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Abstract: This paper presents an ablation study aimed at investigating the impact of a hybrid dataset,
domain randomisation, and custom-designed neural network architecture on the performance of
object localisation. In this regard, real images were gathered from the Boeing 737-400 aircraft while
synthetic images were generated using the domain randomisation technique involved randomising
various parameters of the simulation environment in a photo-realistic manner. The study results
indicated that the use of the hybrid dataset, domain randomisation, and the custom-designed
neural network architecture yielded a significant enhancement in object localisation performance.
Furthermore, the study demonstrated that domain randomisation facilitated the reduction of the
reality gap between the real-world and simulation environments, leading to a better generalisation
of the neural network architecture on real-world data. Additionally, the ablation study delved into
the impact of each randomisation parameter on the neural network architecture’s performance. The
insights gleaned from this investigation shed light on the importance of each constituent component
of the proposed methodology and how they interact to enhance object localisation performance. The
study affirms that deploying a hybrid dataset, domain randomisation, and custom-designed neural
network architecture is an effective approach to training deep neural networks for object localisation
tasks. The findings of this study can be applied to a wide range of computer vision applications,
particularly in scenarios where collecting large amounts of labelled real-world data is challenging.
The study employed a custom-designed neural network architecture that achieved 99.19% accuracy,
98.26% precision, 99.58% recall, and 97.92% mAP@.95 trained using a hybrid dataset comprising
synthetic and real images.

Keywords: hybrid data; synthetic data; object detection; ablation study
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1. Introduction

Collection and manual annotation of a large amount of data is an expensive and time-
consuming task, yet it is a highly critical stage for training and testing a neural network.
The requirement of this stage becomes more problematic when the collection of images
in large numbers and variations is needed, the labels are hard to specify manually, or
the task depends on expert knowledge. Pixel-perfect segmentation or three-dimensional
poses takes a significant amount of time for a human being to manually annotate a single
image. A favourable method—three-dimensional computer graphics software tools, such
as Blender [1], Unreal Engine [2], and Unity [3]—has been adopted to generate the pixel
perfectly and automatically annotated synthetic data. Some of the studies [4–15] published
in recent years have been using generated datasets in a simulation environment. To generate
these kinds of datasets, the models need to be carefully designed in significant detail. The
datasets above have been used to train neural networks for pose estimation, optical flow,
scene flow, and stereo disparity estimation problems.
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Although the large quantity of annotated data is freely available for object detection,
sophisticated object detection problems could benefit from photo-realistic synthetic image
data generation to reduce the number of required ground truth data. Without abandoning
photo-realism by randomly altering the synthetic environment in different ways, a domain
randomisation solution [16] has been proposed to lead the neural network to focus on the
rudimentary attributes of the object. This method has been applied successfully on various
tasks such as three-dimensional coordinate detection of coloured cubes on the table [16]
and determination of control commands of a quad-copter indoor environment [17], as well
as scene flow [8] and optical flow [5].

In this study, the domain randomisation method has been extended by using hybrid
image data and a custom-designed neural network to locate the pressure refuelling adaptor
in three-dimensional space in real time. This research has been conducted to seek answers
to the questions below:

• Can synthetic image data generation achieve effective results on real-world problems
with the help of domain randomisation?

• Which parameters of domain randomisation affect the results most?
• How much does the augmentation improve the accuracy of the neural network?
• Which layers of the neural network affect the accuracy most?
• What are the main benefits of using hybrid image data to train the neural network?
• Can the synthetic image data be fully relied on to train the neural network?

As the introduction to the ablation study is presented in Section 1, the rest of the
paper is organised as follows: Section 2 outlines existing methods related to the ablation
study. A brief explanation of the proposed method can be found in Section 3. The results
and discussion can be found in Sections 5 and 6, respectively. Finally, the conclusion is
presented in Section 7.

2. Literature Review

In recent years, the popularity of synthetic data used for testing and training purposes
has risen. A large number of datasets—Virtual KITTI [6], SceneNet RGBD [9], Flying
Chairs [5], SYNTHIA [13], UnrealStereo [11,15], FlyingThings3D [8], SceneNet [7], MPI
Sintel [4], Sim4CV [10], GTA V [12]—could be given as an example. To solve computer
vision problems, such as stereo disparity estimation, scene flow, camera pose estimation,
and optical flow, the datasets above have been generated.

