using Figure 1 as graph G, f ′G
(→

ax
)

= 4−3
3 = 1

3 where dG(x, a) = 3. And

f ′G
(→

xa
)
= 3−4

3 = − 1
3 .

Figure 1. A vertex and edge-weighted graph on 5 vertices.

Lemma 1. Assume f1 and f2 are two vertex weight functions for a graph. If f = α f1 + β f2, then
f ′ = α f ′1 + β f ′2, where α, β ∈ R. Moreover, if f1 an f2 are consistent, then f also is.

A path, v1v2 . . . vn, is called fG-decreasing if it is a path and

fG(vi+1) < fG(vi), 0 < i < n.

An increasing path is defined in the same sense. Clearly, if v1v2 . . . vn is a fG-decreasing
path and edge weights are positive, then f ′G

( →
vivi+1

)
< 0, 0 < i < n.

Definition 3. Suppose G is a ( fG, wG)-weighted graph. Then, v ∈ V(G) is called fG-Root or
fG-Roof of G if fG(v) is minimum or maximum, respectively. Let A ⊂ V(G) is the set of fG-Roots
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( fG-Roofs) of G. Then we say G is fG-convex (concave) if and only if for every v ∈ V(G) there is a
decreasing (increasing) path from v to some a ∈ A.

Whenever there is no confusion, we may use Root instead of, fG-Roots, etc. Using the
above image, the vertex with weight 0 is a Root, and the vertex with weight 4 is a Roof in
the depicted graph.

To employ discrete derivatives as a tool, we first create some induced weight functions
using the current weight of the graph for the vertices of an ( fG, wG)-weighted graph, G.
The first one is as follows:

σG : V(G)→ R S.t. σG(v) = ∑
x∈V(G)

dG(v, x), v ∈ V(G)

Let T be a (σT , wT)-weighted tree (the vertex-weight function is, σT). If ax ∈ E(T) and
wG(ax) = 0, then σ′T

(→
ax
)
= 0, otherwise:

σ′T

(→
ax
)
=

σT(x)− σT(a)
dT(x, a)

=
σT(x)− σT(a)

w(ax)
= nT(Tx

a )− nT(Ta
x ). (2)

Because
σT(x)− σT(a) = w(ax)[nT(Tx

a )− nT(Ta
x )]. (3)

Another vertex-weight function for G is induced using the primary weight functions
as follows:

hG : V(G)→ R S.t. hG(v) = ∑
x∈V(G)

fG(x)dG(v, x), v ∈ G.

To help with the computation of h′Ts for a (hT , wT)-weighted tree T, let a ∈ V(T) and
x be an a′s neighbor. Thus,

hT(a) = ∑
v∈V(Tx

a )

fT(v)dT(a, v) + ∑
v∈V(Ta

x )

fT(v)[dT(x, v) + w(ax)],

hT(x) = ∑
v∈V(Tx

a )

fT(v)[dT(a, v) + w(ax)] + ∑
v∈V(Ta

x )

fT(v)dT(x, v). (4)

Using the above equations, hT(x)− hT(a) = w(ax)[ fT(Tx
a )− fT(Ta

x )]. Therefore, if
wT(ax) = 0, then h′T

(→
ax
)
= 0, otherwise:

h′T
(→

ax
)
=

hT(x)− dT(a)
dT(x, a)

=
w(ax)[ fT(Tx

a )− fT(Ta
x )]

w(ax)
= fT(Tx

a )− fT(Ta
x ). (5)

Using Equations (3) and (4), h′T and σ′T are consistent for any tree T.
Let NT = {(nT(Tv

u ), nT(Tu
v ))}uv∈E(T) and FT = {( fT(Tv

u ), fT(Tu
v ))}uv∈E(T). Using

Equations (2) and (5), FT , and NT , one can compute σ′T and h′T easily. If fT(v) = 1 for every
v ∈ V(T), then ( fT(Tv

u ), fT(Tu
v )) = ((nT(Tv

u ), nT(Tu
v )) for every uv ∈ E(T). The following

algorithm extracts FT for a tree T, starts with the edges adjacent to a leaf and then deletes
the leaves at each step until the edge set is empty. It is linear regarding the number of
vertices and uses the fact that for every uv ∈ E(T) (Algorithm 1):

fT(Tv
u ) + fT(Tu

v ) = fT(T), fT(Tu
v ) = fT(v) + ∑x∈NT(v)\u

fT(Tv
x ).
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Algorithm 1 Computing FT or NT

Input: Adjacency list of an n-vertex, nontrivial ( fT , wT)-weighted tree T and fT(T)
Output: FT = {( fT(Tv

u ), fT(Tu
v ))}uv∈E(T)

Initiate with S = {a ∈ V(T) |deg(a) = 1}
while (E(T) 6= φ)

Leaves← S
S = φ

for v ∈ leaves
u← N(v)
( fT(Tv

u ), fT(Tu
v )) ← ( fT(T)− fT(v), fT(v))

fT(u)+ = fT(v)
if deg(u)− 1 = 1. #Will be a leaf

S = S ∪ {u}
T = T − {v} #Remove v from adj list

Corollary 1. For an n-vertex tree T, the sets, NT and, FT can be computed in O(n).

Corollary 2. Let T be a ( fT , wT)-weighted tree with n vertices and gT = ασT + βhT for some,
α, β ∈ R. One can compute and sort

{
g′T
(→

ax
)∣∣∣ x ∈ NT(a)

}
for all a ∈ V(G) with the time

complexity of O
(

∑v∈V(T) deg(v)logdeg(v)
)

, that is on average O(n).

The following result gives us an important fact about the weighted trees.

Lemma 2. Suppose P = v1v2 . . . vn, n > 2, is a path in a ( fT , wT)-weighted tree T. If wT > 0
and σ′T

( →
v1v2

)
≥ 0, then v2 . . . vn is, σT-increasing. If fT > 0, wT > 0, and h′T

( →
v1v2

)
≥ 0, then

v2 . . . vn+1 is, hT-increasing. If gT = ασT + βhT , (for α, β ∈ R≥0, α + β 6= 0) fT > 0, wT > 0,
and g′T

( →
v1v2

)
≥ 0, then v2 . . . vn is, gT-increasing.

