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Abstract: Statistical models are vital in data analysis, and researchers are always on the search for
potential or the latest statistical models to fit data sets in a variety of domains. To create an improved
statistical model, we used a T-X transformation and the Gumbel Type-II model in this investigation.
The research examined a simulation evaluation to assess the efficacy of the parameters. To show
the application of the T-X approach for producing new distributions titled the new and improved
Gumbel Type-II (NIGT-II) distribution, two actual data sets were used. The data sets reveal that the
NIGT-II distribution sounds nicer than the Gumbel Type-II distribution.

Keywords: mean square error; T-X method; root mean square error; NIGT-II model; average bias
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1. Introduction

When making decisions under uncertainty, probability distribution is very important.
Its applications include signal processing, survival analysis, and reliability analysis, and also
communication systems and engineering. It has been observed in the field of probability
theory that typical probability models lack to describe data with non-monotonic hazard
functions (NMNHF) [1,2]. For instance, the Weibull model [3] cannot interpret data with a
non-monotonic bath-tub hazard structure. To simulate the monotonic hazard rate, we can
implement the Gamma, Gumbel type-II (GT-II), Weibull and exponential distributions,
among other existing models. In the event of NMNHF, such as upside-down or bathtub-
formed hazard rates, such models are neither rational nor practicable. In actuality, there
are various data sets that have a non-monotonic failure rate function (FRF). To simulate
both monotonic (MN) and NMHFs, one must update the existing distribution. In order to
tackle this challenge, researchers are working to improve existing models. Both raising the
number of factors in the benchmark model and developing a novel strategy for expanding
probability models are necessary enhancements.

The idea of creating novel models by adding an additional element to a presenting
group of models or mixing existing models has been a popular topic in recent studies. It
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enables a more adjustable model while also allowing for the modeling of more complex
data structures. Yet, the most recent modification has indicated that more characteristics are
required to properly understand the tails and other elements of the distribution. Applied
statisticians can now obtain better results by following the latest trend, as the extended
model has a higher goodness of fit to data sets than the traditional method. After proposing
the beta generator [4,5], the invention commences. Later on, several potential generators in-
cluding the Kumaraswamy-G by [6] and the McDonald-G by [7] are presented. Comparing
the effectiveness of some probability models to that of other G-class models was equally
enjoyable for experts and applied investigators. Similar studies have been reported using
G-classes of distributions: Exponentiated-Generalized-G [8], Gamma-G (type 1 and 2) [9],
Lomax-G [10], Logistic-X [11], Weibull-G (type 3) [12], Odd Generalized-Exponential-G [13],
Weibull-G (type 1) [14], and Fréchet Topp Leone-G [15].

In the literature, there are numerous methods for making the model wider and
more adaptive in order to model the data. For illustration, Aldeni et al. [16] proposed a
novel group of models centered on the quantile of the generalized lambda model. Alza-
atreh et al. [17] looked into T-normal family of models. Cordeiro et al. [18] studied a
half-Cauchy group of models that can be applied to real-world phenomena. Ref. [19]
modified [20]’s technique by replacing the Kumaraswamy model for the beta distribution.
Alpha Power Transformation (APT), which was proposed in [21], is another method. The
two-parameter Alpha Power Exponential (APE) model, which has a number of properties
and ramifications, was generated using the APT technique. Many expansions of the APT
techniques to modeling Weibull models have lately been tried by researchers [22,23]. Sev-
eral investigators have utilized this transformation to generate alpha power transformed
models using an APT generalized exponential model, APT inverse Lindley model [24],
and APT Lindley model [25]. Ijaz et al. [26] provided the Gull Alpha Power family of
models (GAPF).

Extreme value models have grown in popularity as a statistical research subject in a
variety of fields. Extreme point strategies are increasing in interest in a number of different
zones as well. The probability of incidents that are more serious than those earlier recorded
must sometimes be calculated in extreme point investigations. The Gumbel model is a
valuable model in extreme value theory. It has a vast storage potential that can be used
in the event of a major calamity. Life testing, fracture roughness, seismology, reliability
analysis, and meteorology are only a few examples of applications for such models. Tables
of life expectancy, hydrology, and rainfall can also be used. Detailed descriptions of the
Gumbel distribution can be found in [27–31]. It can be utilized to represent real-world data
sets with monotonic failure rates, especially those with declining hazard rates. However,
the majority of complex events are non-monotonic, and the Gumbel type-II (GT-II) model
cannot be used to model them.

Alzaatreh [32] and Alzaatreh et al. [33] characterized the transformed (T)-transformer
(X) family (for brief, T-X family), which marked a turning point in the G-class paradigm.
This study centers on the T-X family of probability models (see Alzaatreh et al. [32]), and
leverages GT-II models’ CDF to create a generalized form referred to as the new and
improved GT- II (NIGT-II) distribution. Since it can provide a broad variety of shapes for
the hazard function, the NIGT-II model has a lot of versatility and will play a big part in
medical and reliability investigations. We believe that NIGT-II will attract a greater range
of applications and will be used to represent a variety of data types in a variety of fields.
We have identified several statistical characteristics and shown how to apply the proposed
probability function to both actual and simulated data. When examining any probability
model, parameter estimation is essential. We employ the maximum likelihood estimation
(MaxLLE) approach to evaluate the model’s undetermined parameters. References [34–43]
contain more examples of estimation of the model’s undetermined parameters.
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2. Description of Proposed Model

