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Abstract: Hydraulic rock drills are widely used in drilling, mining, construction, and engineering
applications. They typically operate in harsh environments with high humidity, large temperature
differences, and vibration. Under the influence of environmental noise and operational patterns, the
distributions of data collected by sensors for different operators and equipment differ significantly,
which leads to difficulty in fault classification for hydraulic rock drills. Therefore, an intelligent and
robust fault classification method is highly desired. In this paper, we propose a fault classification
technique for hydraulic rock drills based on deep learning. First, considering the strong robustness of
x−vectors to the features extracted from the time series, we employ an end−to−end fault classifica-
tion model based on x−vectors to realize the joint optimization of feature extraction and classification.
Second, the overlapping data clipping method is applied during the training process, which further
improves the robustness of our model. Finally, the focal loss is used to focus on difficult samples,
which improves their classification accuracy. The proposed method obtains an accuracy of 99.92%,
demonstrating its potential for hydraulic rock drill fault classification.

Keywords: x−vectors; hydraulic rock drill; PHM; focal loss

MSC: 68T10; 97R40

1. Introduction

Hydraulic rock drills are widely used in drilling, mining, construction, engineer-
ing, and other applications for their fast drilling speed, high efficiency, and ease of
automation [1]. Hydraulic rock drills are one of the most versatile tools at various work
sites. Therefore, the fault diagnosis of hydraulic rock drills is of great significance for the
maintenance of machinery and the safety of construction. The timely discovery of hydraulic
rock drill faults can help avoid unnecessary losses [2]. Considering the harsh operating
environments of hydraulic rock drilling machines, the data collected by hydraulic rock
drilling machine sensors are typically low resolution and affected by noise [3,4]. Data
distributions also differ between different operators of hydraulic rock drills, which leads to
difficulties in the fault diagnosis of hydraulic rock drills [5,6].

Many effective algorithms have been developed in the field of fault diagnosis for
hydraulic rock drills. Yelin et al. derived a change law for hydraulic oil in test holes for
cylinder blocks and other important components of hydraulic rock drills. They established
a mathematical model of a hydraulic rock drill and provided a theoretical basis for the fault
diagnosis and improvement of hydraulic rock drills [7]. Jakobsson et al. used a data−driven
approach combined with handcrafted engineering features and dynamic time warping
to detect changes in rock drill behavior by reliably using a small number of sensors [8].
Additionally, Jakobsson et al. considered the fault classification of hydraulic rock drills and
constructed relative features by capturing the amplitude differences induced by different
damping elements in a hydraulic circuit, as well as the time differences between signals. By
combining a support vector machine (SVM) and InceptionTime, they successfully identified
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most faults for different operators [9]. Lei et al. used principal component analysis (PCA) to
reduce the dimensionality of the pressure signal of a hydraulic directional valve and used a
machine learning service to establish an extreme gradient boosting (XGBoost) model, which
effectively identified faults in the hydraulic directional valve [10]. Huang et al. proposed
a fault diagnosis model for hydraulic systems based on convolutional neural networks
(CNNs), which is suitable for multi−rate data samples [11].

Despite these developments in hydraulic rock drill fault diagnosis technology, there is
still significant room for improvement. First, existing fault diagnosis methods for hydraulic
rock drills mainly rely on mathematical models or manual features designed by experts
and combine various machine learning methods to achieve classification. These methods
require two or more steps to be implemented, which may lead to the accumulation of
errors [7,12,13]. Secondly, differences in equipment and the habits of operators can lead
to varying distributions of collected samples, which can deteriorate the performance and
robustness of data−driven fault diagnosis methods [14]. Considering these problems
associated with the fault diagnosis field of hydraulic rock drills, we introduce a fault
classification method based on x−vectors. The main contributions of the proposed method
are three−fold.

• Inspired by the significant development of voiceprint recognition based on deep
learning, we developed an x−vectors−based method for the fault classification of
hydraulic rock drills. Unlike a recurrent neural network or CNN, x−vectors map
variable−length utterances to fixed−dimensional embeddings, resulting in enhanced
robustness and accuracy.

• We utilize an end−to−end loss function to realize the joint optimization of fea-
ture learning and feature classification, thereby avoiding the accumulation of errors
through a multi−step algorithm. By incorporating focal loss, the focus on difficult
samples is increased to improve the accuracy of the model further.

