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Abstract: This model considers a two-warehouse inventory system of deteriorated items with ramp-
type demand and a constant rate of deterioration. It is maintained a rental warehouse (RW) of infinite
capacity to load the excess items of replenished goods after filling the items of finite capacity in the
own warehouse (OW). Retailers are encouraged to opt for the prepayment option of paying their
purchase cost in equal installments prior to the delivery of the ordered items with a considerable
discount, which will ensure the purchase guarantee of their orders. The slotted backlog interval of the
stock out period is handled in two different ways to retain the customers and ease their impatience.
Customers in the first slot of the stock out period are satisfied by the emergency purchases from
local suppliers with high purchasing costs to avoid losing customers. Customers in the next slot
are satisfied immediately after the next replenishment point. Essential measures of the system are
derived: optimal ordering quantities from both regular and local suppliers; replenishment cycle
length; and a partitioned backlog interval. A numerical example is given along with the optimal
solutions for a particular environment with sensitive analysis in order to validate the model’s efficacy.
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1. Introduction

In the competitive commercial economic market, suppliers frequently provide a pre-
determined limited credit time to the retailers on their payments in order to encourage
them. From the perspective of the retailer, during the period until payment is due, he
or she can sell the goods, generate income, and earn interest. One type of commercial
financing is a prepayment price reduction, with which the retailer pays the supplier just
before the payment time of maturity but less than the whole amount due for the payment.
In our model, to preserve the relationship and avoid late delivery of the goods, the retailer
may select the option to pay the entire amount in n equal installments prior to receiving
the products.

The literature review that led us to the above mentioned study is as follows: The
extension of the news boy problem of ordering twice in a period instead of only one order
in a period was studied by [1], with the inclusion of an additional setup cost for the second
order. However, the second order is not for backlogged customers.

They have derived the initial order amount: the amount of the subsequent order
and the time gap between the subsequent orders. A continuous review inventory model
with deterministic demand, a partial backlog and customer impatience was registered
by [2] in the literature. In addition, fixed ordering cost and stock-based holding expenses
were considered as well as derived minimum inventory cost for the optimum economic
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lot size and reorder level. The article [3] has highlighted the issues of items stored in
two warehouses with the degradation of items over time. They backed up the shortfalls
and identified the most effective refill plan by considering constant demand and different
dispatching methods. Then, the LIFT model was compared with the FIFO model in a
sensitive analysis.

The inventory model with a disparate ordering policy and mixed sales of both the
fraction of serviceable and servicing products was studied by [4]. It proposed a method of
optimizing the annual total profit in the mixed sale scenario, with and without considering
the full backlog. A real-world case study of a gas station as an EOQ model dealing
with evaporating goods was discussed by [5] with partial backorders and subsequent
prepayments of the purchasing cost. The EOQ model with no shortages, shortages with
fully and partially backordered items were investigated by [6]. Items deterioration was
taken into account and the entire purchase cost has to be paid prior to the replenishment
epoch. The interval uncertainty inventory model with the partial backlog of shortages is
examined in [7] with the scenarios of paying the entire purchase cost with full prepayment
and partial prepayment without discount. The optimization was obtained by using the C-R
optimization approach.

A deterministic inventory model of deteriorated items with the consideration of an
annual and an advance payment plan is studied in article [8]. The supplier provides an
advance installment payment option on the payment of purchasing price, and partially
backlogged shortages occur continuously. Numerical examples are obtained by using the
LINGA 18 software. The paper [9] presents an EOQ model with a prepayment option
that is generated under three unique conditions: no scarcity, an entire backlog and partial
backlog. The work of [10] is an expanded inventory model of deteriorating items with
stock-dependent demand and time-varying deterioration and backlogs. The essential con-
ditions for the existence and uniqueness of optimal solutions were derived with numerical
validation. The demand for seasonal products follows a ramp-type demand fashion and is
documented in article [11]. The study examines the seasonal product inventory with ramp-
type demand and a constant fraction of on-hand inventory-dependent deterioration. It is
derived from the optimal replenishment policy to minimize total cost for the entire season.

The article [12] investigates an inventory model of deteriorating products under the
influence of the occurrence of inspection during the time of replenishment. It is a case study
with the validation of comparison. The optimal replenishment policy of the deterministic
inventory model with ramp type demand, time dependent degradation and partial backlog
was discussed in [13] for the inclusion and exclusion of shortages. A two warehouse
inventory model of constantly deteriorated items is observed in [14] with ramp-type
demand and a constant rate of partial backlog. They derive the algorithm for an optimal
replenishment policy. In [15], they built two warehouse inventory models with ramp type
demand and three-parameter Weibull deterioration under inflationary environments and
with a delay payment option. A single product inventory model is developed in [16]
with ramp-type demand and suppliers’ trade credit policy. No shortages are allowed.
The optimal replenishment policy to minimize the total cost of the cycle has arrived. The
influence of suppliers’ credit period options on retailers’ ordering patterns is studied by
comparing the model with and without considering the delay payment option. Suggestions
are given to the suppliers in setting trade crediting periods.