Let π (t) be a PDF of T such that T ∈ [η, m] for −∞ ≤ η < m ≤ ∞., and W{G(x)} be
a function of CDF G(x) with PDF f (x) of any r.v. X that W{G(x)} fulfils given criteria:
(i) W{G(x)} ∈ [η, m], (ii) W{G(x)}must be able to be differentiated and non-decreasing
monotonically and (iii) W{G(x)} → η as t→ −∞ and W{G(x)} → m as t→ ∞. Then, the
CDF of a T-X family (see [32]) of models is characterized by expression (1)

F(x) =

W{G(x)}∫
η

π(t)dt, (1)

The CDF F(x) in (1) can be P[W{G(x)}], where P(t) is the CDF of T. The PDF refers
to (1) given by expression (2)

f (x) =
dW{G(x)}

dx
π(W{G(x)}). (2)

Because of its usefulness, many scholars prefer to work with the T-X family method-
ology. Nonetheless, some new model families have been given in the literature; see [44]
for more information. We suggest a novel family of models centered on the T family in
this study. Let T ~exp(1), with CDF and PDF having the forms as below P(t) = 1− e−t,
π(t) = e−t, and letting

W{G(x)} = − log
{

1− G(x)
λG(x)

}
(3)

in (1), we get a new CDF and PDF of the novel lifetime T-X family as follows:

F(x, λ) = 1− 1− G(x)
λG(x)

, (4)

f (x) = g(x)
{

1 + (1− G(x)) log λ

λG(x)

}
(5)

The GT-II model’s CDF and PDF are provided as follows.

G( x|µ, ξ) = e−µx−ξ
, µ, ξ > 0, and 0 < x < ∞, (6)

g( x|µ, ξ) = µξx−ξ−1e−µx−ξ
. (7)

Let T be an r. v. such that t > 0, and the CDF and PDF of the NIGT-II lifespan model
is stated as

FNIGT-II( x| µ, ξ, λ) = 1−
(

1− e−µx−ξ

λe−µx−ξ

)
, µ, ξ, λ > 0, (8)

where µ is the scale and λ, ξ > 0 are the shape parameters, accordingly. The GT-II model is
a particular example if we consider λ = 1. The PDF for (8) is as follows:

fNIGT-II( x| µ, ξ, λ) = µξx−ξ−1e−µx−ξ

1 +
(

1− e−µx−ξ
)

log λ

λe−µx−ξ

, 0 < x < ∞, µ, ξ, λ > 0. (9)
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The phrase “failure rate function (FRF)” is frequently used in research. This phrase
is used to describe the failure rate of an element over a particular time period (t) and is
expressed as h( t| .) = f ( t| .)/[1− F( t| .)]. The FRF

hNIGT-II( x| µ, ξ, λ) =
µξx−ξ−1e−µx−ξ

{
1 +

(
1− e−µx−ξ

)
log λ

}
1− e−µx−ξ

, (10)

an excellent approach for studying reliability. The reliability function indicates the likelihood
of an item surviving at time t. It is described analytically as S( x| µ, ξ, λ) = 1− F( x| µ, ξ, λ).
Here, S( x| µ, ξ, λ) of the NIGT-II model is

SNIGT-II( x| µ, ξ, λ) =

(
1− e−µx−ξ

λe−µx−ξ

)
. (11)

The CHRF is one of the most important reliability metrics. The CHRF is a risk index:
the larger H( t| µ, ξ, λ), the greater the probability of t-time collapse.

HNIGT-II( t| µ, ξ, λ) =

t∫
0

h( x| µ, ξ, λ)dx = − log[S( t| µ, ξ, λ)], (12)

where S( t| µ, ξ, λ) is given in (11), after replacing x by t, we have

HNIGT-II( t| µ, ξ, λ) = − log

(
1− e−µt−ξ

λe−µt−ξ

)
. (13)

The Mills ratio is defined by M( x| µ, ξ, λ) = S( x| µ, ξ, λ)/ f ( x| µ, ξ, λ). A Mills ratio
of X is

MNIGT-II( x|µ, ξ, λ) =
1− e−µx−ξ

µξx−ξ−1e−µx−ξ
{

1 +
(

1− e−µx−ξ
)

log λ
} . (14)

The odd function is defined by O( x| µ, ξ, λ) = F( x| µ, ξ, λ)/S( x|µ, ξ, λ). The odd
function is

ONIGT-II( x|µ, ξ, λ) =
λe−µx−ξ

1− e−µx−ξ
− 1. (15)

The RHRF( x|µ, ξ, λ) (reverse hazard rate function) is defined by RHRF( x|µ, ξ, λ) =
f ( x|µ, ξ, λ)/F( x|µ, ξ, λ). The RHRF of X is given by

RHRFNIGT-II( x|Ψ) = µξx−ξ−1e−µx−ξ

1 +
(

1− e−µx−ξ
)

log λ

λe−µx−ξ
+ e−µx−ξ − 1

. (16)

Novelty and Innovation
The following are the primary contributions of this study’s innovative impact on the

GT-II model utilizing the T-X approach:

• A simple and quick way for improving current distributions and simple technique to
incorporate an extra parameters ’λ’ to benchmark distribution.

• The T-X method improves and enriches the distribution.
• Using the T-X family to increase the features and versatility of the GT-II distribution

(as motivated above). The probability density and hazard rate functions, in particular,
exhibit growing, decreasing, bathtub, reverse J, increasing–decreasing and S shapes
demonstrating this argument.

• Current distribution features and flexibility are being improved.
• The T-X method can be used to simulate both MN and NMNHF.
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• We get a better fit with the T-X technique than with the GT-II model.
• Demonstrating a more advanced version of the GT-II model.
• Examining the inferential properties of the NIGT-II model using the MaxLLE, provid-

ing a comprehensive paradigm for users.