Proof. Assume T is a ( fT , wT)-weighted tree and xyz is a path in T. Without loss of
generality, we can prove the lemma for xyz. We know that V(Tv

u ) ∪ V(Tu
v ) = V(T) and

V(Tv
u ) ∩V(Tu

v ) = ∅ for any uv ∈ E(T). Thus, for some A ⊂ V(T),

V
(

Tz
y

)
= V

(
Ty

x

)
∪ {y} ∪ A, (6)

And
V
(

Ty
z

)
= V

(
Tx

y

)
− {y} − A. (7)

Therefore,
V
(

Ty
x

)
⊂ V

(
Tz

y

)
and V

(
Tx

y

)
⊃ V

(
Ty

z

)
(8)

We use Equations (2) and (5) for computing σ′T and h′T . Then by the assumption

σ′T

(→
xy
)
= nT

(
Ty

x

)
− nT

(
Tx

y

)
≥ 0. Thus by Equation (8) σ′T

(→
yz
)
= nT

(
Tz

y

)
− nT

(
Ty

z

)
> 0.

Since wT > 0, w(yz)σ′T
(→

yz
)
> 0. That is, σT(z) > σT(y) which completes the proof for

σT case. Similarly, assume h′T
(→

xy
)
= fT

(
Ty

x

)
− fT

(
Tx

y

)
≥ 0. If fT > 0, by Equation (8)

h′T
(→

yz
)
= fT

(
Tz

y

)
− fT

(
Ty

z

)
> 0. If, in addition wT > 0, then w(yz)h′T

(→
yz
)
> 0. Thus, by

Definition 2, hT(z) > hT(y). That completes the proof for hT case. The proof for the g′T case
is like h′T case. This completes the proof. �

Using Lemma 2, we attained the following result regarding the convexity of a tree.

Theorem 1. Any positively edge-weighted tree is σ-convex, and any positively weighted tree is
(ασ + βh)-convex, for α, β ∈ R≥0.



Mathematics 2023, 11, 1678 6 of 19

Proof. Let us have a positively edge-weighted tree with at least three vertices. Assume
a vertex, v1, is not a σ-Root and v1v2 . . . vn is the shortest possible path (in terms of the
number of edges) between v1 and a σ-Root, vn. Assume toward a contradiction that
v1v2 . . . vn is not decreasing. Thus, suppose vivi+1 is the first edge from v1 toward vn,
such that σ(vi) ≤ σ(vi+1). Since the edge weights are positive, σ′

( →
vivi+1

)
≥ 0. Then,

by Lemma 2, the path vi+1vi+2 . . . vn is increasing. That is, σ(vi) ≤ σ(vn) and i < n. If
σ(vi) = σ(vn), vi also is a σ-Root and v1v2 . . . vi is shorter than v1v2 . . . vn while having
the same specification, which is a contradiction with v1v2 . . . vn being the shortest. And
if, σ(vi) < σ(vn), contradicts with, vn being a σ-Root. Therefore, v1v2 . . . vn is decreasing.
Since v1 was arbitrary, the tree is σ-convex. For the proof of ασ + βh case, use the same
strategy as for σ, along with the positivity of the vertices’ weight. �

Corollary 3. Assume that g = ασ + βh, α, β ∈ R≥0, α + β 6= 0. Then, a positively weighted
tree has at most two g-Roots. If x and y are two g-Roots of a tree, then they are adjacent, and
g′
(→

xy
)
= g′

(→
yx
)
= 0. Moreover, if c is a tree’s g-Root and v is a non-Root neighbor of c, then

g′
(→

cv
)
> 0, and g′

(→
vc
)
< 0. Usefully, if P = v1v2 . . . vm is a decreasing path between v1 and

a g-Root, vm, then g′
( →

via
)
< 0 if and only if a = vi+1, i < m. In addition, P is the longest

g-decreasing path starting from v1. Finally, a leaf is not a (ασ + βh)-Root of a positively weighted
tree with more than 2 vertices.

Definition 4. Suppose G is a ( fG, wG)-weighted graph. Regarding f ′G and dG, we define and
denote the discrete integral of f ′G along a path, P = v1v2 . . . vn from v1 to vn as follows:∫

P
f ′GdG = ∑n−1

i=1 f ′G
( →

vivi+1

)
.dG(vi, vi+1).

If a, b ∈ V(G) and PG(a, b) is an arbitrary path between a and b, we denote
∫

PG(a,b) f ′GdG

by ∫ b

a
f ′GdG

By Definitions 2 and 4, we have:

Theorem 2. Suppose G is a connected ( fG, wG)-weighted graph and a, b ∈ V(G). If f ′G is
consistent, then for any path from a to b,

∫ b

a
f ′GdG = fG(b)− fG(a).

Using Figure 1 as graph G with the given weights and the above result or Definition 2.12,
one can see that,∫ y

x f ′GdG =
∫

P=xay f ′GdG =
∫

P=xaby f ′GdG =
∫

P=xacby f ′GdG =
∫

P=xcby f ′GdG

=
∫

P=xcay f ′GdG =
∫

P=xcaby f ′GdG = −2.

3. Some Applications of Discrete Integral and Derivative and Convexity

In this section, we formally define three optimization problems on trees. As an
application of the results of the previous section, we will have efficient solutions to the
problems with some possible comparisons with existing solutions at the end. The compared
problems are not clearly defined in the same way we do. We try to convert them for some
partial comparison.
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The routing cost of G for a given set of sources S ⊆ V(G) and the total distance of G
are defined as follows, respectively:

RC(G, S) = ∑v∈V(G) ∑s∈S dG(v, s), D(G) =
1
2 ∑v∈V(G) ∑v∈V(G)

dG(v, s).

The Wiener index, W(G), of a simple graph G, ( fG = 1, wG = 1) is equal to its total
distance [23,24]. By setting α, β, wG, and fG; Wα,β, defined in the introduction, can produce
any of D, W, W+, W×, or RC for a graph, G. So, Wα,β generalizes all the mentioned
graph invariants.

Definition 5. Let T be a weighted tree and Tε\e = T − e + ε, where e ∈ E(T) and ε ∈ E(Tc).

1. We say ε ∈ E(Tc) is a switch of e ∈ E(T), if Tε\e is a tree. Then Tε\e is called a switch.

2. We say ε ∈ E(Tc) is a BS of e ∈ E(T) w.r.t. Wα,β if Wα,β

(
Tε\e

)
is minimum, i.e.,

Wα,β

(
Tε\e

)
= min

s∈E(Tc)
Wα,β

(
Ts\e

)
.

3. The coordinate of T is shown and defined with QT = {FT , NT , W×(T), W+(T)}.

Based on the BS definition, we define three problems. The second and third problems
are created merely for comparison. Assume T is a weighted tree with E(T) = {ei}n

i=1 and
we have coordinated, QT .

Problem1:
Input:
1. T,
2. QT ,
3. e ∈ E(T),
4. w, α, β ∈ R≥0.
Output:
1. ε ∈ E(Tc), where ε is a BS of e w.r.t. Wα,β with wTε\e (ε) = w.