Even though some of the datasets have solely been trained on synthetic data, these
datasets contain both semantic segmentation masks and object detection annotations. By
adding Gaussian blurring to the object’s edges and Gaussian noise to the object, Hinter-
stoisser et al. [18] used this synthetic dataset to train the final layers of their neural network
while the rest of the network was pre-trained with real data only. It has been observed that
their approach did not increase the success of the neural network. On the contrary, training
the final layers of the neural network with only synthetic data was rather harmful.

Tobin et al. [16] proposed to close the reality gap by using domain randomisation as
an alternative method to high-quality synthetic data. They generated a synthetic image
dataset in different variations so the neural network sees the data as another version of the
real world. Domain randomisation has been used in their research to train a neural network
to locate the different shape-based objects in three-dimensional space to manipulate the
robotic arm.

Introduction to the domain randomisation method was conducted by Sadeghi and
Levine [17], who used synthetic images to train a quadcopter to fly in indoor environments.
The FlyingThings3D [8] and Flying Chairs [5] datasets can be considered different variations
of the domain randomisation method.

Domain randomisation has also been applied to robotics control policy. While
James et al. [19] used domain randomisation to make a robot pick up a cube and place it
in a basket, Zhang et al. [20] used the method to manipulate the robot near a cube. Other
studies have adopted the domain randomisation method to explore robotic policies from a
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high-quality rendering engine [21], train an object classifier from three-dimensional CAD
models [22], and generate a high-quality synthetic image dataset [14].

Dwibedi et al. [23] proposed a similar approach by adding object images onto the
background images. The accurate object segmentation with this method was highly time-
consuming and challenging. These two problems with their methods outline the drawback
of this approach.

3. Methodology
3.1. Dataset Development

The pressurised fuel adaptor, also known as a bottom loading adaptor [24], is a device
that connects to an aircraft and supplies it with pressurised fuel, as illustrated in Figure 1a.
The pressurised refuelling adaptor must be designed and built to meet both MS24484-
5 and MIL-A-25896 standards. “MIL-STD” [25], which stands for Military Standard, is
a set of standards established by the United States Department of Defence to ensure
standardisation in its operations. It is used to meet the standardisation objectives of the
Department of Defence. Standardisation is useful in achieving a variety of goals, including
commonality, interoperability, reliability, cost efficiency, compatibility with logistics systems,
and compliance with defence-related requirements. It helps to ensure that products meet
specific requirements [26]. The pressurised refuelling adaptor is made of high-strength
stainless steel and aluminium to ensure maximum strength and durability.

The quality of the dataset is important, so it is necessary to remove any insufficient
data that does not have a use. The term ’quality’ is subjective and can be difficult to
define precisely. In a broad sense, quality can be understood as the approach or option
that provides the best results when evaluated empirically. Having a high-quality dataset
is crucial for effectively tackling problems and finding the optimal solution. A dataset
that is accurate, relevant, and complete can provide valuable and reliable information
that can be used to make informed decisions or identify the most effective solution to
a problem. Defining what constitutes high-quality data is important during the process
of creating a dataset. Having a clear understanding of the characteristics of good data
can help ensure that the dataset being developed is accurate, relevant, and complete,
which are all important factors in making the dataset useful and effective. A high-quality
dataset has specific characteristics that contribute to better performance in terms of feature
representation, reducing skew, and increasing reliability [27].

Articulating the problem clearly is the most important step in the dataset development
process before generating or collecting high-quality data. Determining how to collect the
necessary data, what data to collect, and what to predict with that data are crucial steps
in clearly defining the problem. Without a clear understanding of these factors, it may be
difficult to develop a dataset that is accurate, relevant, and complete. Before developing a
solution or exploring the data, it is important to identify the category of the problem being
addressed, which could be clustering, regression, or classification. This will help guide the
approach to formulate a solution and analyse the data [28].