A study on the order-level inventory system of deteriorating items with ramp-type
demand was taken on by [17]. A comparative study of the model in the absence of
deterioration phenomena was conducted with both deterministic and stochastic demand
patterns. In [18], an inventory model of Weibull distributed deterioration of items with
ramp-type was examined for minimizing the unit total cost. Shortages in the stock out
period are backlogged. Generalized ramp-type demand is rationalized by the discussion.
A classical EOQ model of time-dependent deteriorated items with unit production cost
and ramp type demand was discussed by [19]. The model has been solved for both
cases of shortage and no shortage. In [20], it is considered a study of a single product
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inventory model with time dependent holding cost and ramp-type demand. Two cases
of replenishment policies are discussed, with and without shortages. The waiting time
dependent backlog rate is considered. The optimal ordered policy is derived for both the
cases. In the study of deteriorated inventory models, due concentration is given by [21]
to the phenomenon of the gradual increase in the deterioration rate of an item while its
expiry date is closer. The pseudo convexity of the decision variables for the annual relevant
cost is established with the objective of minimizing the total cost. The integrated planning
model of service engineers along with the required spare parts was studied by [22] with
the objective of minimizing the total service cost of the cycle.

Article [23] talks about a two-supplier inventory system with different types of supply
contract policies. An algorithm was proposed with the objective of minimizing expected
cost in the long run by considering inventory holding capacity and fixed ordering quantity
as decision variables. In the inventory literature, the study of minimizing the total inte-
grated cost for the supplier as well as for the retailer who manages two warehouses was
performed by [24], with a credit period option on payment. The model was developed
as a non-linear optimization problem and solved by the generalized reduced gradient
method. The warehouse-retailer network design (WRND) model was discussed by [25],
with the inclusion of placement, distribution and choice of inventory replacement. They
have applied an effective column-generation technique in order to solve issues in large-scale
WRND. The model of the pricing sub-problem was developed by [26] to reduce overall
multi-echelon stock, transportation and facility of placement expenditures. It is suggested
that this methodology can resolve the moderate-size distribution network design challenge.

The importance of the influence of order quantity on lead time length is studied by [27]
with suppliers’ offers of short period price discounts. The optimal special order quantity in
order to optimize total cost is derived. In [28], the study of a two-ware house deterministic
inventory was carried out with the consideration of partial backlog, monetary inflation
effect and the retailers’ three slot payment option to attain optimal total cost and ordering
quantity with numerical validation.

The list of articles in our literature review which are given due importance to the
ramp-type demand compared with our model are shown in the following Table 1.

Table 1. Comparison of our model with existing ramp-type demand models in our literature review.

Author[s] Payment No. of
Orders.

FB-Full Backlog
PB-Partial Backlog Deterioration Ramp Type

Demand

Panda, S. et al. [10] - One - On hand inventory
dependent

√

Chakraborty, D. et al. [11] Delay payment One PB Weibull √

Yan Shi et al. [12] Delay payment One - Constant √

Skouri, K. et al. [14] - One PB Weibull √

Agrawal, S. et al. [15] - One PB Constant √

Panda, S. et al. [17] - One FB Weibull
Manna, S.K. et al. [18] - One - Time dependent √

Biplab Karmakar [19] - One PB Constant √

Our work Multiple
prepayments Two FB Constant √

In a real life scenario, retailers who deal with products that are either new to the
market or seasonal products, such as umbrella, woolen fabric in the rainy season or festival
foodstuffs, may experience that the demand rate for such products exhibits a nature of
ramp-type demand fashion. Since the above-mentioned products enter into the market
for sales, the demand rate rises for a certain period in the beginning and stabilizes in the
later period. This sort of demand rate stabilization is known as “ramp-type” demand. The
retailers may order more items as either the demand is greater, or due to attractive special
discount offers in order to promote the new items during some particular season. Most of
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the time, the retailers are experiencing that there is insufficient space to store all the ordered
items in the inventory in a single storage place. In such situations, the excess items are
stored in a rented warehouse with high holding costs. As a result, purchased items are
placed OW first, followed by the RW. Arriving demands are first satisfied by the items from
RW and then the items from OW. In traditional inventory models with shortages, it is often
assumed that the unmet demands are either fully lost or totally backlogged or partially
backlogged. While some consumers whose demands are backlogged may quit, others may
be ready to wait until their demands are satisfied. However, in reality, the retailers instantly
order some quantity of items from local suppliers to fulfill the exigency with a slightly
higher purchasing cost in order to avoid and reduce the waiting time of the fraction of
backlogged customers. The remaining backlogs are filled at the next replenishment point
of the consecutive cycle. The implementation of the above novel idea of considering the
backlogged interval as two different slots, which are dealt with in two different ways, is
not yet registered in the past literature in the ramp-type demand environment. In the past
literature, a purchase from the local supplier is entertained to satisfy the regular customer
not for the fraction of backlog customers. In that way it is different from existing models.
Sometimes, the prolonged backlog interval may result in customer loss as it triggers the
threshold level of their impatience. This article will be the remedy for the above issue in
inventory cost optimization.