2.1. Shape

Based on various parameter values, Figure 1a–h depicts potential NIGT-II density
shapes. The declining, bathtub, symmetric, asymmetric, and inverted J forms are among
the many shapes of the PDF corresponding to µ, which controls the model’s scale, as well
as the two shape parameters, ξ and λ which control the model’s shapes. Figure 1a–h
illustrates instances of such structures. FRF patterns for the NIGT-II model are shown
in Figure 2a–h. These figures demonstrate the FRF patterns, which comprise inverted J,
bathtub, increasing–decreasing, and S patterns . These adjustable FRF forms are suitable
for both MN and NMN failure rate characteristics, both of which are frequent in real-time
applications. These types of forms are common in non-stationary lifespan events.

2.2. Simulation

The theory of a quantile function (QF) was first introduced by Hyndman and Fan [45].
Inverting the CDF (5) yields the QF of the NIGT-II model. Let v be a variable such that
v ∼ U(0, 1). A solution of a nonlinear equation can be used to provide an observation of X.

x(v| µ, ξ, λ) = µx−ξ + log
{

1− λe−µx−ξ

(1−v)

}
, 0 < v < 1. (17)

Computational strategies such as Newton–Raphson techniques can be engaged to
estimate X from (17). The median of the NIGT-II model is presented here. Let F( x|.) be the
CDF of NIGT-II model at 0.5th quantile Q0.5. The median (x∗) can therefore be given by
solving the given equation for x.

µx−ξ + log
{

1− 0.5λe−µx−ξ
}

= 0

2.3. Moments, Central Moments and Certain Related Measures

Moments can be used to investigate the model’s central tendency, skewness, dispersion,
and kurtosis. If X˜NIGT-II(µ, ξ, λ), then r− th moment µ́r of X is

µ́r =
∞∫
0

xrdFx( x| µ, ξ, λ); r = 1, 2, ..., (18)

In fact, we have

µ́r =
∞∫
0

xrµξx−ξ−1e−µx−ξ

1 +
(

1− e−µx−ξ
)

log λ

λe−µx−ξ

dx; r = 1, 2, ..., (19)

Let µx−ξ = z, then −µξx−ξ−1dx = dz, and employing series expression α−ρ =
∞

∑
k=0

(−1)k(log α)k

k! (ρ)k in (19). The final form of µ́r is as given, as a result of simple computations

on the last expression.

µ́r =
∞

∑
l=0

(−1)l(log λ)lµ
r
ξ

l!

 Γ
(

1− r
ξ

)
(1 + l)1− r

ξ

+Γ
(

1− r
ξ

)
log λ

(
1

(1 + l)1− r
ξ

− 1

(2 + l)1− r
ξ

)}
; r < ξ. (20)
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The moment formula (20) can assist users in generating useful statistical indicators.
In (20), for instance, the mean (µ∗) of X gives with r = 1. The negative moment of X can
be easily calculated by replacing r with −τ in (18).

� Using the T-X family to increase the features and versatility of the GT-II distribution
(as motivated above). The probability density and hazard rate functions, in particu-

lar, exhibit growing, decreasing, bathtub, reverse J shapes,increasing-decreasing and S

shapes demonstrating this argument.

� Current distributions�features and �exibility are being improved.

� The T-X method can be used to simulate both MN and NMNHF.

� We get a better �t with the T-X technique than with GT-II model.

� To demonstrate a more advanced version of the GT-II model.

� To examine the inferential properties of the NIGT-II model using the MaxLLE, pro-
viding a comprehensive paradigm for users.

2.1 Shape

Based on various parameter values, Fig. 1 depicts potential NIGT-II density shapes. The

declining, bathtub, symmetric, asymmetric, and inverted J forms are among the many shapes

of the PDF corresponding to �, which controls the model�s scale, also the two shape para-

meters, � and � which control the model�s shapes. Figs. 1(a-h) illustrate instances of such

structures. FRF patterns for the NIGT-II model are shown in Figs. 2(a-h). These Figs

demonstrate the FRF patterns, which comprise inverted J, bathtub, increasing-decreasing,

and S patterns (a-h). These adjustable FRF forms are suitable for both MN and NMN Fail-

ure rate characteristics, both of which are frequent in real-time applications. These types of

forms are common in non-stationary lifespan events.

6

Fig. 1. The performance of PDF pro�le of NIGT-II model against the �; � and �.

7

Figure 1. The performance of the PDF profile of NIGT-II model against the µ, ξ and λ (a–h).
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7

Fig. 2. The performance of FRF pro�le of NIGT-II model against the �; � and �.

2.2 Simulation

The theory of a quantile function(QF) was �rst introduced by Hyndman and Fan [45]. In-

verting the CDF(5) yields the QF of the NIGT-II model. Let $ be a variable such that

$ � U(0; 1). A solution of a nonlinear equation can be used to provide an observation of X.

x($j �; �; �) = �x�� + log
n
1� �e��x

��
(1�$)

o
; 0 < $ < 1: (17)

Computational strategies like Newton-Raphson techniques can be engaged to estimate X

from (17). The median of NIGT-II model is presented here. Let F (xj :) be the CDF of
NIGT-II model at 0.5th quantile Q0:5. The median (x�) can therefore be given by solving the

8

Figure 2. The performance of the FRF profile of NIGT-II model against the µ, ξ and λ (a–h).
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In model assessment, the MGF is frequently used. The MGF of the NIGT-II model is

MX( t|µ, ξ, λ) = E
(
etx) = +∞

∑
r=0

tr

r!
µ́r(µ, ξ, λ), (21)

MX( t|µ, ξ, λ) =
+∞

∑
r=0

+∞

∑
l=0

tr

r!
(−1)l(log λ)lµ

r
ξ

l!