Manually collecting data can be a tedious and burdensome task, which is why it
is essential to establish effective data collection mechanisms during the preparation of a
dataset. Automating data collection can help eliminate the need for repetitive manual data
collection, saving time and reducing the risk of errors. The dataset collection process has
been divided into two stages due to the limitations of both approaches. The first stage of
the dataset collection process involves setting up a camera rig system to collect real data
from a Boeing 737-400.
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(a) (b)

Figure 1. Main Elements of Hybrid Dataset. (a) Pressurised Refuelling Adaptor [29]. (b) 3D Design
of Refuelling Adaptor.

The steps below have been followed to set up the camera rig system to collect the
real dataset.

• A sturdy mounting system: To capture clear and stable images of the refuelling adaptor,
it is crucial to have a sturdy mounting system that can securely attach to the Intel®
RealSense™ D435 depth camera. The system should be designed to minimise any
movement or vibrations, as this can result in blurry or distorted images. Additionally,
the mounting system should be adjustable to ensure the camera is positioned at an
optimal distance and angle to capture the refuelling adaptor and surrounding area.

• High-resolution cameras: The camera used for this application should be of high
resolution to capture clear and detailed images of the refuelling adaptor. The resolution
should be high enough to capture fine details.

• Appropriate distance and angle: The Intel® RealSense™ D435 depth camera has been
positioned at an appropriate distance and angle to capture the refuelling adaptor
and surrounding area to capture the images. The ideal position will depend on the
specific aircraft and refuelling setup and may require some experimentation to find
the optimal position. However, the Intel® RealSense™ D435 depth camera should be
positioned to capture a wide field of view that includes the entire refuelling adaptor
and any relevant surrounding components.

• Consistent lighting conditions: To ensure consistent lighting conditions across all
captured images, an array of high-intensity LED lights could be positioned around
the camera rig. The LED lights should be positioned and angled to provide even
illumination of the refuelling adaptor without creating harsh shadows or over-exposed
areas. This is important to ensure that the images are clear and easy to interpret and
that any potential issues or anomalies during the process are clearly visible.

The synthetic dataset was produced by designing a 3D model of the object and adding
different materials to it. The model was modified to simulate different weather and lighting
conditions, allowing for the creation of a synthetic dataset [28].

To generate a photo-realistic synthetic representation of the refuelling adaptor and its
environment, several steps need to be taken.
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• Model the refuelling adaptor: This has been accomplished by importing the 3D model
of the adaptor. It is important to ensure that the model is accurate and to scale to
ensure a realistic final product.

• Texture the models: To make the model looks more realistic, textures and materials
need to be added to them. This involves adding textures and materials to the model
in Blender. It is important to consider factors such as the paint and the material of the
refuelling adaptor.

• Set up lighting and virtual camera: The lighting and virtual camera setup are crucial
components in creating realistic images. Appropriate lighting needs to be set up in
the 3D environment to create shadows and reflections that are similar to those found
in real life. This involves adding lights to the scene in Blender and using ZPy to
programmatically change the lighting to cover every potential scenario. A virtual
camera also needs to be set up to capture the images. This was done by positioning a
virtual camera in Blender and ZPy to program the camera position.

• Render the images: The final step in the process is to render the images. This has been
done using Blender’s built-in rendering engine, which offers a variety of settings to
create high-quality images. It is important to consider factors such as the resolution of
the images to ensure the highest quality output.

In Figure 1a,b the elements used in the development of both real and synthetic datasets
are shown.

The hybrid dataset used for training and testing consists of 770 training images,
74 validation images, and 37 test images [30]. These images depict the refuelling adaptor
of an Airbus 737-400 aircraft. The input image specifications and pre-processing steps
play a crucial role in the performance of the image classification model. In this case, the
input images were annotated in COCO format, which is a widely-used format for object
detection tasks. Before feeding the images to the model, the pre-processing steps were
applied to ensure that the model receives the most relevant and useful information from the
images. These pre-processing steps included applying a 50% probability of horizontal and
vertical flips, as well as rotating the image by 90 degrees in clockwise, counter-clockwise,
and upside-down directions with equal probability. This helps the model learn from a
diverse set of images and angles, which can be useful in handling real-world scenarios.
Additionally, a random Gaussian blur with a radius between 0 and 1 pixels was applied
to each image, which can help to reduce noise and improve the overall quality of the
image. These pre-processing steps help to ensure that the model receives a consistent and
high-quality input that can improve the accuracy and robustness of the model [31]. The
process of creating a synthetic dataset involves several steps. Once the 3D refuelling adaptor
model is available, textures representing materials such as high-strength stainless steel and
aluminium are applied to them. To create a more realistic environment, HDRI maps were
used to simulate realistic lighting conditions. These maps capture a wide range of light
intensities in a scene allowing for more accurate lighting in synthetic images. In addition,
weather conditions such as rain, snow, and fog were added to simulate real-world scenarios.
To provide variations, the synthetic dataset images were rendered under different lighting
conditions. The refuelling adaptor was captured under bright sunlight and overcast skies
with artificial lighting. Different camera positions, orientations, and fields of view were
also used to generate variations in the images.