The remaining sections of the article are arranged as follows: Basic assumptions are
described in Section 2 for the clarity of the under-considered model. A discussion of the
model’s development and analytic solution a represented in Section 3.A numerical study
and sensitivity analysis are presented in Section 4 to explore the importance of the study.
The revelations of results as discussions and suggestions are presented in Section 5. The
paper is concluded with the scope and future study in Section 6.

2. Assumptions

We consider the retailer who is dealing with the items which are new to the market. In
the past literature, the demand for such items follows ramp-type demand. Moreover, the
suppliers offer many strategies such as the late payment option, discount on early payment
and payment by installments either prior to the replenishment point or later to attract the
retailers, which are evidenced in our literature review. Handling the backlog customers is
a challenging task for the retailer to retain customers’ goodwill. There are many articles
available in the existing literature that deal with the demands at the time of the stock-out
period in different ways. We permit either full backlog or partial backlog. We considered
the slotted backlog interval in our work; the fraction of backlogged customers is satisfied
by the purchase from a local supplier, in order to retain the customer’s goodwill and avoid
a loss of customers due to impatience.

� Inventory deals with a single type of commodity which is new to the market.
� Instantaneous replenishment policy is adopted. That is zero lead time.
� The holding cost of the items in RW is higher than that of OW, and RW items are

sold first.

� The Heaviside step function H(t− t1) is defined by H(t− t1) =

{
1, t ≥ t1
0, t < t1

.

� Ramp-type demand R(t) = Aeb[t−(t−t1)H(t−t1)] is considered, here A > 0, b > 0.
Initially for t < t1, the demand function is a time-dependent exponential function; in
later stages for t ≥ t1, demand pattern turns into constant rate.

� The rate of deterioration is constant in both warehouses.
� Purchased items are first loaded and preserved in OW and then the excess units are

kept in RW.
� Items in OW are sold only after the items in RW are emptied either by selling or due

to deterioration.
� Backlogs due to shortages are fulfilled in two ways: a fraction of the backlogs (which

are in slot-1) are satisfied by the items ordered from local suppliers with a little higher
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purchasing cost and the rest of them (which are in slot-2) are satisfied only at the time
of the next replenishment point of the consecutive cycle.

� The discounted purchase cost is paid in n equal installments prior to receiving
the items.

� Both demand and deterioration are allowed in OW as well as in RW.

3. Model Development and Analytic Solution

In this section, a two-warehouse inventory model is developed with backlogs of
shortages. The backlogs in the stock-out period of two different slots are dealt with
in two different ways in order to retain customers and shorten the customers’ waiting
time in the stock-out period. The total length of the replenishment cycle is t4. Among
the purchased N items from a regular supplier, K items are stored in OW as it is at its
maximum capacity after satisfying previous cycle backlogs of B2 items. The remaining
M = N− (B2 +K) items are kept in RW. The items in RW are gradually decreasing to
zero at the end of the interval [0, t1], due to the cumulative impact of ramp-type demand
and constant deterioration. However, at the same time, OW gets decreased only due to
item deterioration. The demands that are arrived after the time epoch t1 are satisfied by the
items from OW and it becomes empty due to both demand and deterioration at the time
point t2. Shortages are backlogged in the stock-out period. The entire stock-out timeline is
slotted into slot-1 and slot-2. We satisfy the B1 backlogs up to the time point t3 in slot-1 by
ordering the items from a local supplier immediately at t3 to retain impatient customers.
The remaining B2 backlogs in slot-2 which are accumulated in the interval [t3, t4] are
satisfied by the items received in the next replenishment epoch. Before the ordered goods
arrived, the retailer paid the purchase price in n equal installments as a prepayment with
discounts. The graphical representation of the model’s dynamism is given in Figure 1,
as follows.
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The stock level at ‘t′ in the interval [0, t1] is calculated by using the following differen-
tial equation.