 Γ
(

1− r
ξ

)
(1 + l)1− r

ξ

+Γ
(

1− r
ξ

)
log λ

(
1

(1 + l)1− r
ξ

− 1

(2 + l)1− r
ξ

)}
. (22)

The central moments of the NIGT-II model are:

µ̆k = E(X− µ∗)k =
k

∑
r=0

(
k
r

)
µ́r(−µ∗)k−r, (23)

µ̆k =
k

∑
r=0

+∞

∑
l=0

(
k
r

)
(−1)l(log λ)lµ

r
ξ

l!
(−µ∗)k−r

 Γ
(

1− r
ξ

)
(1 + l)1− r

ξ

+Γ
(

1− r
ξ

)
log λ

(
1

(1 + l)1− r
ξ

− 1

(2 + l)1− r
ξ

)
; r < ξ.

}
(24)

The characteristic function for the NIGT-II model is evaluated as

C( t|µ, ξ, λ) = E
(

eitx
)
=

∞∫
0

eitxdF( x|µ, ξ, λ), (25)

and using exponential series, we have

C( t|µ, ξ, λ) =
+∞

∑
r=0

(it)r

r!

∞∫
0

xrdF( x|µ, ξ, λ), (26)

As a result, we get

C( t|µ, ξ, λ) =
+∞

∑
r=0

∞

∑
l=0

(it)r(−1)l(log λ)lµ
r
ξ

r!l!

Γ
(

1− r
ξ

)
(1 + l)1− r

ξ

+Γ
(

1− r
ξ

)
log λ

(
1

(1 + l)1− r
ξ

− 1

(2 + l)1− r
ξ

)
; r < ξ. (27)

where i =
√
−1.

The factorial generating function of NIGT-II model is

F( tx|µ, ξ, λ) =
∞∫
0

elog(1+t)x
dF( x|µ, ξ, λ), (28)

F( tx|µ, ξ, λ) =
+∞

∑
r=0

{log(1 + t)}r

r!

∞∫
0

xrdF( x|µ, ξ, λ). (29)
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So we can compose the integral in (29) as

F( tx|µ, ξ, λ) =
+∞

∑
r=0

∞

∑
l=0

(−1)l(log λ)lµ
r
ξ {log(1 + t)}r

r!l!

×

 Γ
(

1− r
ξ

)
(1 + l)1− r

ξ

+ Γ
(

1− r
ξ

)
log λ

(
1

(1 + l)1− r
ξ

− 1

(2 + l)1− r
ξ

). (30)

The mean deviation between the mean and the median, respectively, is determined by

Ψ∗1(X) =
∫ ∞

0
|x− µ∗| f (x)dx and Ψ∗2(X) =

∫ ∞

0
|x− δ| f (x)dx , (31)

where µ∗ = E(X) and δ = X̃. These metrics can be derived from the relationship that exists.

E{|x− ϑ|} =
∫ ϑ

0
(ϑ− x) f (x)dx +

∫ ∞

ϑ
(x− ϑ) f (x)dx = 2

∫ ϑ

0
(ϑ− x) f (x)dx, (32)

E{|x− ϑ|} = 2
{

ϑF(ϑ)−
∫ ϑ

0
x f (x)dx

}
. (33)

After some mathematics, (33) produce the given expressions for the NIGT-II model:

Ψ∗1(X) = 2

µ∗F(µ∗)−
∞

∑
l=0

(−1)l(log λ)lµ
1
ξ

l!

{
(1 + log λ)

(1 + l)1− 1
ξ

Γ
{

1− 1
ξ

, (1 + l)µ/(µ∗)ξ
}

− log λ

(2 + l)1− 1
ξ

Γ
{

1− 1
ξ

, (2 + l)µ/(µ∗)ξ
}}]

, (34)

Ψ∗2(X) = 2

δF(δ)−
∞

∑
l=0

(−1)l(log λ)lµ
1
ξ

l!

{
(1 + log λ)

(1 + l)1− 1
ξ

Γ
{

1− 1
ξ

, (1 + l)µ/(δ)ξ
}

− log λ

(2 + l)1− 1
ξ

Γ
{

1− 1
ξ

, (2 + l)µ/(δ)ξ
}}]

, (35)

where F(.) is given in (8).

3. The Estimation Technique with Simulation

Several parameter evaluation approaches have been established in research, but the
maximum likelihood method is the most extensively engaged. As a result, we only
evaluate the maximum likelihood estimation of NIGT-II’s unknown parameters from
complete samples. Simulation experiments are used to explore the effectiveness of the
MLE technique. Let X1, X2, ..., Xn be a random sample and related observed values,
x1, x2, ..., xn from the NIGT-II model with parameter vector (µ, ξ, λ). Then, the joint function

L(x| µ, ξ, λ) =
n

∏
i=1

f ( xi| µ, ξ, λ) of X1, X2, ..., Xn as a log-likelihood function is
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l(x| µ, ξ, λ) = log
n

∏
i=1

fNIGT-II( xi| µ, ξ, λ), (36)

= n log(µ) + n log(ξ)− (ξ + 1)
n
∑

i=1
log(xi)− µ

n
∑

i=1
x−ξ

i

+
n
∑

i=1
log
(

1 +
(

1− e−µx−ξ
i

)
log λ

)
− e
−µ

n
∑

i=1
x−ξ

i
log(λ), (37)

∂l(x| µ, ξ, λ)