As shown in Figure 2, the hybrid dataset includes sample images of the refuelling adap-
tor. To further enhance the dataset, synthetic images were generated using a 3D CAD model.
These synthetic images incorporate a variety of textures, HDRIs (High Dynamic Range
Images), weather conditions, and lighting scenarios, which helps to diversify and expand
the range of the dataset. Figure 3 showcases some examples of these generated images.
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(a) Sample 1 (b) Sample 2 (c) Sample 3
Figure 2. Sample Images from Real Dataset.

(a) Sample 1 (b) Sample 2 (c) Sample 3
Figure 3. Sample Images from Synthetic Dataset.

3.2. Domain Randomisation

Domain randomisation is a technique that involves generating hundreds of variations
of an object and its environment to make it easier for a machine learning model to identify
patterns. One issue that often arises when using synthetic data is the domain gap, which
refers to the difference in prediction accuracy between a model trained on synthetic data
and a model trained on real data. Domain randomisation can help minimise this gap by
improving the accuracy of the machine learning model on synthetic data [32]. This makes
an essential element of the synthetic dataset generation process in this research.

The limitations of both the real and synthetic datasets are as follows:
Limitations of the real dataset can be listed as:

• The process of collecting and annotating thousands of images can be time-consuming;
• Even though there are many freely available datasets, the dataset needs to be collected

and annotated for custom objects;
• Annotations are generally created by humans and humans tend to make mistakes;
• The content of the dataset might involve the wrong classes of images;
• Real datasets may only include basic annotations such as bounding boxes, segmenta-

tion, or labels.

Limitations of the synthetic dataset can be listed as:

• While synthetic data can replicate many of the properties of real data, it may not be
able to accurately replicate all aspects of the original content, which can negatively
impact the accuracy of the model.

• The quality of the generated data is heavily dependent on the quality of the 3D model.

The goal of this research is to address these limitations by combining these two datasets
in order to take advantage of the benefits of both techniques.

3.3. Tranining Neural Networks

The custom neural network was designed based on three principles to achieve high
accuracy while minimising computational cost and maintaining high fps in real-time
operation. These principles are “Compound Scaling, Neural Architecture Search, and
Inverted Residual Block”. These techniques have been used to improve the accuracy of
various neural networks. To maximise the benefits of these techniques, they were combined
to create a custom neural network. The following section explains how these techniques
contributed to the improved accuracy of the network.

Prior to the introduction of compound scaling with EfficientNet, the most prevalent
method of scaling neural networks was to increase either their dimensions, i.e., height,
width, depth, or image size [33]. EfficientNet’s compound scaling approach scales the depth,
width, and resolution of the network uniformly using a set of fixed scaling coefficients, in
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contrast to the conventional practice of arbitrarily scaling these factors. To utilise 2N times
more computation power, the constants α, β, and γ were determined through grid search
on the original model and used to increase the depth by αN , the width by βN , and the image
size by γN . Rather than utilising different coefficients for each dimension, EfficientNet
employs a compound coefficient φ to uniformly scale the network. As the convolutional
neural network requires additional layers to capture fine-grained patterns as the input
image increases in size, balancing all dimensions of the network leads to better overall
performance compared to scaling depth, width, and resolution using different coefficients.