dSr(t)
dt

+ηrSr(t) = −Aebt (1)

eηrtSr(t) = −
∫

Aebteηrtdt
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By applying the condition Sr(t1) = 0, we obtain

Sr(t) =
Aebt1

(b + ηr)

[
−e−b(t1−t) + eηr(t1−t)

]
, t ∈ [0, t1] (2)

For OW, the stock level at ‘t′ in [0, t1] is derived from the following differential equation

dSo(t)
dt

= −ηoSo(t) (3)

eηotSo(t) = c

By applying the condition So(0) = K, we obtain

So(t) = Ke−ηot, t ∈ [0, t1] (4)

The differential equation that represents the stock level at ‘t′ in OW in the interval
[t1, t2] is

dSo(t)
dt

= −ηoSo(t)−Aebt1 (5)

eηotSo(t) = −Aebt1

∫
eηotdt

By applying the condition So(t2) = 0, we obtain

So(t) =
Aebt1

ηo

[
eηo(t2−t) − 1

]
, t ∈ [t1, t2] (6)

The number of shortages that occurred in the entire interval [t2, t3] is derived as

dSo(t)
dt

= −Aebt1 (7)

Integrating (7) and applying the condition So(t2) = 0, we obtain

So(t) = Aebt1(t− t2), t ∈ [t2, t3] (8)

The number of shortages that occurred in the entire interval [t3, t4] is derived as

dSo(t)
dt

= −Aebt1 (9)

Integrating (9) and applying the condition So(t3) = 0, we obtain

So(t) = Aebt1(t− t3), t ∈ [t3, t4] (10)

The total quantity of products ordered at the beginning of the cycle is determined
by combining the capacity of OW, the number of items stored in RW, and the number of
shortages that occurred during the interval [t3, t4], which is as follows:

N= Sr(0) + So(0) + So(t4)

Here, Sr(0) = A
(b+ηr)

[
e(ηr+b)t1 − 1

]
, So(0) = K

B2 = So(t4) = Aebt1(t4 − t3) (11)



Mathematics 2023, 11, 1728 7 of 17

Therefore, the total number of items purchased is

N=
A

(b+ ηr)

[
e(ηr+b)t1 − 1

]
+K+Aebt1(t4 − t3) (12)

The total number of items purchased from the local supplier is based on the number
of shortages that occur throughout the interval [t2, t3]. That is

B1 = So(t3) = Aebt1(t3 − t2) (13)

The costs associated with this model are as follows:

1. Total ordering cost = Ordering cost on purchase from regular supplier + Ordering
cost on purchase from local supplier

Total ordering cost = O1 + O2. (14)

2. Total purchasing cost = Total purchasing cost of items paid to regular supplier + Total
purchasing cost of items paid to local supplier

Total purchasing cos t = (1− ξ)(P1N) +P2R (15)

3. Holding cost in RW = Hr
∫ t1

0 Sr(t)dt

= Hr
∫ t1

0
Aebt1
(b+ηr)

[
−e−b(t1−t) + eηr(t1−t)

]
dt

Holding cos t in RW = Hr
Aebt1

(b+ ηr)

{
1
ηr

(
eηrt1 − 1

)
+

1
b
(e−bt1 − 1)

}
(16)

4. Holding cost in OW = Ho

{∫ t1
0 So(t)dt +

∫ t2
t1

So(t)dt
}

Consider,
∫ t1

0 So(t)dt =
∫ t1

0 Ke−ηotdt = K
ηo
[1− e−ηot1 ]

And
∫ t2

t1
So(t)dt =

∫ t2
t1

Aebt1
ηo

[
eηo(t2−t) − 1

]
dt = Aebt1

ηo2

[
ηo(t1 − t2)− 1 + eηo(t2−t1)

]
Holding cos t in OW = Ho

{
K

ηo
[1− e−ηot1 ] +

Aebt1

ηo2

[
ηo(t1 − t2)− 1 + eηo(t2−t1)

]
b

}
(17)

5. Deterioration cost in RW = Drηr
∫ t1

0 Sr(t)dt= Drηr
∫ t1

0
Aebt1
(b+ηr)

[
−e−b(t1−t) + eηr(t1−t)

]
dt

Deterioration cos t in RW = Drηr
Aebt1

(b+ ηr)

{
1
ηr

(
eηrt1 − 1

)
+

1
b
(e−bt1 − 1)

}
(18)