2. Wα,β

(
Tε\e

)
,

3. Tε\e,
4. QTε\e .

Problem2:
Input:
1. T with E(T) = {ei}n

i=1
2. QT ,
3.

{
wi, αi, βi ∈ R≥0}n

i=1.
Output:
1. r,
2. εr ∈ E(Tc),
3. Tεr\er

,
4. QTεr\er

,

5. Wαr ,βr

(
Tεr\er

)
,

where Wαr ,βr

(
Tεr\er

)
= min

{
Wαi ,βi

(
Tεi\ei

)}n

i=1
and εi is a BS of ei w.r.t. Wαi ,βi with

wi = wTεi\ei
(εi). (Overall best switch).

Problem3:
Input:
1. T with E(T) = {ei}n

i=1,
2. QT ,
3.

{
wi, αi, βi ∈ R≥0}n

i=1.
Output:

1.
{(

εi ∈ E(Tc), Wαi ,βi

(
Tεi\ei

))}n

i=1
,

where εi is a BS of ei w.r.t. Wαi ,βi with wi = wTεi\ei
(εi). (All best switches).
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Definition 6. For a numerical graph invariant, W∗, and a switch Ts\t let

W ′∗
(

Ts\t

)
= W∗

(
Ts\t

)
−W∗(T).

Lemma 3. Let T be a ( fT , wT)-weighted tree, xy ∈ E(T), and gT = ασT + βhT for some
α, β ∈ R. Using, FT and NT , we can calculate g′

Ty
x

on the path from x toward any vertex of Ty
x . A

similar argument holds for a path from y toward any vertex of Tx
y .

Proof. Let T be a ( fT , wT)-weighted tree and xy ∈ E(T) with T − {xy} = Ty
x ∪ Tx

y and
gT = ασT + βhT , α, β ∈ R. Assume v1v2 . . . vn is a path in Ty

x , with v1 = x. Using Equations
(1), (2), (5), and {NT , FT} = {(nT(Tv

u ), nT(Tu
v )), ( fT(Tv

u ), fT(Tu
v ))}uv∈E(T) we could extract,

σ′T and h′T , and so g′T = ασ′T + βh′T on v1v2 . . . vn. However, we need to get g′
Ty

x
through

v1v2 . . . vn. To do so, one can check for v1v2 . . . vn,

(nTy
x
(
[
Ty

x
]vi+1

vi
), nTy

x

([
Ty

x
]vi

vi+1
)
)
=
(

nT

(
Tvi+1

vi

)
− nT

(
Tx

y

)
, nT

(
Tvi

vi+1

))
, 0 < i < n, (9)

( fTy
x

([
Ty

x
]vi+1

vi
), fTy

x

([
Ty

x
]vi

vi+1
)
)
=
(

fT

(
Tvi+1

vi

)
− fT

(
Tx

y

)
, fT

(
Tvi

vi+1

))
. 0 < i < n. (10)

Thus, using Equations (1), (2) and (5), along with (9) and (10):

σ′Ty
x

( →
vivi+1

)
= σ′T

( →
vivi+1

)
− nT

(
Tx

y

)
, h′Ty

x

( →
vivi+1

)
= h′T

( →
vivi+1

)
− fT

(
Tx

y

)
.

That is, using FT and NT , we can compute g′Tx
y

( →
vivi+1

)
as follows:

g′Ty
x

( →
vivi+1

)
= ασ′T

( →
vivi+1

)
+ βh′T

( →
vivi+1

)
− αnT

(
Tx

y

)
− β fT

(
Tx

y

)
.

Symmetrically, the argument holds for the Tx
y and y case. �

It is straightforward but involves some long computation to find out the following.

Lemma 4. Suppose T is a ( fT , wT)-weighted tree with uv ∈ E(T) and xy ∈ E(Tc). If x ∈ V(Tv
u )

and y ∈ V(Tu
v ), then

W ′α,β

(
Txy\uv

)
=
∫ x

u
p′dTv

u +
∫ y

v
q′dTu

v + FNα,β(uv)
[
wTxy\uv

(xy)− wT(uv)
]
,

where,

FNα,β(uv) = [α fT(Tv
u ) fT(Tu

v ) + β(nT(Tv
u ) fT(Tu

v ) + fT(Tv
u )nT(Tu

v ))],α, β ∈ R

and
p(a) = [α fT(Tu

v ) + βnT(Tu
v )]hTv

u (a) + β fT(Tu
v )σTv

u (a), a ∈ V(Tv
u ),

q(b) = [α fT(Tv
u ) + βnT(Tv

u )]hTu
v (b) + β fT(Tv

u )σTu
v (b), b ∈ V(Tu

v ).
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Proof. Assume T is a tree. If we remove uv ∈ E(T) and connect, Tv
u and Tu

v with xy ∈ E(Tc),
where x ∈ V(Tv

u ) and y ∈ V(Tu
v ), then

Wα,β

(
Txy\uv

)
= Wα,β(Tv

u ) + Wα,β(Tu
v )

+ ∑
a∈V(Tv

u )
∑

b∈V(Tu
v )
[α fT(a) fT(b) + β( fT(a) + fT(b))].[dT(x, a)

+wTxy\uv
(xy) + dT(b, y)]

= Wα,β(Tv
u ) +Wα,β(Tu

v ) + [α fT(Tu
v ) + βnT(Tu

v )]hTv
u
(x) + [α fT(Tv

u ) + βnT(Tv
u )]hTu

v
(y)

+β[ fT(Tu
v )σTv

u
(x) + fT(Tv

u )σTu
v
(y)

+wTxy\uv
(xy)[α fT(Tv

u ) fT(Tu
v )

+β(nT(Tv
u ) fT(Tu

v ) + fT(Tu
v ) fT(Tv

u ))]

(11)

Using the fact that W×
(

Tuv\uv

)
= W×(T) and the above formula,

W ′α,β

(
Txy\uv

)
= Wα,β

(
Txy\uv

)
−Wα,β(T)

= [p(x)− p(u)] + [q(y)− q(v)] + FNα,β(uv)
[
wTxy\uv

(xy)
−wT(uv)].

where FNα,β(uv) = [α fT(Tv
u ) fT(Tu

v ) + β(nT(Tv
u ) fT(Tu

v ) + fT(Tv
u )nT(Tu

v ))] and

p(a) = [α fT(Tu
v ) + βnT(Tu

v )]hTv
u (a) + β fT(Tu

v )σTv
u (a), a ∈ V(Tv

u ),

q(b) = [α fT(Tv
u ) + βnT(Tv

u )]hTu
v (b) + β fT(Tv

u )σTu
v (b), b ∈ V(Tu

v ).