Neural architecture search is a method based on reinforcement learning that involves
developing a baseline neural architecture using a multi-objective search that optimises
accuracy and FLOPS (floating-point operations per second) as the optimisation goals,
rather than latency. The objective function serves as a control mechanism to identify
the highest-performing model in terms of accuracy and FLOPS. The controller defines
the model architecture, which is then used for training. After each training sequence, a
reward function calculates and provides feedback to the controller to define a new model
architecture. This process repeats until the best-performing architecture is identified based
on the given accuracy and latency goals. In MNasNet [34], the objective function is defined
as ACC(m)× [FLOPS(m)/T]w.

Inverted residual blocks, depicted in Figure 4 below, are implemented in MBConv and
were first introduced in Inception-V2 [35]. Rather than decreasing the number of channels,
the inverted residual block increases it by a factor of three. As standard convolution
operations are computationally intensive, a depthwise convolution operation is utilised
to generate the output feature map. The second convolution layer reduces the number of
channels in the final stage.

Figure 4. Custom Neural Network.

The hyperparameters for the custom-designed neural network are as follows: The
Width Multiplier φ has been implemented to scale the number of channels in each layer,
thereby controlling the size of the network, and its default value is 1.2. The Depth Multiplier
α was used to control the depth of the network by scaling the number of layers in the
network with a default value of 1.2. The Resolution Multiplier ρ was used to scale the
size of the input image, thereby controlling the input resolution of the network; its default
value was set to 1.1. To prevent over-fitting, a Dropout Rate of 0.25 was implemented,
which drops a unit in the network during training. The network was configured with
16 blocks, each containing a series of layers with a specific set of hyperparameters such
as the number of filters, kernel size, etc. The Expansion Factor γ was used to control the
expansion of the network by scaling the number of channels in the first convolutional layer
of each block with a default value of 1.0. The Convolutional Kernel Size and the Depthwise
Convolutional Kernel Size were set to 5 × 5 for each layer and the depthwise convolutional
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layer of the network. The Stride used in the convolutional and depthwise convolutional
layers of the network was 1.

3.4. Ablation Study

Ablation studies can be used to evaluate the importance of different components in
neural network training for object detection using real and synthetic datasets. By ablating
one or more components from the neural network and comparing the performance of the
modified neural network to the original neural network, the contribution of each element to
the overall performance of the neural network can be identified. The ablation study evaluates
the importance of different features or feature extractors in neural network training for object
detection. Ablation studies can also be used to evaluate the importance of different types of
layers in neural networks, such as convolutional layers, pooling layers, and fully connected
layers. The performance of a neural network is compared with only hand-crafted features to
one with a combination of hand-crafted and learned features, or a pre-trained convolutional
neural network as a feature extractor to one custom-designed neural network. By comparing
the performance of these different configurations and the performance of a neural network
with only certain types of layers to one with a combination of layers on real and synthetic
datasets, the ablation study helps us identify which type of features or feature extractors and
which types of layers are most effective for the refuelling adaptor detection task [36].

Overall, ablation studies can provide valuable insights into the strengths and weak-
nesses of a CNN or custom-designed neural network model for object detection, and the
opportunities for improvement can be identified. By understanding the contribution of
different components to the performance of the neural network on both real and synthetic
datasets, a more effective and efficient neural network model can be designed for the
refuelling adaptor detection task.

3.5. Experimental Setup

The real dataset for this study was obtained from Cranfield University’s Boeing 737-400
aircraft. To supplement the real data, a synthetic dataset was generated using the Blender
and zpy [37] open-source computer vision toolkit. The custom-designed neural network
and transfer learning models were trained on the HILDA high-performance computer at
Cranfield University, which was equipped with 112 Intel Xeon Gold 6258R CPU cores,
4 NVIDIA A100 80GB GPUs, 377GB of DDR4-2933 RAM, and 330Tb of storage capacity.
These resources were allocated specifically for this research project.

4. Results

In this section, a thorough explanation of the parameters that are utilised to design the
custom neural network model is made. The Comparison Table 1 of the custom-designed
neural network model with the pre-trained models, e.g., EfficientNet-B0, VGG-16, and
ResNet-18, is established in terms of data type, learning rate, optimiser function, accuracy,
validation loss, precision, recall, and mAP@.95.

Compound Scaling is a method for scaling up the size and capacity of a neural network
that has been shown to be effective in improving the accuracy of the neural network model
for the refuelling adaptor detection task. It involves increasing the number of channels in
the convolutional layers and the number of layers in the network, while also reducing the
spatial resolution of the intermediate feature maps.