6. Deterioration cost in OW = Doηo

{∫ t1
0 So(t)dt +

∫ t2
t1

So(t)dt
}

Here
∫ t1

0 So(t)dt =
∫ t1

0 Ke−ηotdt = K
ηo
[1− e−ηot1 ]

and
∫ t2

t1
So(t)dt =

∫ t2
t1

Aebt1
ηo

[
eηo(t2−t) − 1

]
dt = Aebt1

ηo2

[
ηo(t1 − t2)− 1 + eηo(t2−t1)

]
Deterioration cost in OW

= Doηo

{
K

ηo
[1− e−ηot1 ] +

Aebt1

ηo2

[
ηo(t1 − t2)− 1 + eηo(t2−t1)

]
b

}
(19)
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7. Shortage cost = Cs

{∫ t3
t2

So(t)dt +
∫ t4

t3
So(t)dt

}
∫ t3

t2
So(t)dt =

∫ t3
t2

Aebt1(t− t2)dt= Aebt1

[
t2
3
2 − t2t3 −

t2
2
2

]
∫ t4

t3
So(t)dt =

∫ t4
t3

Aebt1(t− t3)dt= Aebt1

[
t2
4
2 − t3t4 −

t2
3
2

]
= CsAebt1

{
t2
3
2 − t2t3 −

t2
2
2 +

t2
4
2 − t3t4 −

t2
3
2

}
Hence,

Shortage cos t = CsAebt1

{
t2
4
2
− t2t3 − t3t4 +

t2
2
2

}
(20)

8. Capital cost

Due to the prepayment option, the purchase amount (1− ξ)(P1N) with discount is
settled in ‘n’ installments with period ‘M’ prior to the replenishment epoch.

Amounts paid in first, second and (n− 1)th installments are, respectively,

IP(1− ξ)P1
N

n
(n− 1)

M

n
, IP(1− ξ)P1

N

n
(n− 2)

M

n
andIP(1− ξ)P1

MN

n2

Hence, Capital cos t = IP(1− ξ)P1
NM(n− 1)

2n
(21)

9. Total cost

The total cost of the replenishment cycle = TC(t3, t4) = Total ordering cost + Total
purchasing cost + Holding cost in RW + Holding cost in OW + Deterioration cost in RW +
Deterioration cost in OW + Shortage cost + Capital cost.

TC(t3, t4) =
1
t 4{ O1 + O2 + (1− ξ)(P1N) +P2R

+Hr
Aebt1
(b+ηr)

{
1
ηr

(
eηrt1 − 1

)
+ 1

b(e
−bt1 − 1)

}
+Ho

{
K
ηo
[1− e−ηot1 ] + Aebt1

ηo2

[
ηo(t1 − t2)− 1 + eηo(t2−t1)

]
b
}

+Drηr
Aebt1
(b+ηr)

{
1
ηr

(
eηrt1 − 1

)
+ 1

b(e
−bt1 − 1)

}
+Doηo

{
K
ηo
[1− e−ηot1 ] + Aebt1

ηo2

[
ηo(t1 − t2)− 1 + eηo(t2−t1)

]
b
}

+CsAebt1

{
t2
4
2 − t2t3 − t3t4 +

t2
2
2

}
+IP(1− ξ)P1

NM(n−1)
2n

}
(22)

The convexity of the total cost function is depicted in Figure 2. We can estimate the
optimal values of t4 and t3 using the software MATLAB. Our primary goal is to minimize
the total cost function TC(t3, t4), and the necessary conditions for doing so are as follows:

∂

∂t3
TC(t3, t4) = 0 and

∂

∂t4
TC(t3, t4) = 0 (23)

The optimal values t∗3 and t∗4 of t3 and t4 that satisfy the following necessary require-
ments of minimizing the profit function TC(t3, t4) are

∂2TC(t3, t4)

∂t3
2 > 0,

∂2TC(t3, t4)

∂t4
2 > 0 and

(
∂2TC(t3, t4)

∂t3
2

)(
∂2TC(t3, t4)

∂t4
2

)
−
(

∂2TC(t3, t4)

∂t3t4

)2

> 0. (24)



Mathematics 2023, 11, 1728 9 of 17Mathematics 2023, 11, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 2. Total cost function of the inventory system. 