Since Tv
u and Tu

v are connected, and p and q are consistent; by Lemma 1 and Theorem 2,
we have:

W ′α,β

(
Txy\uv

)
=
∫ x

u
p′dTv

u +
∫ y

v
q′dTu

v + FNα,β(uv)
[
wTxy\uv

(xy)− wT(uv)
]
.�

The above lemma gives a clue between a BS of uv ∈ V(T) w.r.t Wα,β and the p-Roots
and q-Roots of Tv

u and Tu
v . Often, finding a BS is equivalent to finding some Roots.

Lemma 5. Suppose T is a positively weighted tree with at least three vertices and uv ∈ E(T).
If a and b are a p-Root of Tv

u and a q-Root of Tu
v , respectively, then a BS of uv w.r.t Wα,β is xy

with x ∈ NT(a) ∪ {a} and y ∈ NT(b) ∪ {b}. More precisely, let the following be vertex weight
functions for the relevant vertices:

p(c) = [α fT(Tu
v ) + βnT(Tu

v )]hTv
u (c) + β fT(Tu

v )σTv
u (c), c ∈ V(Tv

u ),

q(c) = [α fT(Tv
u ) + βnT(Tv

u )]hTu
v (c) + β fT(Tv

u )σTu
v (c), c ∈ V(Tu

v ).

Then a choice of xy as a BS of uv w.r.t Wα,β is as follows:

A If (u, v) = (p-Root of Tv
u , q-Root of Tu

v ),

1. (x, y) = (u, z) where q(z) = min
c∈NTu

v
(v)

q(c), or

2. (x, y) = (z, v) where p(z) = min
c∈NTv

u
(u)

p(c).

If q′
(→

vz
)

wT(vz) < p′
(→

uz
)

wT(uz), 1 gives a choice for xy; otherwise, 2.
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B If (u, v) 6= (p-Root of Tv
u , q-Root of Tu

v ), then (x, y) = (p-Root of Tv
u , q-Root of Tu

v ).

Moreover, FT = FT xy\uv and NT = NT xy\uv except for the edges on PT(u, x) and
PT(v, y). More precisely, if PTv

u (u, x) = u1u2 . . . um is the path between u = u1 and x = um,(
nTxy\uv

(
Tui+1

ui

)
, nTxy\uv

(
Tui

ui+1

))
=
(

nT

(
Tui+1

ui

)
− nT

(
Tu

v

)
, nT

(
Tui

ui+1

)
+ nT

(
Tu

v

))
,

(
fTxy\uv

(
Tui+1

ui

)
, fTxy\uv

(
Tui

ui+1

))
=
(

fT

(
Tui+1

ui

)
− fT

(
Tu

v

)
, fT

(
Tui

ui+1

)
+ fT

(
Tu

v

)
,0 < i < m.

And, if PTu
v (v, y) = v1v2 . . . vn is a path between v = v1 and y = vn,(

nTxy\uv

(
Tvi+1

vi

)
, nTxy\uv

(
Tvi

vi+1

))
=
(

nT

(
Tvi+1

vi

)
− nT

(
Tv

u

)
, nT

(
Tvi

vi+1

)
+ nT

(
Tv

u

))
,

(
fTxy\uv

(
Tvi+1

vi

)
, fTxy\uv

(
Tvi

vi+1

))
=
(

fT

(
Tvi+1

vi

)
− fT

(
Tv

u

)
, fT

(
Tvi

vi+1

)
+ fT

(
Tv

u

))
,0 < i < n.

Proof. Assume we have the lemma assumptions. By Equation (11),

Wα,β

(
Tst\uv

)
= p(s) + q(t) + r, s ∈ V(Tv

u ) and t ∈ V(Tu
v ) (12)

where r is independent of the choice of s and t. And the values of p(s) and q(t) are
independent of each other. By definition, if a ∈ V(Tv

u ) and b ∈ V(Tu
v ) minimize Equation

(12) and ab 6= uv, then ab is a BS of uv. One sees that by minimizing Equation (12)
inclusively, we do not exclude uv as a choice for ab, since:

min
s∈V(Tv

u )
p(s) + min

t∈V(Tu
v )

q(t) + r = min
st∈E(Tc)∪{uv}

Wα,β

(
Tst\uv

)
. (13)

Accordingly, (a, b) minimizes Equation (12) if and only if

(p(a), q(b)) =
(

min
s∈V(Tv

u )
p(s), min

t∈V(Tu
v )

q(t)
)

. That is, (a, b) = (p-Root of Tv
u , q-Root of Tu

v ).

If case A happens, which is (u, v) = (p-Root of Tv
u , q-Root of Tu

v ) and also
(x, y) = (p-Root of Tv

u , q-Root of Tu
v ), then we might have xy = uv. To exclude uv in the

minimization of Equation (12), we avoid the case that u and v appear concurrently by letting

(p(x), q(y)) is equal to either
(

min
s∈V(Tv

u )\u
p(s), min

t∈V(Tu
v )

q(t)
)

or(
min

s∈V(Tv
u )

p(s), min
t∈V(Tu

v ) \v
q(t)

)
. By Theorem 1 and the assumptions Tv

u and Tu
v are con-

vex. That is,

min
s∈V(Tv

u )\u
p(s) = min

s∈NTv
u
(u)

p(s) and min
t∈V(Tu

v )\v
q(t) = min

t∈NTu
v
(v)

q(t).

As a result, either

1− (x, y) = (u, z) where q(z) = min
b∈NTv

u
(u)

q(b), or

2− (x, y) = (z, v) where p(z) = min
a∈NTv

u
(u)

p(a).

Per Lemma 4, in case 1—,W ′α,β

(
Txy\uv

)
− r =

∫ u=x
u p′dTv

u +
∫ y

v q′dTu
v =

∫ y
v q′dTu

v =

q′
(→

vz
)

wT(vz) and in case 2—W ′α,β

(
Txy\uv

)
− r = p′

(→
uz
)

wT(uz). Thus, if p′
(→

uz
)

wT(uz) >
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q′
(→

vz
)

wT(vz), then 1 gives the choice of (x, y). If p′
(→

uz
)

wT(uz) < q′
(→

vz
)

wT(vz), then
(x, y) comes from 2. Otherwise, either 1 or 2 is the choice.