One of the main benefits of Compound Scaling for object detection is that it allows
the neural network to extract and process more discriminating, high-level features from
the input data. In object detection, the goal is to identify and classify objects in images
or video, and the accuracy of the neural network model depends heavily on its ability to
extract features that are relevant to the refuelling adaptor detection task. By increasing the
size of the neural network and reducing the spatial resolution, the neural network model is
able to capture more abstract, semantically meaningful features that are more indicative of
the presence and type of objects in the scene.
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Table 1. Ablation Study Results.

Neural Network Techniques Data Type Learning Rate Optimiser Function Accuracy Validation Loss Precision (%) Recall (%) mAP@.95 (%)

Compound Scaling
Neural Architecture Search

Inverted Residual Block
Real Dataset 10−3

Adam 46.36 23.981 38.30 37.63 41.48
SGD 47.22 22.585 39.31 38.46 28.49

Rmsprop 42.87 26.458 36.12 35.22 29.21

Compound Scaling
Neural Architecture Search

Inverted Residual Block
Hybrid Dataset 10−3

Adam 52.19 19.329 41.27 46.38 38.58
SGD 56.44 15.832 43.83 48.37 40.37

Rmsprop 47.67 20.832 42.14 42.57 39.47

Compound Scaling
Neural Architecture Search

Inverted Residual Block
Real Dataset 10−4

Adam 72.8 14.254 61.74 62.19 53.85
SGD 77.42 12.832 62.18 63.28 54.32

Rmsprop 64.13 16.239 60.49 60.43 51.32

Compound Scaling
Neural Architecture Search

Inverted Residual Block
Hybrid Dataset 10−4

Adam 73.5 10.329 63.21 64.20 57.47
SGD 78.43 9.848 64.37 65.33 58.38

Rmsprop 68.79 12.328 62.47 63.27 56.47

Compound Scaling
Neural Architecture Search

Inverted Residual Block
Real Dataset 10−5

Adam 91.87 0.325 92.22 94.67 92.57
SGD 94.31 0.209 93.83 95.88 93.24

Rmsprop 86.99 0.465 90.62 94.19 91.42

Compound Scaling
Neural Architecture Search

Inverted Residual Block
Hybrid Dataset 10−5

Adam 98.37 0.044 97.03 98.34 97.14
SGD 99.19 0.023 98.26 99.58 97.92

Rmsprop 97.56 0.078 95.47 96.01 96.67

EfficientNet-B0 Real Dataset 10−5
Adam 72.82 6.449 61.40 60.14 56.16
SGD 76.11 6.214 62.89 60.98 55.37

Rmsprop 75.37 8.823 60.95 59.16 54.56

EfficientNet-B0 Hybrid Dataset 10−5
Adam 78.09 5.382 64.31 65.35 58.43
SGD 83.11 4.974 66.49 67.15 59.47

Rmsprop 82.47 6.238 62.58 64.75 56.48

VGG-16 Hybrid Dataset 10−5
Adam 80.88 2.374 84.74 83.19 82.48
SGD 85.56 2.249 86.38 86.17 83.29

Rmsprop 81.74 3.958 81.36 80.12 80.44

ResNet-18 Hybrid Dataset 10−5
Adam 87.44 0.402 90.11 92.89 91.23
SGD 90.89 0.388 92.18 93.77 91.88

Rmsprop 88.32 0.627 88.76 91.03 90.58
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In addition, Compound Scaling helps reduce the over-fitting of the neural network
model to the training data. As the neural network becomes larger and more expressive
computationally, it is able to capture more of the underlying structure of the data.

Neural Architecture Search is a technique that automates the process of designing
and optimising the architecture of the neural network. It has been shown to be effective in
improving the accuracy of the neural network model for the refuelling adaptor detection
task. As the network must be able to extract and process features that are relevant to
the refuelling adaptor detection task, traditional hand-designed architectures can be time-
consuming and labour-intensive to design and optimise, and may not always result in the
best performance.