4. Numerical Example and Sensitivity Analysis 
4.1. Numerical Example 

For illustration purposes, we assume that the entire purchasing cost is prepaid in 
five equally spaced time points in advance to receive the ordered goods. That is 𝓃 = 5. 
We study the system behavior in a particular environment, which is represented with the 
following parameters: 𝒜 = 22 ; 𝒷 = 0.24 ; 𝑡ଵ = 3 ; 𝑡ଶ = 5;  𝜂 = 0.07 ;  𝜂 = 0.11 ; 𝜉 =0.08; 𝒪ଵ = 900; 𝒪ଶ = 200; 𝒫ଵ = 82; 𝒫ଶ = 90; ℋ = 10; ℋ = 4; 𝒟 = 9; 𝒟 = 5.7; 𝒞௦ = 8.7; ℳ = 2; ℐ𝒫 = 0.12. Minimal total cost for the entire replenishment cycle in the above 
mentioned environment is determined as 𝑇𝐶 = 4265.149 only if𝑡ଷ = 5.5019 and 𝑡ସ =6.845by using MATLAB code. The model suggests to the retailer to order 𝒩 + ℬଶ = 350 
items from the regular supplier and ℬଵ = 23 items from the local supplier in order to 
satisfy the exigency. Figure 2 presents the total cost function of the inventory system. 

4.2. Sensitivity Analysis 
A mini map that represents the flow of the study of sensitivity analysis to observe 

changes in the optimal cost and the optimum ordering quantity by increasing the de-
mand parameters, discount rate, interest rate and deterioration rates is given in Figure 3. 

Figure 2. Total cost function of the inventory system.

4. Numerical Example and Sensitivity Analysis
4.1. Numerical Example

For illustration purposes, we assume that the entire purchasing cost is prepaid in
five equally spaced time points in advance to receive the ordered goods. That is n = 5.
We study the system behavior in a particular environment, which is represented with the
following parameters: A = 22; b = 0.24; t1 = 3; t2 = 5; ηr = 0.07; ηo = 0.11; ξ = 0.08;
O1 = 900; O2 = 200; P1 = 82; P2 = 90; Hr = 10; Ho = 4; Dr = 9; Do = 5.7; Cs = 8.7;
M = 2; IP = 0.12. Minimal total cost for the entire replenishment cycle in the above
mentioned environment is determined as TC = 4265.149 only if t3 = 5.5019 and t4 = 6.845
by using MATLAB code. The model suggests to the retailer to order N+B2 = 350 items
from the regular supplier and B1 = 23 items from the local supplier in order to satisfy the
exigency. Figure 2 presents the total cost function of the inventory system.

4.2. Sensitivity Analysis

A mini map that represents the flow of the study of sensitivity analysis to observe
changes in the optimal cost and the optimum ordering quantity by increasing the demand
parameters, discount rate, interest rate and deterioration rates is given in Figure 3.
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4.2.1. Effect of Changes in Demand Parameters Aand b on Arriving Optimal Total Cost
and Optimal Ordering Quantity

In the above-mentioned environment of illustration, we have t1 = 3; t2 = 5; ηr = 0.07;
ηo = 0.11; ξ = 0.08; O1 = 900; O2 = 200; P1 = 82; P2 = 90; Hr = 10; Ho = 4; Dr = 9;
Do = 5.7; Cs = 8.7; M= 2; IP = 0.12; A= 22; b = 0.24; We oscillate the parameter values
Afrom 18 to 24 and b from 0.20 to 0.26. The effect on optimum cost, ordering quantity (both
from regular and from local supplier) and length of stock out period is listed in Table 2. It is
observed that an increase in Aand b was positively correlated with the optimum total cost
and negatively correlated with the ordering items both from regular and local suppliers. It
is depicted in Figures 4 and 5.

Table 2. The effect of changes in demand parameters Aand b on arriving at optimal total cost and
optimal ordering quantity.

A TC* B1
* N*

18 3781.457 52.1415 293.3051
19 3909.425 45.6701 292.5094
20 4032.769 38.6233 291.7275
21 4151.393 31.0630 290.8224
22 4265.149 22.5988 289.4653
23 4373.828 13.7031 287.7179
24 4477.146 4.4376 285.1487
b

0.20 4028.958 48.5048 303.8589
0.21 4089.992 42.9597 300.6737
0.22 4149.960 36.6063 297.5752
0.23 4208.495 29.8260 294.1460
0.24 4265.149 22.5988 289.4653
0.25 4319.365 14.9037 284.3642
0.26 4370.436 05.7591 279.3016
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4.2.2. Effect of Changes in Interest Rate IP and Discount Rate ξ on Arriving at Optimal
Total Cost and Optimal Ordering Quantity

The variations in the interest rate and discount rates on compulsory complete pre-
payment option, influence on optimum total cost and optimum items ordered from both
regular and local supplier with the following same environment for A = 22; b = 0.24;
t1 = 3; t2 = 5; ηr = 0.07; ηo = 0.11; O1 = 900; O2 = 200; P1 = 82; P2 = 90; Hr = 10;
Ho = 4; Dr = 9; Do = 5.7; Cs = 8.7; M = 2 are observed. An increase in interest rate
IP are positively correlated with the optimum total cost and negatively correlated with
length of stock out period. An increase in discount rate ξ is negatively correlated with
optimum total cost and positively correlated with length of stock out period. It is displayed
in Table 3 and depicted in Figure 6. In particular, the order for exigency is increased while
IP increases but it is decreased while ξ increases and this is clear from Figure 7.