Now assume (u, v) 6= (p-Root of Tv
u , q-Root of Tu

v ). If (a, b) = (p-Root of Tv
u , q-Root of

Tu
v ), then (u, v) 6= (a, b). Moreover, (a, b) minimizes Wα,β in Equation (12). So (x, y) = (a, b)

is the right choice. This completes the proof of B.
To form Txy\uv we remove uv ∈ E(T) and reconnect the components of T − u using

x ∈ V(Tv
u ) and y ∈ V(Tu

v ), uv 6= xy. Thus, FT 6= FT xy\uv and NT 6= NT xy\uv in gen-

eral. Precisely,
(

nT

(
Tb

a

)
, nT
(
Ta

b
))
6=
(

nTxy\uv

(
Tb

a

)
, nTxy\uv

(
Ta

b
))

or
(

fT

(
Tb

a

)
, fT
(
Ta

b
))
6=(

fTxy\uv

(
Tb

a

)
, fTxy\uv

(
Ta

b
))

happens if ab ∈ PT(u, x) or ab ∈ PT(v, y). By Definition 1

fT

(
Tb

a

)
+ fT

(
Ta

b
)
= fT(T) and nT

(
Tb

a

)
+nT

(
Ta

b
)
= |V(T)|. And, by Lemma 3 Equations (9)

and (10), if PTv
u (u, x) = u1u2 . . . um is the path between u = u1 and x = um,(

nTxy\uv

(
Tui+1

ui

)
, nTxy\uv

(
Tui

ui+1

))
=
(

nT

(
Tui+1

ui

)
− nT

(
Tu

v

)
, nT

(
Tui

ui+1

)
+ nT(Tu

v )
)

,

(
fTxy\uv

(
Tui+1

ui

)
, fTxy\uv

(
Tui

ui+1

))
=
(

fT

(
Tui+1

ui

)
− fT

(
Tu

v

)
, fT

(
Tui

ui+1

)
+ fT

(
Tu

v

))
,0 < i < m.

And symmetrically, for PTu
v (v, y) = v1v2 . . . vn with v = v1 and y = vn,(

nTxy\uv

(
Tvi+1

vi

)
, nTxy\uv

(
Tvi

vi+1

))
=
(

nT

(
Tvi+1

vi

)
− nT

(
Tv

u

)
, nT

(
Tvi

vi+1

)
+ nT

(
Tv

u

))
,

(
fTxy\uv

(
Tvi+1

vi

)
, fTxy\uv

(
Tvi

vi+1

))
=
(

fT

(
Tvi+1

vi

)
− fT(Tv

u ), fT(T
vi
vi+1

)
+ fT(Tv

u )
)

, 0 < i < n.

�

Lemma 6. For a ( fT , wT)-weighted tree T,

W×(T) = ∑
uv∈E(T)

[ fT(Tv
u ) fT(Tu

v )]wT(uv),

and,
W+(T) = ∑

uv∈E(T)
[nT(Tv

u ) fT(Tu
v ) + nT(Tu

v ) fT(Tv
u )]wT(uv).

Proof. We prove the first equation using the double-counting principle. Assume T′ is
a copy of T with the edge weights set to 0 at the start. Let u, v ∈ V(T) and PT(u, v) is
the path between u and v. For every ab ∈ PT(u, v) add the number w(uv) fT(a) fT(b) to
the corresponding edge of ab in T′. Then ∑

uv∈PT(u,v)
wT′(uv) = [ fT(u) fT(v)]dT(u, v). Thus,

suppose we repeat the above process for every pair u, v ∈ V(T). If so, then

∑
uv∈E(T′)

wT′(uv) = ∑
{u,v}⊆V(T)

[ fT(u)× fT(v)]dT(u, v) = W×(T).

And on the other hand, one can see that wT′(uv) = wT(uv)T [ fT(Tv
u ) fT(Tu

v )] for
uv ∈ E(T′). Thus, W×(T) = ∑uv∈E(T′) wT′(uv) = ∑uv∈E(T) wT(uv)[ fT(Tv

u ) fT(Tu
v )]. That

proves the formula of W×(T). The proof for the W+ case is quite similar. �
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Corollary 4. Assume T is a ( fT , wT)-weighted n-vertex tree. We can compute W×(T) and
W+(T) in O(n)-time. Moreover, if by changing the weight of ab ∈ E(T) to w, we get a tree
T′, then

W×
(
T′
)
= W×(T) + (w− wT(ab)) fT(Tv

u ) fT(Tu
v ),

W+
(
T′
)
= W+(T) + (w− wT(ab))[nT(Tv

u ) fT(Tu
v ) + nT(Tu

v ) fT(Tv
u )]

Remark 1. Here, we give a simple intuition behind an algorithm for problem 1 when the tree T is
positively weighted. Using Lemma 5, finding a BS for uv ∈ E(T), we need to have the p-Roots
and q-Roots of Tv

u and Tu
v , respectively. By definition u ∈ V(Tv

u ) and v ∈ V(Tu
v ). By Corollary 3,

the longest decreasing path from u ends up with a p-Root of Tv
u say x, and similarly, the longest

decreasing path from v ends up at a q-Root of Tv
u say y . Moreover, by Corollary 3, those paths are

the only decreasing paths in their respective components. So, one can easily take some derivatives to
reach from u to x or from v to y since the paths are decreasing and unique. Then by Lemma 5, a BS
of uv is one of the following cases as detailed in the lemma.

1. xy,
2. an edge between x and a vertex of NT(y),
3. an edge between y and a vertex of NT(x).

Lemma 5 details how to choose among the above limited cases using derivatives. As we find
the unique and decreasing path between u and x and also v and y, one can update QT as in Lemma
5. Having those paths also eases calculating W×, W+, and Wα,β from Lemma 4. The following
proposition details the mentioned intuition with proof of time complexity.

Proposition 1. Let T be an n-vertex positively weighted tree with a coordinate, QT . If we get
e ∈ E(T) and w, α, β ∈ R≥0, then we can compute ε, Tε\e, QTε\e , and Wα,β

(
Tε\e

)
, with the

worst average time of O(log n) and the best average time of O(1), where ε is a BS of e w.r.t Wα,β
and wTε\e(ε) = w. Updating, QT after edge-weight change to a positive number is supported in
O(1)-time per change.

Proof. Assume we have an n-vertex positively weighted tree T, QT = {FT, NT, W×(T), W+(T)}
and uv ∈ E(G), n > 2. Let p and q be some induced vertex weight functions for Tv

u an Tu
v

as follows,

pα,β (c) = [α fT(Tu
v ) + βnT(Tu

v )]hTv
u (c) + β fT(Tu

v )σTv
u (c), c ∈ V(Tv

u ),

qα,β(c) = [α fT(Tv
u ) + βnT(Tv

u )]hTu
v (c) + β fT(Tv

u )σTu
v (c), c ∈ V(Tu

v ).

Then with the results so far, we have the following:
1. Computing a p′ or q′ in O(1)-time. Using FT and NT , Lemma 3, and Definition 2,

computing p′
(→

rs
)

costs O(1)-time for any rs ∈ PTv
u (u, x) where x ∈ V(Tv

u ) and we know

the direction. A similar argument holds for computing q′ on PTu
v (v, y).