• To handle differences in data distributions, data clipping technology for overlapping
data are employed to align signals and increase the number of useful samples Addi-
tionally, noise is added during the training process to mitigate the negative impact of
data distribution differences and improve robustness.

2. Data and Preprocessing
2.1. Experimental Data

The data utilized in this study came from the 2022 Prognostics and Health Management
(PHM) Conference Data Challenge and were provided by Jakobsson et al. [15]. The data
were collected by three sensors installed on a hydraulic rock drill. Table 1 lists the names
and sampling frequencies of the three sensors. A schematic of the installation locations of
the sensors on the hydraulic rock drill is presented in Figure 1.
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Figure 1. Schematic diagram of the hydraulic rock drill, where red capital letters indicate different
induced fault modes and approximate locations, and ovals indicate the positions of sensors [2].
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Table 1. Names and descriptions of pressure sensors.

Sensor Sampling Description

Pin 50 kHz Percussion pressure at the inlet fitting.
Pdin 50 kHz Damper pressure inside the outer chamber.
Po 50 kHz Pressure in the volume behind the piston.

Researchers have induced various faults by removing or modifying parts. The loca-
tions corresponding to fault triggers are indicated by red capital letters in Figure 1. The
dataset contains 11 classes, including a no−fault (NF) class and 10 different fault classes.
Descriptions of the faults and corresponding fault points in Figure 1 are provided in Table 2.

Table 2. Descriptions of fault classes and the NF class for a hydraulic rock drill.

Label Letter Description

1 NF No−fault
2 T Thicker drill steel.
3 A A−seal missing. Leakage from the high−pressure channel to control channel.
4 B B−seal missing. Leakage from the control channel to the return channel.
5 R Return accumulator, damaged.
6 S Longer drill steel.
7 D Damper orifice is larger than usual.
8 Q Low flow to the damper circuit.
9 V Valve damage. A small wear−flat on one of the valve lands.

10 O Orifice on control line outlet larger than usual.
11 C Charge level in the high−pressure accumulator is low.

Figure 2 presents a pressure trace collected by the three sensors when fault D occurs
in the hydraulic rock drill. It is difficult to distinguish the classes of faults without referring
to the NF class. Figure 3 presents an example comparison of the pressure traces between
the NF class and fault D. The differences between the two fault classes are relatively small
compared to the differences between operators. The oscillation observed at the time of
6.88ms is delayed by the introduction of the fault, but this difference can be masked by
operator differences.
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Figure 2. Pressure signals from an individual sample. The pressure signal of the hydraulic rock drill
was collected when fault D occurred with the pdmp, pin, and po sensors. The pressure data were
normalized and, hence, we did not add the unit.
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Figure 3. Comparison of pressure traces for the NF class and fault D. Based on the introduction of the
fault, there is a delay at the time of approximately 6.88 ms, whereas the differences can be covered by
operator differences. Without referencing the NF pressure trace, it is difficult to determine the class of
fault. The pressure data were normalized and, hence, we did not add the unit.

The dataset used in this study contains data from eight operators. The faults are
divided into 11 classes with 300 to 700 cycles per class; each sample contains data from
3 sensors. The number of sample points in the training set is between 571 and 748. In the
2022 PHM Conference Data Challenge, time series no. 7 and no. 8 were used for final
ranking. Therefore, the ground−truth labels for time series no. 7 and no. 8 are unknown.
To generate a large number of samples, a time series of several seconds was collected and
divided into individual impact cycles. The structure of the data from time series no. 1 to no.
6 is presented in Figure 4 [2].
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Figure 4. The number of samples of each individual and the number of samples of each class.

2.2. Data Preprocessing
2.2.1. Normalization

To improve the performance of the model and stability of training, the data were
standardized as follows:

xnorm =
x− µ

σ
, (1)
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where x is the time series of a single impact cycle, and µ and σ are the mean and standard
deviations of the corresponding impact cycle, respectively [2].