∂µ
=

n
µ
+

n
∑

i=1
x−ξ

i

log(λ)e
−µ

n
∑

i=1
x−ξ

i
− 1

+ log λ
n
∑

i=1

x−ξ
i e−µx−ξ

i

1 +
(

1− e−µx−ξ
i

)
log λ

, (38)

∂l(x| µ, ξ, λ)

∂ξ
=

n
ξ
−

n
∑

i=1
log(xi)− µ

log(λ)e
−µ

n
∑

i=1
x−ξ

i
− 1

 n
∑

i=1
log(xi)x−ξ

i

− µ log λ
n
∑

i=1

log(xi)x−ξ
i e−µx−ξ

i

1 +
(

1− e−µx−ξ
i

)
log λ

, (39)

∂l(x| µ, ξ, λ)

∂λ
= − e

−µ
n
∑

i=1
x−ξ

i

λ
+

n
∑

i=1

1− e−µx−ξ
i

λ
{

1 +
(

1− e−µx−ξ
i

)
log λ

} . (40)

The MLEs of the parameters are provided by simultaneously solving (38)–(40). Ac-
cording to the simulation study, the bias and mean square error (MSEs) of MLEs reduce as
n increases, with a few exceptions, which fulfills the standard requirements of the asymp-
totic features of MLEs. In particular, all parameter combinations that approach zero show
fluctuation in bias and MSEs. Such reflections can be found in Tables 1–3. One of the
most important features of the likelihood function for any probability density is that the
parameter estimates obtained by MLEs must be maximum in order to ensure that such a
problem is addressed. We plot the l(x| µ, ξ, λ) (as shown in next section). The assessments
obtained from MLEs for specified parameters are the global maximum instead of the local
maximum for all parameters, as shown in next section.

Table 1. Numerical outcomes of AB and MSE values of the NIGT-II model for µ = 2.7, ξ = 3.9, λ = 1.5.

n 30 60 90 120 150 200 250 300

AB (µ̂) −0.6798 −1.4745 −0.9406 −0.5781 −0.2624 −0.0906 −0.0126 −0.0022
MSE (µ̂) 14.0628 7.5942 3.3225 1.6586 0.6990 0.1447 0.0372 0.0102
RMSE (µ̂) 3.7500 2.7556 1.8228 1.2879 0.8361 0.3804 0.1929 0.1010

AB (ξ̂) −1.3447 −0.4420 −0.2082 0.0037 −0.0747 −0.1310 −0.0120 −0.0057
MSE (ξ̂) 19.7444 7.0729 3.6850 0.8708 0.4919 0.0947 0.0186 0.0056
RMSE (ξ̂) 4.4435 2.6595 1.9196 0.9332 0.7014 0.3077 0.1364 0.0748

AB (λ̂) 3.7467 2.6824 1.7273 1.1094 0.8106 0.5185 0.4254 0.4007
MSE (λ̂) 19.5671 9.4809 4.0358 1.7487 1.0418 0.3618 0.2078 0.1691
RMSE (λ̂) 4.4235 3.0791 2.0089 1.3224 1.0207 0.6015 0.4559 0.4112
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Table 2. Numerical outcomes of AB and MSE values of the NIGT-II model for µ = 6.2, ξ = 4.7, λ = 2.5.

n 30 60 90 120 150 200 250 300

AB (µ̂) −3.2225 −2.6637 −1.9319 −1.0792 −0.4402 −0.1559 −0.0473 0.0067
MSE (µ̂) 31.3787 20.3257 10.9748 4.9336 2.4360 0.6238 0.1439 0.0296
RMSE (µ̂) 5.6017 4.5084 3.3128 2.2211 1.5608 0.7898 0.3793 0.1721

AB (ξ̂) −0.0100 0.1000 0.4813 0.3048 −0.0298 −0.0034 0.0158 −0.0303
MSE (ξ̂) 38.6967 16.7172 8.2162 4.2350 2.8566 1.0083 0.2097 0.0833
RMSE (ξ̂) 6.2207 4.0887 2.8664 2.0579 1.6902 1.0041 0.4579 0.2886

AB (λ̂) 5.2271 3.8114 2.7165 1.9901 1.4649 0.9112 0.7099 0.6502
MSE (λ̂) 30.2567 8.7565 6.0339 3.7317 2.0582 1.1490 0.5851 0.4626
RMSE (λ̂) 5.5006 2.9591 2.4564 1.9318 1.4346 1.0719 0.7649 0.6802

Table 3. Numerical outcomes of AB and MSE values of the NIGT-II model for µ = 1.9, ξ = 3.3, λ = 4.5.

n 30 60 90 120 150 200 250 300

AB (µ̂) 3.5950 2.3918 0.8990 0.4357 0.3729 0.3730 0.3870 0.3678
MSE (µ̂) 28.4725 10.6806 1.6142 0.3166 0.1745 0.1679 0.0622 0.0100
RMSE (µ̂) 5.3360 3.2681 1.2705 0.5627 0.4177 0.4098 0.2494 0.1000

AB (ξ̂) −1.7791 −2.2027 −0.9700 −0.2214 −0.0300 0.0009 0.0005 0.0000
MSE (ξ̂) 17.9104 11.8278 2.6780 0.4129 0.0384 0.0016 0.0000 0.0000
RMSE (ξ̂) 4.2321 3.4392 1.6365 0.6426 0.1960 0.0400 0.0000 0.0000

AB (λ̂) 1.2342 1.0209 0.5318 0.1844 0.0934 0.0779 0.0630 0.0522
MSE (λ̂) 4.3975 2.0200 0.6003 0.1300 0.0428 0.0382 0.0289 0.0235
RMSE (λ̂) 2.0970 1.4213 0.7748 0.3606 0.2069 0.1955 0.1700 0.1533

4. Numerical and Graphical Analysis

The NIGT-II model’s MaxLLE estimators are not in closed form, as stated in the previ-
ous section. As a consequence, a simulation experiment is run to evaluate the performance
of estimates using different metrics including MSEs, RMSE, and average bias (AB) values,
as well as their asymptotic performance for finite samples. We can use numerical and
graphical simulation studies to examine the finite sample behavior of MLEs. The given
algorithm was used to make the decision:

1. Generate a thousand samples of size n from (9). QF accomplished all of the work
and gleaned the data from a uniform model.