2. Checking whether a vertex is a Root on average of O(1) -time. By Corollary 3,
if p′

(→
ux
)
< 0 for only one x ∈ NTv

u (u), then u is not a p-Root. The following can verify
whether a vertex is p or q-Root or not. (Let f = p or q)

# Takes a vertex and a f and says it is a f -Root or not
IS_Root(a, f )
For s ∈ N(a)

if f ′
(→

as
)
< 0

return False
return True
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The average degree in a tree is O(1). Thus, IS_Root run time is O(1) on average.

3. Finding a neighbor with a minimum p or q in O(1)-time on average. If
s ∈ NTv

u (a), then by Theorem 2 and Definition 4, p(s) = p′
(→

as
)

w(as) + p(a). By 1- comput-
ing p(s) takes O(1)-time. Moreover, O(|NT(a)|) = O(1) on average. Thus, finding x with
p(x) = min

s∈NTv
u
(a)

p(s) takes O(1)-time on average. Computing min q neighbor follows the

same rules. One implements the mentioned idea as follows.

# Takes a vertex, a, finds x ∈ N(a) with min f and returns x and ax ( f = p or q)
FND_min(a, f )
min = ∞
For s ∈ N(a)

f (s) = f ′
(→

as
)

w(as) + f (a)
if f (s) < min

min = f (s)
x ← s

return x , ax

4. Finding, PTv
u
(u, x) or PTu

v
(v, y) in O(logn) on average, where x and y are p and

q-Root. By Theorem 1, Tv
u is p-convex. Assume that P = u1u2 . . . um is the decreasing

path between u = u1 and a p-Root, um. By Corollary 3, P is the longest decreasing path
beginning with u, and p′

( →
uia
)
< 0 if and only if a = ui+1, a ∈ N(vi), 0 < i < m. So,

starting with i = 1, we can find ui+1 when we have ui and compute P as follows:

# Takes a vertex, a, and returns c and P(a, c) where c is a f ( f = p or q)
Root_Path(a, f )
P(a, c) = a1 = a
Lable
for ai+1 ∈ N(ai)\ai−1

if f ′
( →

aiai+1

)
< 0.

P(a, c) = P(a, c) ∪ ai+1
ai ← ai+1
Break and Goto Lable

return a, P(a, c)

For finding ui+1 from ui, we can exclude ui−1 and jump to ui+1 as the process
Root_Path does. That reduces the average complexity. Moreover, when we are on the
vertex ui, i < m, one takes at most | N(ui)| derivatives to find ui+1, since we know, ui+1 is
the only vertex with negative derivatives toward it. So, Root_Path(u, p) returns, PTv

u (u, x)
by taking some derivatives, at most, as many as the total degree of the vertices on PTv

u (u, x),
where x is a p-Root. By [25], the path length in a tree is O(log n) on average, where it
can be O(1) as well. In addition, the average degree in a tree is O(1), and taking each
derivative requires O(1)-time. Moreover, x is a p-Root (has min p) and Tv

u < T. Thus, the
worst average run time of Root_Path(u, p) is O(log n) and the best average time is O(1).
Similarly, RCE_Path(v, q) has the same run time to return PTu

v (v, y) where y is a q-Root.

5. Computing
∫ x

u p′dTv
u

and
∫ y

v q′dTu
v

in O(|P(u, x)|)-time and O(|P(v, y)|)-time, re-
spectively. Per Definition 4, Theorem 2, and 1, if we have a path, P = a1a2 . . . am, we can
compute the integral of P in O(m)-time as follows:

# Takes a path P and f and returns
∫

P f ′ ( f = p or q)
Integ (P = a1a2 . . . am, f )∫ am

a1
f ′d = 0

for 0 < i < m∫ am
a1

f ′d + = f ′
( →

aiai+1

)
.w(aiai+1)

return
∫ am

a1
f ′d



Mathematics 2023, 11, 1678 14 of 19

6. Updating FT to FTxy\uv
and NT to NTxy\uv

in O(|P(u, x)|)+O(|P(v, y)|) time. Per
Lemma 5, Up_FN

(
P(u, x), fT(Tu

v ), nu
T(v)

)
and Up_FN

(
P(v, y), fT(Tv

u ), nv
T(u)

)
updates FT

to FTxy\uv
and NT to NTxy\uv

, where Up_FN is a process as follows.

# Takes a path and updates FT and NT accordingly
Up_FN(P = v1v2 . . . vm, F, N)
for 0 < i < m(

nT
(
Tvi+1

vi

)
, nT(T

vi
vi+1

)
)←

(
nT
(
Tvi+1

vi

)
− N, nT(T

vi
vi+1

)
+ N)(

fT
(
Tvi+1

vi

)
, fT(T

vi
vi+1

)
)←

(
fT
(
Tvi+1

vi

)
− F, fT(T

vi
vi+1

)
+ F)

Using the devised procedures in 1- to 6-, we can implement Lemma 4 and 5, which
finds us ε, Tε\e, QTε\e , and Wα,β

(
Tε\e

)
, for the input e ∈ E(T) and w, α, β ∈ R≥0, where

ε is a BS of e w.r.t Wα,β and wTε\e(ε) = w. The full detail is presented with the following
algorithm: BS algorithm (Algorithm 2). Each line’s average time complexity bound is
shown in the results.

Preprocessing-- - - - - - - - - - - - - - - - - - - - -
Compute QT = {FT , NT , W×(T), W+(T)} #O(n) Corollary 1 & Lemma 6
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Algorithm 2. BS Algorithm

Input: Adj list of a ( fT , wT)-weighted tree T, uv ∈ E(T), QT , w, α, β ∈ R+

Output:xy, Txy\uv, Wα,β

(
Txy\uv

)
, QTxy\uv

, where xy is a BS of uv w.r.t. Wα,β and wT(xy) = w
- - - - - - -Finding x, y, P(u, x) and P(v, y) where xy is a BS of uv; (Lemma 5)- - - - - - -

if ISRoot(u,p)andIS_Root(v, q) #O(1)
{

a , ua← FND_min(u, p) #O(1)
b , vb← FND_min(v, q) #O(1)

if q′
(→

vb
)

wT(vb) < p′
(→

ua
)

wT(ua) #O(1)

{ x, P(u, x)← u, u
y, P(v, y)← b, vb}

else
{ x, P(u, x)← a, ua

y, P(v, y)← v, v}
}

else
{ x, P(u, x)← Root_Path(u, p) # O(log n) on ave
y, P(v, y)← Root_Path(v, q)} # O(log n) on ave # O(log n) on ave