Table 3. The effect of changes in the interest rate IP and the discount rate ξ on arriving at optimal
total cost and optimal ordering quantity.

IP TC* B1
* N*

0.07 4134.292 7.6836 290.3693
0.12 4265.149 22.5988 289.4653
0.17 4389.904 37.0620 288.1094
0.22 4509.268 50.6212 286.3015
0.27 4623.794 63.7285 284.0416
0.32 4733.918 76.3838 280.8778
0.37 4839.989 88.5872 277.2620

ξ
0.00 4553.632 56.0449 285.3976
0.02 4484.261 47.9094 286.7535
0.04 4413.137 39.7738 287.6574
0.06 4340.145 31.1863 289.0134
0.08 4265.149 22.5988 289.4653
0.10 4187.993 14.0112 289.9173
0.12 4108.489 4.5198 290.3693
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Figure 7. The effect of changes in the interest rate IP and discount rate ξ on arriving at optimal order
for exigency.

4.2.3. Effect of Changes in Deterioration Rate Dr and Do on Arriving Optimal Total Cost
and Optimal Ordering Quantity

Effect of changes in deterioration rate, both in rental and own, where houses in
optimum total cost, length of stock out period, N∗ and B1

∗ in the following environment
A = 22; b = 0.24; t1 = 3; t2 = 5; ηr = 0.07; ηo = 0.11; ξ = 0.08; O1 = 900; O2 = 200;
P1 = 82; P2 = 90; Hr = 10; Ho = 4; Cs = 8.7; M= 2; IP = 0.12 are displayed in Table 4.
An increase in deterioration rates Dr and Do, affects and increases both t∗3 and t∗4 ; in turn, it
causes an increase in TC∗, N∗, B1

∗. It is depicted in Figures 8 and 9.
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Table 4. The effect of changes in deterioration rate Dr and Do on arriving optimal total cost and
optimal ordering quantity.

Dr TC* B1
* N*

0.05 4216.542 17.1751 280.3549
0.06 4240.780 19.8869 284.8904
0.07 4265.143 22.598 289.4653
0.08 4289.658 25.3106 294.5327
0.09 4314.313 28.4744 299.1893
0.10 4339.122 31.1863 303.8884
0.11 4364.091 33.8981 309.0827
Do
0.06 4260.719 22.1468 289.0134
0.11 4265.149 22.598 289.4653
0.16 4269.578 23.0507 290.3693
0.21 4274.131 23.5027 290.8213
0.26 4278.918 24.4067 291.2732
0.31 4284.034 24.8586 291.7252
0.36 4289.566 25.3106 292.6292
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5. Results, Discussions and Suggestions

Firstly, it is considered the effect of changes on the demand parameters Aand b. The
first parameter is the magnification part of the ramp-type demand whose increase results in
huge positive changes in the demand pattern, and the second parameter is the exponential
power parameter b whose rise contributes to a little less increase in the overall demand
rate. In a retailer’s point of view, to optimize the total cost in their business, the optimal
ordering quantity should be analyzed based on the arrival of the demand pattern. As
such, first we observed the optimal ordering quantity with respect to the increased demand
parameter values, which are listed in Table 2 and supported by Figures 4 and 5. Under
the considered environment, as the demand rates increase, simultaneously the optimum
total cost is increased, but at the same time the optimal ordering quantity is decreased.
Optimum ordered items for an exigency are also decreased.

Suggestion: It is suggested that the retailer can predict their optimum total cost as
per the capacity of their inventory storage facility and may decide the optimal interval
of backlog and the number of exigency order items in order to attain the optimum total
cost. If the retailer is more attentive and wants to reduce the number of purchase items for
exigency, then it may be opt for him to order N∗ = 285 items to achieve so.

In the study of inventory models with prepayment options, the two parameters,
namely the discount rate ξ for prepayment and the interest rate IP on the amountwe
pay in advance, are essential ingredients for any retailer’s decision-making processes on
optimizing the total cost. How the increased rate of discount and interest will influence the
optimum total cost and total ordering quantity is displayed in Table 3. First, the behavior of
optimal total cost by increasing the interest rate and discount rates is depicted in Figure 6.
We may observe that the optimal total cost is increased while increasing the interest rate
and it is decreased for the increase in the discount rate. It is true in nature and it seems that
the model behaves well. Secondly, the behavior of optimal total ordering items for exigency
by increasing the interest rate and discount rates is depicted in Figure 7. We may observe
that the optimal total ordering of items for exigency also increased while increasing the
interest rate and it decreased for the increase in the discount rate.