2. The exact values of various combinations of µ, ξ and λ are taken into account as set-
I: (2.7, 3.9, 1.5), set-II: (6.2, 4.7, 2.5), and set-III: (1.9, 3.3, 4.5). The theoretical and simulated
density functions of the NIGT-II distribution for these choices are shown in Figure 3.

3. Evaluate the estimates for 1000 samples, say
(
µ̌k, ξ̌k, λ̌k

)
for k = 1, 2, ..., 1000.

4. Examine the AB value, as well as the MSEs and RMSEs. The following formulas are
used to find these targets:

ABΨ(n) =
1

1000

1000

∑
i=1

(
Ψ̌i −Ψ

)
, (41)

MSEΨ(n) =
1

1000

1000

∑
i=1

(
Ψ̌i −Ψ

)2, (42)

RMSEΨ(n) =

√√√√ 1
1000

1000

∑
i=1

(
Ψ̌i −Ψ

)2. (43)
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where Ψ = (µ, ξ, λ).
5. These steps have been repeated with specified parameters for MLEs for n = 30,40,...,300.

The bias Ψ(n) and MSE Ψ(n) have both been evaluated. To assess the quality of the estima-
tions, we implemented R’s optim function. The findings of the experiments are shown in
Tables 1–3 and Figures 4–6. In Figures 4–6, the ABs and MSEs vary w.r.t. n.

used to �nd these targets:

AB	 (n) =
1

1000

1000X
i=1

�
�	i �	

�
; (41)

MSE	 (n) =
1

1000

1000X
i=1

�
�	i �	

�2
; (42)

RMSE	 (n) =

vuut 1

1000

1000X
i=1

�
�	i �	

�2
: (43)

where 	 = (�; �; �) :

5. These steps have been repeated with speci�ed parameters for MLEs for n =

30; 40; :::; 300. The bias	(n) and MSE	(n) have both been evaluated. To assess quality

of the estimations, we implemented R�s optim function. The �ndings of the experiments are

shown in Tables 1-3 and Figures 4-6. In Figs. 4-6, the ABs and MSEs vary w. r. t. n.

Fig. 3. Simulated model for parametric set I to III:

The bias gradually decreases until it reaches zero as n rises, we thus conclude that es-

timators have the asymptotic unbiasedness property. The MSE trend, on the other hand,

implies consistency as the error approaches zero as n increases..

14

Figure 3. Simulated model for a parametric set I to III.

The bias gradually decreases until it reaches zero as n rises, we thus conclude that
estimators have an asymptotic unbiasedness property. The MSE trend, on the other hand,
implies consistency as the error approaches zero as n increases.

Fig. 5. The performance of Bias and MSE pro�les against ��; �� and �� for set -II:

15

Figure 4. The performance of Bias and MSE profiles against µ̌, ξ̌ and λ̌ for set-I.

As mentioned in the discussion, the study’s findings are explained through figures
and tables. The following are the key conclusions of the investigation:

• Tables 1–3 indicate the RMSE, MSE and AB values of parameters for various n, and it
can be shown that MSE and RMSE decrease with increasing n, as intended. Secondly,
as n rises, the AB decreases.

• As n increases, the biases of µ̌, λ̌ and ξ̌ diminish.
• Although the biases of µ̌ and ξ̌ are predominantly negative, there are positive biases

for λ̌.
• The MLEs of µ̌ and ξ̌ are overvalued, whereas the MLEs of λ̂ are undervalued (see

Figures 4–6 (left panel)).
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• The MaxLLE technique outperforms in terms of MSE, as seen in the right panel of
Figures 4–6.

• When n rises, all bias and MSE figures for µ̌, λ̌ and ξ̌ ultimately approach zero, as seen
in Figures 4–6. This highlights the precision of estimating procedures.

• In comparison to the MSE of ξ̌, the MSE of µ̌ and λ̂ is quite small.
• Depending on these findings, we conclude that MLEs perform a reasonable job of

estimating parameters and that values for these sample sizes appear to be reasonably
stable and close to exact values. This information shows that MLEs are both efficient
and consistent.

15

Figure 5. The performance of bias and MSE profiles against µ̌, ξ̌ and λ̌ for set-II.

Fig. 6. The performance of Bias and MSE pro�les against ��; �� and �� for set-III:

As mentioned in discussion, the study�s �ndings are explained through �gures and tables.

The following are the key conclusions of the investigation:

� Tables 1-3 indicate the RMSE, MSE and AB values of parameters for various n, and it
can be shown that MSE and RMSE decrease with increasing n, as intended. Secondly,

as n rises, the AB decreases as well.

� As n increases, the biases of ��; �� and �� diminish.

� Although the biases of �� and �� are predominantly negative, there are positive biases
for ��.

� The MLEs of �� and �� are overvalued, whereas the MLEs of �̂ are undervalued (see Figs.
4-6(left panel)).

� The MaxLLE technique outperforms in terms of MSE, as seen in the right panel of
Figs. 4-6.