2.2.2. Noise

We added 50 dB of Gaussian noise to the training data for some models to enhance
their robustness. The Gaussian noise is defined as follows:

T = M

√
Ps

10
SNR

10
, (2)

where M is a randomly generated sequence M ∼ N(1, 0) obeying a normal distribution,
SNR is the signal−to−noise ratio, which is set to 50 in this study, and Ps is the effective
power of the signal, which can be calculated as follows [16]:

Ps =
∑N

i=0 x2
i

N
. (3)

2.2.3. Uniform Sample Length

To avoid the effect of the sample length on the model performance and the use of
mini−batches during the model training, a fixed input size is required. Common methods
for unifying the length of time series data include splitting and padding [17]. Two uniform
sample lengths are presented in Figure 5. When the padding method is used, the fixed
length f ixed_length is defined as follows:

f ixed_length ≤ max(length1, · · · , lengthN), (4)

where length1 is the length of sample 1 and N is the number of samples. For samples
shorter than f ixed_length, we add zeros on both sides until the required length is achieved.
When the splitting method is used, the fixed length f ixed_length is defined as follows:

max(length1, · · · , lengthN)

2
≤ f ixed_length ≤ min(length1, · · · , lengthN). (5)

The splitting method divides a sample into two subsamples. Excluding samples with
length = 748 and f ixed_length = 374, both types of subsamples contain overlaps, which
guarantees the integrity and continuity of the samples.

Sequence 1

Sequence 2

Sequence 3

PaddingPadding

Padding Padding

(a) Padding

Sequence1

Sequence1_2

Sequence1_1

Sequence1

Sequence1_2

Sequence1_1

(b) Splitting

Figure 5. Diagram of the unified length of the time series data.

In this study, the length of the samples ranged from 571 to 748. We selected a short
length of 374 as the fixed output length to increase the number of samples, reduce the depen-



Mathematics 2023, 11, 1724 6 of 14

dence of the network on a small number of samples, and disperse the feature information
across more samples [18].

3. Methods
3.1. Baseline Model

Since x−vectors capture the characteristics of time series that may not have been
seen during DNN training and are robust to data with varying distributions, we utilized
x−vectors for the fault classification of hydraulic rock drills. The DNN used for extracting
x−vectors supports the mapping of indeterminate−length sequence data into fixed−length
x−vectors to adapt to diverse data. Unlike a long short−term memory (LSTM) network, the
DNN based on a time−delay neural network (TDNN) supports parallel operation, which
effectively improves the training efficiency of the model. Additionally, such a structure is
helpful for x−vectors in terms of learning broader contextual information through multiple
layers of TDNNs [19]. The DNN parameters are presented in Table 3, and the network
structure of the DNN is presented in Figure 6, where lines of the same color represent the
same weight [20–22]. The DNN is composed of TDNNs, statistical pooling layers, and
embedding layers. The characteristics of each layer are described below.

• The input for a TDNN is a patchwork of historical, current, and future features. For
time series, TDNNs have the same ability as LSTM in terms of extracting contextual
information, but retain the parallel computing capabilities of a CNN. In our DNN,
five layers of TDNNs are used for feature extraction [22].

• Statistical pooling layers calculate the means and standard deviations of the features
extracted by the TDNNs and aggregate all of the time−dimension information of
the time series. The means and standard deviations are then combined to form new
features.

• The embedding layers perform embedding and classification. The embeddings ex-
tracted from the affine components of layer segment6 are x−vectors. Following
segment7 mapping, the predicted probabilities are outputted through a softmax
layer [23].

mean

Frame1

Frame2

Frame3

Frame4

Frame5

Statistics Pooling

Segment6

Segment7

Softmax

3

512

1536

512

512

1500

3000

512

64

11

......

Segment8

std

11

Figure 6. The DNN used for x−vector extraction. Lines with the same color between each layer
represent the same weight. “mean” and “std” denote the mean and standard deviations of features.
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Table 3. The architecture of the DNN. The x−vectors are extracted at layer segment6, before the
nonlinearity.

Layer Layer Context Total Context Input × Output

Frame1 [t − 2, t + 2] 5 3× 512
Frame2 {t − 2, t, t + 2} 9 1536× 512
Frame3 {t − 3, t, t + 3} 15 1536× 512
Frame4 {t} 15 512× 512
Frame5 {t} 15 512× 1500

Stats Pooling [0, T) T 1500T × 3000
Segment6 {0} T 3000× 512
Segment7 {0} T 512× 512
Softmax {0} T 512× 11

3.2. Loss Function

The cross−entropy loss was used to measure the performance of the classification
model on classification tasks. For multi−classification tasks, the cross−entropy loss func-
tion is defined as

CE(pt, y) =

{
− log(pt) i f y = 1
− log(1− pt) otherswise.