NAS algorithms search through a large space of possible network architectures to
find the one that performs the best on the refuelling adaptor detection task at hand. NAS
algorithms do this by using a search algorithm, such as evolutionary search or reinforcement
learning, to iteratively explore the space of possible architectures and select the ones
that perform the best. The search process can be guided by a performance metric, such
as accuracy or mAP, and the resulting architecture can be fine-tuned using traditional
hyperparameter optimisation techniques.

By using NAS to find an optimal network architecture, the accuracy of the neural net-
work model can be improved. NAS has been shown to be effective in finding architectures
that outperform hand-designed ones, and it helps reduce the human effort required to
design and optimise the architecture of a neural network.

Inverted Residual Blocks are a type of building block that can be used in CNNs and
have been shown to be effective in improving the accuracy of CNNs for the refuelling
adaptor detection task. Inverted Residual Blocks are designed to improve the efficiency
of the network by using point-wise convolutions to reduce the number of channels in
the intermediate feature maps, rather than using traditional convolutions to increase the
number of channels. This improves the accuracy of the neural network model by allowing
it to process more information with fewer parameters, which reduces the risk of over-fitting
and improves the generalisation performance of the neural network model. Inverted
Residual Blocks also use a shortcut connection that allows the neural network model to
skip layers and directly access deeper features. This helps improve the accuracy of the
neural network model by allowing it to directly access and process semantically meaningful
features that are more indicative of the presence and type of objects in the scene.

The custom-designed neural network stands out with its results in Table 1 as it employs
the methods discussed in the above paragraphs. Here are a few reasons why the custom-
designed neural network is better than pre-trained models, such as EfficientNet-B0, VGG-16,
and ResNet-18.

• Task-specific design: A custom-designed neural network is specifically designed and
optimised for the refuelling adaptor detection task, while pre-trained models are
usually designed to be versatile and adaptable to a wide range of tasks. As a result, a
custom-designed network is able to outperform pre-trained models on the refuelling
adaptor detection task.

• Hyper-parameter optimisation: Pre-trained models are generally trained using a
fixed set of hyperparameters, whereas the custom-designed neural network is fine-
tuned using techniques such as hyper-parameter optimisation to find the best set of
hyperparameters for the refuelling adaptor detection task. This helps improve the
performance of the custom-designed network.

• Dataset characteristics: Pre-trained models are trained on large datasets that may
have different attributes from the dataset that has been used for this research. The
custom-designed neural network is trained specifically on the hybrid dataset, which
resulted in better performance.

• Architectural differences: Pre-trained models have a fixed architecture that may not
be optimal for every task. The custom-designed neural network is designed with
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an architecture that is more suitable for the refuelling adaptor detection task, which
resulted in improved performance.

The hybrid dataset plays a critical role in obtaining these results. Here are a few
reasons why a hybrid dataset is advantageous in this research:

• Increased diversity: Hybrid dataset offers a greater variety of data compared to solely
real or synthetic datasets. This is especially useful as the refuelling adaptor detection
task requires the neural network model to generalise to a wide range of conditions
and the real dataset is limited in size or diversity.

• Improved annotation quality: Synthetic dataset has precise, accurate annotations,
while the real dataset may have less accurate or incomplete annotations. By combining
real and synthetic data, it is possible to take advantage of the precise annotations in
the synthetic data while also incorporating the complexity and variability of real data.

• Reduced cost and ethical concerns: Synthetic dataset can be generated at a lower cost
and with fewer ethical concerns than a real dataset. By using a hybrid approach, it
is possible to reduce the amount of real data that needs to be collected, while still
incorporating the benefits of real data.

Table 1 presents the results of an ablation study conducted on two datasets: Real and
Hybrid. The table is divided into six sections based on the different optimiser functions
Adam, SGD, and Rmsprop. For each optimiser function, three experiments were conducted
with different learning rates 1e−3, 1e−4, and 1e−5. The table shows the accuracy, validation
loss, precision, recall, and mAP@.95% of each experiment. The results show that the hybrid
dataset performs better than the real dataset for all optimiser functions and learning rates
with the highest accuracy achieved using SGD optimiser with a learning rate of 1e−5,
reaching 99.19% accuracy, 0.023 validation loss, 98.26% precision, 99.58% recall, and 97.92%
mAP@.95%. The detailed results can be seen below.