� When n rises, all bias and MSE �gures for ��; �� and �� ultimately approach zero, as seen
in Figs. 4-6. This highlights precision of estimating procedures.

� In comparison to the MSE of ��, the MSE of �� and �̂ is quite small.

� Depending on these �ndings, we conclude that MLEs perform a reasonable job of

estimating parameters, and that values for these sample sizes appear to be reasonably

stable and close to exact values. This information shows that MLEs are both e¢ cient

and consistent.

16

Figure 6. The performance of bias and MSE profiles against µ̌, ξ̌ and λ̌ for set-III.

5. Illustrative Examples

The utility of the NIGT-II model for real data sets is given here. Alternatives to the
NIGT-II model include the Gumbel Type-Two (GT-II) distribution. These models were
compared via goodness of fit (GOF) measures such as Bayesian information criterion (BIC),
Akaike information criterion (AIC), corrected Akaike information criterion (CAIC) and
negative log-likelihood (NLL). The model with the smallest analytical metrics scores for
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real data sets may be the perfect suited. The findings of such investigations are presented
in Tables 4 and 5. COVID-19 data from the United Kingdom was presented in the first real
data collection, which spanned 82 days from May 1 to July 16, 2021, and COVID-19 data
from France was presented in the second real data collection, which spanned 108 days from
March 1 to June 16, 2021; both were made available at https://covid19.who.int/ ( accessed
on 3 March 2022) . Abu El Azm et al. [46] provides more information on these datasets.
Other COVID-19 data applications can be found in [47,48]. The MaxLLE technique has
been implemented to examine the relevant parameters of models. For two real data sets,
Tables 4 and 5 show MLEs and associated standard errors (SEs) in parenthesis. The findings
in these tables show that the proposed model fits better than the benchmark model since
the NIGT-II model has the smallest analytical measures. Figures 7 and 8 illustrate the P-P
patterns of the NIGT-II distribution for the two real data sets, respectively. These numbers
back up the findings in Tables 4 and 5 that the NIGT-II model fits the two real data sets
well. For the two real data sets, Figures 9 and 10 show profile-likelihood graphs of the
NIGT-II parameters. For all estimated parameters, these plots demonstrate the unimodality
of profile-likelihood functions. Finally, for both datasets, the NIGT-II model appears as the
best adequate model, demonstrating its use in a practical setting.

Table 4. Statistical outcomes of NIGT-II and GT-II models for the first data.

Models MLEs NLL AIC BIC AICC

NIGT-II
(
µ̌, ξ̌, λ̌

)
0.003704, 1.186428, 0.434443 −186.8589 −367.7178 −360.4976 −367.4101
0.001621, 0.089687, 0.047923

GT-II
(
ϑ̌, κ̌

)
0.014746, 1.016119 −182.5156 −361.0312 −356.2178 −360.8793
0.005563, 0.077277

Table 5. Statistical outcomes of NIGT-II and GT-II models for the second data.

Models MLEs NLL AIC BIC AICC

NIGT-II
(
µ̌, ξ̌, λ̌

)
0.007352, 1.126818, 0.426782 -201.7573 −397.5145 −389.4682 −397.2838
0.002354, 0.069947, 0.034165

GT-II
(
ϑ̌, κ̌

)
0.028103, 0.952045 −193.8848 −383.7696 −378.4053 −383.6553
0.007874, 0.060660

Models MLEs NLL AIC BIC AICC

NIGT-II
�
��; ��; ��

�
0.007352, 1.126818, 0.426782 -201.7573 -397.5145 -389.4682 -397.2838

0.002354, 0.069947, 0.034165

GT-II
�
�#; ��

�
-193.8848 -383.7696 -378.4053 -383.6553

Fig. 7. Probability plots of NIGT-II and GT-II models for dataset I.

Fig. 8. Probability plots of NIGT-II and GT-II models for dataset II.

Closing remarks on both applications

1. NIGT-II has the lowest values of analytical measures of GOF statistics, in accordance

with both datasets.

2. As seen in Figs. 7 and 8 NIGT-II is the most e¤ective model for �tting datasets I and

II

3. The GT-II distribution demonstrates poor �t for the both datasets, as shown in Tables

4-5.

4. Figs. 9 and 10 indicated the existence of estimated parameters for the proposed model

for the two real data sets, respectively.

5. The log-likelihood function has a global maximum root for the model parameters, as

shown in Figs. 9, 10.

18

Figure 7. Probability plots of NIGT-II and GT-II models for dataset I.

Closing remarks on both applications
1. NIGT-II has the lowest values of analytical measures of GOF statistics, in accordance

with both datasets.

https://covid19.who.int/
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2. As seen in Figures 7 and 8, NIGT-II is the most effective model for fitting datasets I
and II.

3. The GT-II distribution demonstrates a poor fit for both datasets, as shown in
Tables 4 and 5.

4. Figures 9 and 10 indicated the existence of estimated parameters for the proposed
model for the two real data sets, respectively.

5. The log-likelihood function has a global maximum root for the model parameters,
as shown in Figures 9 and 10.

Models MLEs NLL AIC BIC AICC

NIGT-II
�
��; ��; ��

�
0.007352, 1.126818, 0.426782 -201.7573 -397.5145 -389.4682 -397.2838

0.002354, 0.069947, 0.034165

GT-II
�
�#; ��

�
0.028103, 0.952045 -193.8848 -383.7696 -378.4053 -383.6553

0.007874, 0.060660

Fig. 8. Probability plots of NIGT-II and GT-II models for dataset II.

Closing remarks on both applications

1. NIGT-II has the lowest values of analytical measures of GOF statistics, in accordance

with both datasets.