, (6)

where pt is the prediction result and y is the ground−truth class. Although the cross−entropy
loss function can achieve good performance on most tasks, it cannot address the problems
of class imbalance and differences in classification difficulty. In this study, the numbers of
sample classes were approximately evenly distributed, but there were differences in terms
of classification difficulty. Therefore, the focal loss was adopted to solve the problem of
classification difficulty differences and is defined as follows:

FL(pt) = −αt(1− pt)
γ log(pt), (7)

where α is a weighting factor used to adjust the imbalance of sample classes that is set to
one in this study. γ is a modulating factor that smoothly increases the weight of samples
that are difficult to classify and was set to two in this study [24].

3.3. Hyperparameters

There are 6 time series in total (i.e., no. 1 to no. 6). In each cross−validation round, we
utilized one of them as the test set, and the others for training and validation (with a ratio
of 95%:5%). The time series data were split into equal lengths of 374. The network and
training processes used in this study were implemented in PyTorch [25]. We trained the
model for 200 epochs using a mini−batch size of 128 [26]. We used the Adam optimizer
with β1 = 0.9, β2 = 0.9999, and ε = 1× 10−9 [27]. The learning rate was changed over
time as follows:

learning_rate =


0.0001 epoch ∈ [0, 50)
0.00005 epoch ∈ [50, 100)
0.00001 epoch ∈ [100, 200]

. (8)

3.4. Evaluation Metrics

According to the rules of the 2022 PHM Conference Data Challenge, the performance
of our model was evaluated based on accuracy, which is defined as follows:

Accuracy =
Correctly classi f ied cycles

Total number cycles
. (9)

In our experiments, to evaluate the robustness of our model, we considered one of the six
datasets as a testing set and the remaining data as the training set for cross−validation. The
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average accuracy (AA) of the six test sets was considered as the overall evaluation metric.
The formula for AA is defined as follows:

AA =
1
D ∑D

d=1 Accuracyd, (10)

where D is the number of datasets, which was six in this study. Considering the large
differences between the numbers of samples in each dataset, to eliminate the influence
of this factor, we also introduced the average weighted accuracy (AWA) as an evaluation
metric, which is defined as follows:

AWA =
∑D

d=1 Accuracyd · nd

∑D
d=1 nd

. (11)

4. Experimental Results

According to the rules of the 2022 PHM Conference Data Challenge, time series no.
7 and no. 8 were used for the final testing and ranking of our model. These time series
contain 7935 and 8461 samples, respectively. The test results demonstrate that our method
achieved 99.97% accuracy on these testing sets. Considering the lack of ground−truth
labels for time series no. 7 and no. 8, we utilized time series no. 1 to no. 6 to evaluate the
performances of various fault classification models.

4.1. Cross−Validation Performance

In traditional cross−validation, samples from the same individual may appear in both
the training and testing sets. However, the similarity between such samples can lead to
information leakage, resulting in an overly optimistic performance evaluation. Considering
the practical implications of fault classification models for the fault diagnosis of hydraulic
rock drills, we reserved all samples from an individual as a testing set and defined the
training and development sets using the remaining datasets [28].

Specifically, we reserved the datasets corresponding time series no. 1, no. 2, no. 3,
no. 4, no. 5, and no. 6 as testing sets and used the remaining datasets to train our model
for six−fold cross−validation. The training details in terms of accuracy and loss versus
the number of epochs are presented in Figure 7. To ensure the model performance on the
testing set, we trained for a total of 200 epochs. However, during training, the models for
all folds reached convergence within a short period (approximately 80 epochs). To observe
the changing trends of loss and accuracy conveniently, we monitored these changes closely
over the first 100 epochs. Table 4 presents the log accuracy of the models on the validation
sets and the results indicate that the trained models have good generalization capabilities.

Table 4. Cross−validation accuracy for different folds, and overall AA and AWA.

Test Set Accuracy AA AWA

no. 1 0.9969

0.9992 0.9990

no. 2 1.0000
no. 3 1.0000
no. 4 0.9983
no. 5 1.0000
no. 6 1.0000
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Figure 7. Training details for six folds. To facilitate the observation, only the trends of the first
100 epochs are presented, and the log scale is used on the loss.