- - - - - - -Computing Wα,β

(
Txy\uv

)
- - - - - - -( Lemma 4 )- - - - - - - - - - - - - – - - - - - -

W ′α,β

(
Txy\uv

)
= Integ

(
P(u, x), pα,β

)
+ Integ

(
P(v, y), qα,β

)
+ FNα,β(uv)[w− wT(uv)]

#O(
∣∣PTv

u
(u, x)

∣∣) + O(
∣∣PTu

v
(v, y)

∣∣)
Wα,β(T) = αW×(T) + βW+(T) #O(1)

Wα,β

(
Txy\uv

)
= W ′α,β

(
Txy\uv

)
+ Wα,β(T) #O(1)

- - - - - - - QT ← QTxy\uv
- - - - - - -updating QT- - - - - - -( Lemma 5 )- - - - - - - - - - - - - -

Up_FN(P(u, x), fT(Tu
v ), nT(Tu

v )) ∧Up_FN(P(v, y), fT(Tv
u ), nT(Tv

u ))
# O(

∣∣PTv
u
(u, x)

∣∣+ ∣∣PTu
v
(v, y)

∣∣)
W ′1,0

(
Txy\uv

)
= W ′×

(
Txy\uv

)
= Integ(P(u, x), p1,0) + Integ(P(v, y), q1,0) + FN1,0(uv)[w− wT(uv)]

# O(
∣∣PTv

u
(u, x)

∣∣+ ∣∣PTu
v
(v, y)

∣∣)
W ′0,1

(
Txy\uv

)
= W ′+

(
Txy\uv

)
= Integ(P(u, x), p0,1) + Integ(P(v, y), q0,1) + FN0,1(uv)[w− wT(uv)]
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Algorithm 2. Cont.

# O(
∣∣PTv

u
(u, x)

∣∣+ ∣∣PTu
v
(v, y)

∣∣)
W×

(
Txy\uv

)
= W ′×

(
Txy\uv

)
−W×(T) #O(1)

W+

(
Txy\uv

)
= W ′+

(
Txy\uv

)
−W+(T) #O(1)

- - - - - - - T ← Txy\uv - - - - - - -
T ← T + xy− uv #O(1)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Using 1 to 6 above, the average time complexity of every line of Algorithm 2. is
bounded by, max

{
O(
∣∣PTv

u (u, x)
∣∣, O(

∣∣PTu
v (v, y)

∣∣}. By [25], the average path length of T is
O(log n), which accounts for the worst average time complexity of the algorithm. The
best average complexity can be O(1) because max

{
O(
∣∣PTv

u (u, x)
∣∣, O(

∣∣PTu
v (v, y)

∣∣} and the
degrees on PTv

u (u, x) and PTu
v (v, y) can be O(1). Finally, assume T′ is a tree, and we have

the preprocessing, QT′ = {FT′ , NT′ , W×(T′), W+(T′)}. If we change the weight of one edge,
then FT′ and NT′ remain unchanged, and by Corollary 4, we can update W× and W+ in
O(1)-time. This completes the proof. �

The subsequent two propositions can be proved based on Proposition 1. They are
indeed a solution to Problems 2 and 3, respectively.

Proposition 2. Let T be an n-vertex positively weighted tree with E(T) = {ei}n
i=1. If we get{

wi, αi, βi ∈ R≥0}n
i=1, then we can find an r such that Wαr ,βr

(
Tεr\er

)
= min

{
Wαi ,βi

(
Tεi\ei

)}n

i=1

and compute Wαr ,βr

(
Tεr\er

)
, in an average time of O(n log n) and the best time of O(n) , where

εi with wi = w(εi) is a BS of ei w.r.t. Wαi ,βi , 0 ≤ i ≤ n.

Proposition 3. Let T be an n-vertex positively weighted tree with E(T) = {ei}n
i=1. If we get

{wi, αi, βi ∈ R}n
i=1, then we can find a BS, εi with wi = w(εi) w.r.t. Wαi ,βi for all ei and compute

Wαi ,βi

(
Tεi\ei

)
, 0 ≤ i ≤ n, in an average time of O(n log n) and the best time of O(n).

For simplicity, we avoided adding some facts for better performance of the BS algo-
rithm. For example, by Corollary 3, a leaf is not a root of a tree with more than 2 vertices. In
the BS algorithm, we either require a root or a neighbor of a root. Thus, if Tv

u or Tv
u are not

trivial (single vertex), then the version of T without the leaves can be used. That improves
the actual performance of the BS algorithm.

Proposition 4. For a simple tree T, there are exactly W(T) distinct switches. More precisely,∣∣∣{Tε\e

∣∣∣ (ε, e) ∈ E(Tc ∪ T)× E(T) ∧ Tε\e is a switch
}∣∣∣= W(T),

and if xy ∈ E(Tc ∪ T) and uv ∈ E(T) ,∣∣∣{Txy\e

∣∣∣ e ∈ E(T) ∧ Txy\e is a switch
}∣∣∣= dT(x, y),

∣∣∣{Tε\uv

∣∣∣ ε ∈ E(Tc ∪ T) ∧ Tε\uv is a switch
}∣∣∣= nT(Tu

v ).nT(Tv
u ).

Proof. Let T be a simple tree. Using Definition 5, xy ∈ E(Tc)∪ E(T) is a switch of e ∈ E(T),
if and only if e ∈ PT(x, y). Otherwise, Txy\e is disconnected, indicating that it is not a switch.
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Therefore, there are exactly dT(x, y) distinct switches regarding xy ∈ E(Tc ∪ T). Thus, the
total number of distinct switches is as follows:∣∣∣{Txy\e

∣∣∣ (xy, e) ∈ E(Tc ∪ T)× E(T) ∧ Txy\e is a switch
}
|

= ∑
xy∈E(Tc∪T).

dT(x, y) = ∑
{x,y}⊆∈V(T)

dT(x, y) = W(T).

And
∣∣∣{Txy\e

∣∣∣ e ∈ E(T) ∧ Txy\e is a switch
}∣∣∣= dT(x, y). In addition,

Tε\uv is a tree if and only if ε is an edge between Tv
u and Tu

v . Thus,∣∣∣{Tε\uv

∣∣∣ ε ∈ E(Tc ∪ T) ∧ Tε\uv is a switch
}∣∣∣= nT(Tu

v ).nT(Tv
u ). This completes the proof.

�

For uv ∈ E(T) of a simple tree T with n vertices by definition, n− 1 ≤ nT(Tu
v ).nT(Tv

u ) ≤
n2

4 . Also, by [26–28], (n− 1)2 ≤W(T) ≤
(

n + 1
3

)
.