2. As seen in Figs. 7 and 8 NIGT-II is the most e¤ective model for �tting datasets I and

II

3. The GT-II distribution demonstrates poor �t for the both datasets, as shown in Tables

4-5.

4. Figs. 9 and 10 indicated the existence of estimated parameters for the proposed model

for the two real data sets, respectively.

5. The log-likelihood function has a global maximum root for the model parameters, as

shown in Figs. 9, 10.

18

Figure 8. Probability plots of NIGT-II and GT-II models for dataset II.

Fig. 9. Curves of pro�le-likelihood function of three estimated parameters of NIGT-II

model for �rst real data set

Fig. 10. Curves of pro�le-likelihood function of three estimated parameters of NIGT-II

model for second real data set

6 Concluding Remarks

This work proposes a three-parameter model for the new and improved Gumbel Type II

(NIGT-II). The NIGT-II model is more versatile than the benchmark model when it comes

to interpreting lifespan data. This is a quick overview of what we�re attempting to achieve.

Estimation techniques like MaxLLE is used to assess the parameters of the NIGT-II model.

A simulation experiment is performed to evaluate model�s execution over a range of sample

sizes and parameter values. Depending on the COVID 19 mortality rate, we consider two

accomplishments. We determined that it outperformed its competitor in terms of analytical

results, making it the ideal selection. We also graphed Figs. 9 and 10 for the pro�le-likelihood

function of the given model with its parameters for the real data sets to ensure that the roots

of the proposed model�s MLE o¤er a maximum value. These graphs show that the pro�le-

likelihood functions of all estimated parameters are unimodal. Further research will include

19

Figure 9. Curves of the profile-likelihood function of three estimated parameters of NIGT-II model
for the first real data set.

Fig. 9. Curves of pro�le-likelihood function of three estimated parameters of NIGT-II

model for �rst real data set

Fig. 10. Curves of pro�le-likelihood function of three estimated parameters of NIGT-II

model for second real data set

6 Concluding Remarks

This work proposes a three-parameter model for the new and improved Gumbel Type II

(NIGT-II). The NIGT-II model is more versatile than the benchmark model when it comes

to interpreting lifespan data. This is a quick overview of what we�re attempting to achieve.

Estimation techniques like MaxLLE is used to assess the parameters of the NIGT-II model.

A simulation experiment is performed to evaluate model�s execution over a range of sample

sizes and parameter values. Depending on the COVID 19 mortality rate, we consider two

accomplishments. We determined that it outperformed its competitor in terms of analytical

results, making it the ideal selection. We also graphed Figs. 9 and 10 for the pro�le-likelihood

function of the given model with its parameters for the real data sets to ensure that the roots

of the proposed model�s MLE o¤er a maximum value. These graphs show that the pro�le-

likelihood functions of all estimated parameters are unimodal. Further research will include

19

Figure 10. Curves of the profile-likelihood function of three estimated parameters of NIGT-II model
for the second real data set.
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6. Concluding Remarks

This work proposes a three-parameter model for the new and improved Gumbel
Type-II (NIGT-II). The NIGT-II model is more versatile than the benchmark model when it
comes to interpreting lifespan data. This is a quick overview of what we are attempting
to achieve. Estimation techniques such as MaxLLE are used to assess the parameters
of the NIGT-II model. A simulation experiment is performed to evaluate the model’s
execution over a range of sample sizes and parameter values. Depending on the COVID-19
mortality rate, we consider two accomplishments. We determined that it outperformed its
competitor in terms of analytical results, making it the ideal selection. We also graphed
Figures 9 and 10 for the profile-likelihood function of the given model with its parameters
for the real data sets to ensure that the roots of the proposed model’s MLE offer a maximum
value. These graphs show that the profile-likelihood functions of all estimated parameters
are unimodal. Further research will include validating this model utilizing other recent
data sets. A new two-parameter model using the Kavya–Manoharan (KM) transformation
will also be included in future studies, as well as other estimating techniques to evaluate
the effectiveness of the NIGT-II distribution parameters.
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Nomenclature
Symbols
f ( x|.) PDF
F( x|.) CDF
S( x|.) SF/RF
h( x|.) HRF/FRF
H( x|.) CHRF
F( tx|.) FGF
C( t|.) Cumulants
M( t| .) MGF
δ Median
µ̆k Central Moments
Ψ∗1(X) Mean deviation about mean
Ψ∗2(X) Mean deviation about median
Abbreviations
MaxLLE Maximum likelihood Estimation
FGF Factorial Generating Function
GT-II Gumbel Type-II
RMSE Root Mean Square Error
PDF Probability Density Function
CDF Cumulative Distribution Function
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MLEs Maximum likelihood Estimates
MN Monotonic
SF Survival Function
FRF Failure Rate Function
HRF Hazard Rate Function
CHRF Cumulative Hazard Rate Function
AB Average Bias
NMNHF Non-Monotonic Hazard Function
w.r.t. With Respect To
QF Quantile Function
MGF Moment Generating Function
r.v. Random Variable
MSE Mean Square Error
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10. Cordeiro, G.M.; Ortega, E.M.; Popović, B.V.; Pescim, R.R. The Lomax generator of distributions: Properties, minification process

and regression model. Appl. Math. Comput. 2014, 247, 465–486. [CrossRef]
11. Tahir, M.H.; Cordeiro, G.M.; Alzaatreh, A.; Mansoor, M Zubair, M. The logistic-X family of distributions and its applications.

Commun.-Stat.-Theory Methods 2016, 45, 7326–7349. [CrossRef]
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