4.2. Performance Comparisons with Added Noise of Different SNRs

In order to enhance the robustness of the proposed method to unknown datasets, we
added Gaussian noise to the training dataset. We evaluated the performance with different
signal−to−noise ratios, including 10 dB, 20 dB, 30 dB, 40 dB, 50 dB, and without noise. As
shown in Table 5, the best performance on the test set corresponds to 50 dB with AA of
99.90%. Therefore, we added the Gaussian noise with a SNR of 50 dB.

Table 5. The performances corresponding to different noise levels.

Test Set 10 dB 20 dB 30 dB 40 dB 50 dB No Noise

no. 1 0.9348 0.9952 0.9917 0.9929 0.9969 0.9943
no. 2 0.8813 0.9456 0.9999 0.9994 1.0000 1.0000
no. 3 0.9205 0.9959 1.0000 1.0000 1.0000 1.0000
no. 4 0.8646 0.9967 0.9978 0.9984 0.9983 0.9974
no. 5 0.8813 0.9940 1.0000 1.0000 1.0000 1.0000
no. 6 0.7832 0.8293 0.9930 1.0000 1.0000 1.0000
AA 0.8776 0.9595 0.9971 0.9984 0.9992 0.9986

AWA 0.8830 0.9702 0.9973 0.9981 0.9990 0.9983

4.3. Comparisons between Different Sample Lengths

Regarding the length of the time series, five different lengths (374, 400, 500, 571, and
748) were used for testing. Time series with lengths of 374, 400, 500, and 571 were obtained
by splitting, whereas time series with a length of 748 were obtained by padding. The
longest sample used for training was 748, which was twice as long as 374. The shortest
length used for training was 374 to ensure the integrity of sample information. The shortest
testing sample length was 571 and the longest was 748. Samples with a length of 748 were
obtained by adding zeroes on both sides of shorter samples.
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The performances on the test set based on training with five different lengths are
listed in Table 6. The test results reveal that the accuracy (corresponding to all lengths) is
greater than 90%. The models trained on time series with a length of 374 yield the best
performances in terms of both AA and AWA.

Table 6. Test results of models trained using time series of different lengths.

Splitting Padding

Test Set 374 400 500 571 748

no. 1 0.9969 0.9951 0.9030 0.8598 0.9629
no. 2 1.0000 1.0000 0.9916 0.9766 0.9982
no. 3 1.0000 1.0000 1.0000 0.9921 1.0000
no. 4 0.9983 0.9991 0.9937 0.9982 0.9984
no. 5 1.0000 1.0000 0.9900 1.0000 0.7639
no. 6 1.0000 0.9979 0.9906 0.9915 0.9718
AA 0.9992 0.9987 0.9781 0.9697 0.9492

AWA 0.9990 0.9987 0.9749 0.9657 0.9389

4.4. Comparisons between Different Network Architectures

The proposed DNN based on x−vectors was compared with dense−connected con-
volutional networks (DenseNet) [29], bidirectional LSTM (BiLSTM), traditional SVM, and
gradient−boosting decision tree (GBDT). When the SVM and GBDT are used, the original
data of the three sensors are concatenated into a one−dimensional vector, which is directly
input into the algorithm. During testing, the SVM and GBDT require inputs of fixed lengths.
Therefore, the data must be split using the method described in Section 2.2.3. A split sample
consists of two subsamples. When the predicted results for both subsamples are the same,
then the results are considered the final results. When the results of the two subsamples
are inconsistent, further judgment is required. To demonstrate the effects of the SVM and
GBDT fully, the results of SVM(L), SVM(R), SVM(N), GBDT(L), GBDT(R) and GBDT(N) are
presented. When the subsample prediction results are inconsistent, these three methods for
determining the final results are defined as follows [30,31].

• SVM(L), GBDT(L): The result of the subsample on the left is the final result.
• SVM(R), GBDT(R): The result of the subsample on the left is the final result.
• SVM(N), GBDT(N): When the prediction results of two subsamples are inconsistent, it

is considered to be a prediction error.

The performances of the five networks on the test set are presented in Table 7. The
experimental results reveal that x−vectors have obvious advantages over other network
structures with AA and AWA values reaching 99.91% and 99.90%, respectively. In particular,
on time series no. 1, the x−vectors achieve the best results.

Table 7. Test results of models trained using different networks.