In this study, we proposed a custom neural network that utilises compound scaling,
neural architecture search (NAS), and inverted residual blocks, and trained it using the
Stochastic Gradient Descent (SGD) optimiser function. We evaluated our model on a
hybrid dataset. The results showed that our model achieved an outstanding accuracy of
99.19%. Our model also showed high precision of 98.26%, recall of 99.58% and mAP@.95
of 97.92%. These results indicate that our custom neural network was able to effectively
learn the features of the refuelling adaptor and make accurate predictions. Our model
performed better than the baseline models, such as EfficientNet-B0, VGG-16, and ResNet-
18, in terms of accuracy, precision, recall, and mAP@.95. These results demonstrate the
effectiveness of the proposed architecture in refuelling adaptor detection in real-time, and
the potential of compound scaling, NAS, and inverted residual blocks in improving the
performance and efficiency of neural networks. The use of the SGD optimiser function
helped the model converge quickly and efficiently to the optimal solution, resulting in a
highly accurate model.

In Figure 5, it is evident that the custom-designed neural network is capable of
detecting the refuelling adaptor in real-time on a Boeing 737-400 aircraft. This is a significant
achievement as it highlights the potential of utilising advanced machine learning techniques
for real-world applications. Furthermore, the ability to detect the refuelling adaptor in real
time suggests that this custom-designed neural network has the capability to process and
analyse data in a timely manner which is crucial for efficient and effective decision-making.
Overall, this research provides compelling evidence of the effectiveness of utilising a hybrid
dataset for real-time detection tasks. The use of a combination of different data sources,
such as both synthetic and real-world data, has been shown to improve the performance of
the detection model. This is because it allows the model to learn from a diverse range of
examples and generalise better to new situations.
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Figure 5. Real-Time Detection in RGB and Depth Stream on Boeing 737-400.

5. Discussion

In this study, we found that a custom neural network, utilising techniques such as
Compound Scaling, Neural Architecture Search, and Inverted Residual Block, performed
better than pre-trained models, such as EfficientNet-B0, VGG-16, and ResNet-18. The
advantage of using a custom neural network is that its architecture is tailored to the
specific problem at hand, allowing it to learn more relevant features and improve its
performance. Additionally, a custom neural network was designed to be more efficient in
terms of computational resources, and memory usage and also incorporate domain-specific
knowledge for the problem.

In terms of optimisation, we found that Stochastic Gradient Descent (SGD) performed
better than Adam and Rmsprop. This is likely due to the fact that SGD has the ability to
escape saddle points or local minima more efficiently, requires less memory to store histori-
cal gradients, and can perform well even when the data are noisy or sparse. Additionally,
SGD is more robust to the choice of hyperparameters and does not require tuning of the
learning rate as frequently as Adam or Rmsprop.

We also found that using a smaller learning rate of 10−5 was better than using larger
learning rates such as 10−4 or 10−3. This is because smaller learning rates allow the
optimiser to make smaller updates to the model’s parameters, which helps the model
converge to the optimal solution more gradually and smoothly, and avoid overshooting the
optimal solution. However, it is worth noting that the best learning rate varies depending
on the problem and the specific architecture of the model, and it is always best practice to
try different learning rates and observe how the accuracy of the model changes with each
one. Additionally, using a learning rate schedule or decay helps the model converge more
quickly and efficiently, and also helps avoid over-fitting.

6. Conclusions

It has been presented that domain randomisation is a practical technique to reduce
the reality gap between the real world and the synthetic environment. The neural network
has been trained to accomplish the refuelling adaptor detection task using a hybrid dataset.
By carefully manipulating the parameters to generate the synthetic dataset, the domain
randomisation method pushes the neural network to discover the fundamental features
of the object. By fine-tuning the custom-designed neural network and training it on the
hybrid dataset, it has been demonstrated that the resulting model outperformed pre-trained
neural networks and led to an improvement in the performance achieved by using the real
dataset alone. Using a hybrid dataset to reduce the reality gap is an advantageous strategy
to leverage the strength of domain randomisation.

7. Future Work

Future work will focus on reducing the training time by reducing the size of the
neural network and manipulating the parameters of the layers. By fine-tuning the custom-
designed neural network training time, the computational power and total reaction time of
the detection algorithm will be reduced gradually.
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