Suggestion: Table 3 helps the retailer to choose the suitable supplier with whom he
may get the higher discount for his selection of advance payment policy to optimize his
total cost. For example, in the above considered environment, if the retailer chooses the
supplier who offers the discount rate of ξ = 0.12, then their optimum total cost TC* is
4108 units of money. In the same way, the retailer may take the prepayment option as per
the interest rate to optimize not only the total cost but also the total exigency order and
total usual order quantity too.

Product obsolescence is inevitable on handling sensitive items such as medicinal
products, chemical products, vegetables, fruits, meat, and donated blood pouches. In the
present study, the items in both warehouses may get deteriorate during the course of selling
phase. If the deterioration rates Dr and Do of items in RW and OW are increased, then the
range of its influence in arriving at the optimal total cost and optimal ordering of items and
items to be purchased for satisfying exigency are displayed in Table 4. We may observe
that the increase in deterioration rate of items in RW is more sensitive and increases the
optimum total cost of the cycle more drastically than the increase in Do which is depicted
in Figure 8. We can observe the same effect on optimum order for exigency too and it is
depicted in Figure 9.

Suggestion: If the retailer wants to avoid more purchases for exigency, his choice
has to be Dr = 0.05 in the above-mentioned environment, so that the optimum order for
exigency will be 17 items; instead, if Dr = 0.11, then the optimum order for exigency will
be increased. At the same time, the optimal total cost will be raised from 4217 units of
money nearly to 4364 units of money nearly. Table 4 suggests the retailer to optimize the
total cost by identifying the product for sales based on its deterioration rate.
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6. Conclusions

In this study, we have constructed a two-warehouse inventory model of constantly
deteriorating items. The current study emphasizes the effect of the retailers’ N-phase
prepayment option, and the purchasing of items from a local supplier to manage exigency
in order to arrive at an optimal total cost of the replenishment cycle. An analytical solution
to this model was provided to reduce overall inventory costs with sensitivity analysis.
Moreover, the ideal order amount, replenishment cycle length, backorder quantities and
backlog duration have been identified. The effect of the model is tested in a particular
environment for validation and covers the effect of changes in demand parameters, interest
rate, and discount rate and deterioration rates on arriving at an optimal total cost and
optimal ordering quantity. Appropriate suggestions are recommended to the retailer in
Section 5. The present work has a wide scope for extending it by including with items’
re-do facility, integrated production unit, late payment options and so on.

Author Contributions: Conceptualization, J.V. and R.T.; methodology, R.T. and J.V.; validation, J.V.;
formal analysis, R.T, K.K. and M.M.; investigation, J.V.; writing—original draft preparation, R.T.;
writing—review and editing, J.V., K.K. and M.M.; visualization, R.T., K.K., M.M. and J.V.; supervision,
J.V. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the project SP2023/074 Application of Machine and Process
Control Advanced Methods supported by the Ministry of Education, Youth and Sports,
Czech Republic.

Data Availability Statement: The data presented in this study are available through email upon
request to the corresponding author.

Acknowledgments: Authors thanks to Vel Tech Rangarajan Sagunthala R&D Institute of Science and
Technology—Chennai.

Conflicts of Interest: The authors declare no conflict of interest.

List of Symbols
O1 Ordering cost on purchase from regular supplier.
O2 Ordering cost on purchase from local supplier.
P1 Purchasing cost of an item from the regular supplier.
P2 Purchasing cost of an item from the local supplier.
Hr Holding cost of an item per unit of time in RW.
Ho Holding cost of an item per unit of time in OW.
Dr Deterioration cost of an item per unit of time in RW.
Do Deterioration cost of an item per unit of time in OW.
Cs Shortage cost of an item per unit of time.
Sr(t) Stock level at time ‘t′ in RW.
So(t) Stock level at time ‘t′ in OW.
ηr Rate of deterioration of items in RW.
ηo Rate of deterioration of items in OW.
IP Interest rate per year.
K Maximum capacity of OW.
N Number of items purchased from regular supplier.
B1 Number of items purchased for exigency from local supplier.
B2 Backorder quantity.
ξ Discount rate on prepayment for the purchasing cost.
M The length of time during which the buyer will make the prepayments.
n The number of equally spaced prepayments slots.
R(t) Ramp type demand.
t∗3 Time epoch in which B1

∗ items ordered for exigency from local supplier which optimizes
the total cost.

t∗4 Time epoch in which B2
∗ items are fulfilling the backlogs which optimize the total cost.

L∗ Optimum length of the stock out period.
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