Test Set X−Vectors DenseNet BiLSTM SVM(L) SVM(R) SVM(N) GBDT(L) GBDT(R) GBDT(N)

no. 1 0.9969 0.8401 0.4069 0.3947 0.4783 0.2105 0.6187 0.5131 0.3424
no. 2 1.0000 0.9428 0.6717 0.7875 0.5878 0.4949 0.8504 0.4762 0.4379
no. 3 1.0000 0.9991 0.4585 0.8951 0.8492 0.7575 0.8926 0.7503 0.7085
no. 4 0.9983 0.9681 0.6740 0.8735 0.7741 0.6921 0.8793 0.8130 0.7499
no. 5 1.0000 0.9947 0.6293 0.9173 0.6617 0.6264 0.8224 0.7302 0.6423
no. 6 1.0000 0.9535 0.9860 0.7920 0.6274 0.5439 0.7650 0.5117 0.4264
AA 0.9992 0.9497 0.6377 0.7767 0.6631 0.5542 0.8047 0.6324 0.5512

AWA 0.9990 0.9447 0.6206 0.7653 0.6460 0.5343 0.8008 0.6332 0.5487
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The x−vectors and embeddings extracted from DenseNet and BiLSTM were reduced
to two dimensions using PCA; t−distributed stochastic neighbor embedding (t−SNE)
images were generated [32]. Considering time series no. 1, which contains a large number
of difficult samples, for example, the t−SNE images of the three embeddings are presented
in Figure 8 [33]. In the t−SNE diagram, the x−vectors clearly distinguish each sample
type. There are a small number of errors in the embeddings extracted by DenseNet
between the classes of NF and fault R, whereas the embeddings extracted by BiLSTM fail
to distinguish several classes. The x−vectors extracted by our DNN provide a clearer
mapping relationship with the classes of samples.
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Figure 8. t−SNE images of embeddings for different networks.

4.5. Comparisons between Different Loss Functions

The focal loss was adopted in this study to focus on difficult samples during model
training. We considered the common cross−entropy loss and focal loss for testing. Table 8
presents the accuracy for each dataset on the test set. The results reveal that the model using
focal loss provides higher accuracy on difficult series (e.g., time series no. 1), compared to
the cross−entropy loss.

Considering time series no. 1, which yields different accuracy values for the two loss
functions, as an example, the distribution of error samples is presented in Figure 9. For time
series no. 1, the main error produced by the model is the prediction of NF samples as other
classes of faults. Compared to cross−entropy loss, focal loss yields fewer sample prediction
errors for the NF class and no sample prediction errors for the other classes. Therefore, it
can be concluded that focal loss is more effective for classifying difficult samples.

Table 8. Test results of models trained using different loss functions.

Test Set Focal Loss Cross Entropy Loss

no. 1 0.9969 0.9951
no. 2 1.0000 1.0000
no. 3 1.0000 1.0000
no. 4 0.9983 0.9983
no. 5 1.0000 1.0000
no. 6 1.0000 1.0000
AA 0.9992 0.9989

AWA 0.9990 0.9987
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Figure 9. Sample prediction errors for time series no. 1. The models trained with cross−entropy
loss and focal loss both have difficulty in accurately predicting the NF class. The model trained
with cross−entropy loss fails to predict thirty−five NF samples and one fault A sample. The model
trained with focal loss only incorrectly predicts a single NF sample.

5. Conclusions

Inspired by the excellent performance of x−vectors for feature extraction from time
series, we introduced x−vectors from the field of voiceprint recognition to the fault clas-
sification of a hydraulic rock drill for the first time. We adopted an end−to−end neural
network to realize the joint optimization of feature learning and classification, avoiding
the tedious process of manual feature extraction and the issue of error accumulation. By
adopting a time−series splitting technique, inconsistent time series lengths were resolved,
and the issue of distribution differences between datasets was alleviated. Compared to
DenseNet, BiLSTM, SVM, and GBDT, DNN with x−vectors can extract more enhanced
contextual information. Statistics pooling enables the network to accept time series of
different lengths, increasing the practicability of the model. The focal loss was used to im-
prove the performance of the developed model on difficult samples. Experimental results
demonstrated that the proposed method provides superior robustness and classification
performance with an average accuracy of 99.92%. It should be noted that the samples uti-
lized in this paper were collected from a limited number of hydraulic rock drills. Additional
samples are required to enhance the generalization ability of the developed model.
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