4. Some Comparisons and Discussion

In this section, we compare our method with some existing methods. For brevity, we
mean average time complexity when we talk about complexity. The compared methods
are not solving the same problems that we did, but it is possible to convert them with
some effort.

The top tree method can find a positively weighted tree’s median(s). It is almost
equivalent to finding the Root of a tree in our method, disregarding α and β. Thus, for
an n-vertex tree, T and uv ∈ E(T), we somehow can convert the top tree methods [7–9]
to find a BS w.r.t. Wα=1,β=0 in O(log n)-time for most cases. However, if uv connects a
Root of Tv

u and a Root of Tu
v , then the top tree method does not work. They also do not

compute Wα,β of the switches regularly, which does not let us solve problem 2 even for their
specific case of α = 1, β = 0. Generalizing the top tree method, we may be able to solve
problem 1 for a fixed α, β and compute Wα,β, which is overcomplicated intuitively. But, if
we renew the initial values of α, β to some α′, β′, then we have to repeat their O(n)-time
preprocessing, which is costly. As we have seen, our method in the BS algorithm solves
problem 1 in O(log n) for any α, β ∈ R≥0, computes W ′α,βs, and does not require a fresh
preprocessing for the change of α, β. Our method updates the preprocessing, QT in O(1)-
time after an edge-weight change, whereas using top trees, an edge weight update takes up
to O(log n)-time.

For another comparison, we borrow the solution of the best swap edge of multiple-
source routing tree algorithms [15,19–21,29,30] for problem 3. Suppose T is a span-
ning tree of a positively edge-weighted graph G with m edges and n vertices. Then,
in [15,19–21,29,30], researchers choose the BS from E(G)− E(T), whereas we choose from
E(Tc). Therefore, by choosing G to be Kn, the mentioned algorithms can solve problem 3.
Also, they choose the BS w.r.t. as the routing cost rather than its generalization, Wα,β. Let
S ⊆ V(G) be a set of sources and |S| > 1. Setting fG(v) = 1 for all v ∈ S and fG(v) = 0 for
all v ∈ V(G)\S, results in

W1,−1(G) = RC(G, S).

That is, by specifying vertices weights as mentioned and letting αi = 1, βi = −1
for 1 ≤ i ≤ n, and G = Kn, algorithms of [20,21] will solve problem 3. The mentioned
algorithms are expensive specifically for a single failed edge, and after updating the edge
weights or inserting a BS, their O

(
n2) preprocessing is not valid. They also do not compute

Wα,β
′s. More importantly, regarding the mentioned conversion, they solve problem 3 in

more than O
(

n2 log2 n
)

-time and up to O
(
n3) depending on the number of sources, where

αi = 1, βi = −1, 1 ≤ i ≤ n and sources are specified. In the terminology of [20–22], we do
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not limit the number of sources and, αi, βi ∈ R≥0, 1 ≤ i ≤ n , where we attain an average
time of O(n log n) and the best time of O(n) for Problem 3.

As a general fact, note that choosing a brute-force strategy and distance matrix for
the positively edge-weighted graph, computing Wα,β(T) takes O

(
n3). Moreover, there are

between n− 1 to n2

4 switches regarding an edge. Therefore, using the bute-force strategy,
we will need between O

(
n4) to O

(
n5) time to compute a switch with the minimum Wα,β.

While our method executes that in O(log n), with the same flexibility. This difference is
significant. Note that the existing discussed methods are comparable to ours with some
constraints, but they have much less flexibility.

Our tools are general and can be applied to similar optimization problems. For instance,
see [15], where we use our method for the best swap edge of spanning trees. Another inter-
esting problem can be solving the BS problems regarding kD(T) = ∑{u,v}⊆V(T)(d(u, v))k

by considering the weight kσT(v) = ∑x∈V(T) dk
T(v, x) for the vertices of a tree, T. See

Appendix A, where we have some computations related to the derivative and integral
of, 2σT. Finding the minimum p-sources routing cost spanning tree is an NP-hard problem
for any p > 1 and is a polynomial problem for p = 1 [29–31].
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Appendix A

Let T be a tree and ax ∈ E(T). Then, using the definition (kσT(v) = ∑x∈V(T) dk
T(v, x),

v ∈ V(T)):

2σT(a) = ∑
v∈V(Ta)

d2
T(a, v) + ∑

v∈V(Tx)

[d2
T(x, v) + (w(ax))2 + 2w(ax)dT(x, v)],

2σT(x) = ∑
v∈V(Ta)

[d2
T(a, v) + (w(ax))2 + 2w(ax)dT(a, v)] + ∑

v∈V(Tx)

d2
T(x, v).

2σ ′T

(→
ax
)
=

2σT(x)− 2σT(a)
wT(ax)

=
(w(ax))2[nT(Tx

a )− nT(Ta
x )]+2w(ax)[σTx

a (a)− σTa
x (x)

]
wT(ax)

= w(ax)σ′T(ax) + 2
[
σTx

a (a)− σTa
x (x)

]
.

Also, one can use the same idea of Equation (11) and see that,

2D ′
(

Txy\uv

)
= 2D

(
Txy\uv

)
− 2D(T)

= 2
[
σTv

u (x)σTu
v (y)− σTv

u (u)σTu
v (v)

]
+nT(Tv

u ).nT(Tu
v )[w(xy)− w(uv)]

+nT(Tu
v )
[2σTv

u (x)− 2σTv
u (u)

]
+ nT(Tv

u )
[2σTu

v (y)−
2σTu

v (v)
]

+2nT(Tu
v )
[
σTv

u (x)− σTu
v (u)

]
+ 2nT(Tv

u )
[
σTv

u (y)− σTu
v (y)

]
.

We had that, σ′T is consistent, thus by Theorem 2,∫ x

u
σ′Tv

u
dTv

u = σTv
u (x)− σTv

u (u), and
∫ y

v
σ′Tu

v
dTu

v = σTu
v (y)− σTu

v (v).



Mathematics 2023, 11, 1678 18 of 19

Therefore,

2D ′
(

Txy\uv

)
= 2

[(∫ x
u σ′Tv

u
dTv

u + σTv
u (u)

)(∫ y
v σ′Tu

v
dTu

v + σTu
v (v)

)
− σTv

u (u)σTu
v (v)

]
+nT(Tu

v )
[∫ x

u
2σ ′Tv

u
dTv

u

]
+ nT(Tv

u )
[∫ y

v
2σ ′Tu

v
dTu

v

]
+2nT(Tu

v )
[∫ x

u σ′Tv
u
dTv

u

]
+ 2nT(Tv

u )
[∫ y

v σ′Tu
v

dTu
v

]
+nT(Tv

u ).nT(Tu
v )[w(xy)− w(uv)].
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