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Abstract: There are many state-of-the-art algorithms presented in the literature that perform very
well on some evaluation data but are not studied with the data properties on which they are applied;
therefore, they could have low performance on data with other characteristics. In this paper, the results
of comprehensive research regarding the prediction with the frequently applied AdaBoost algorithm
on real-world sensor data are presented. The chosen dataset has some specific characteristics, and
it contains error and failure data of several machines and their components. The research aims to
investigate whether the AdaBoost algorithm has the capability of predicting failures, thus providing
the necessary information for monitoring and condition-based maintenance (CBM). The dataset is
analyzed, and the principal characteristics are presented. Performance evaluations of the AdaBoost
algorithm that we present show a prediction capability below expectations for this algorithm. The
specificity of this study is that it indicates the limitation of the AdaBoost algorithm, which could
perform very well on some data, but not so well on others. Based on this research and some others that
we performed, and actual research from worldwide studies, we must outline that the mathematical
analysis of the data is especially important to develop or adapt algorithms to be very efficient.

Keywords: mathematical modeling; statistical analysis; statistical correlation; statistical significance;
statistical analysis of experimental evaluation data; AdaBoost algorithm; smart applications; sensor
data; failure data; condition-based maintenance; performance analysis of an algorithm
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1. Introduction

Modern buildings integrate increasingly smarter applications; thus, a large amount of
real-time sensor data can be collected and transmitted by the Internet of Things devices [1].
Oliveira et al. [2] presented evaluation procedures for performing forecasting based on
complex spatiotemporal data. Leon and Gavrilescu [3] presented a survey on the problem of
tracking and trajectory prediction methods that should be applied in autonomous driving.
Haq et al. [4] studied an adapted consumption prediction model that can be applied in
commercial and residential sectors.

Typical applications aim to conserve energy consumption: heating, lighting, air condi-
tioning, ventilation, etc. Other applications belong to routine facility management such
as electricity, water supply, sanitary, etc. There is immense potential to apply artificial
intelligence and machine learning during the life cycle of buildings [5].

Measuring machine intelligence makes possible the comparison of the systems and
applications based on their intelligence. Because the diversity of the systems is large, it is
difficult to elaborate on universal intelligence metrics. The paper [6] presented the mathe-
matical modeling of a universal black-box-based intelligence metric called MetrIntPairII,
which is able to measure and compare a set of systems based on their intelligence, finally
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classifying the systems into intelligence classes. In [7], a novel universal method called
ExtrIntDetect for the identification of intelligent systems with extremely low and extremely
high intelligence was proposed. This allowed choosing the system that has statistically
much lower or higher intelligence than others to solve problems. MetrIntPairII and ExtrInt-
Detect could help intelligent systems developers and at the same time users of intelligent
systems in choosing systems based on problem-solving intelligence.

This paper focuses on the monitoring and condition-based maintenance (CBM) of
construction facility equipment that is essential for providing flawless operation. CBM,
which is defined as “preventive maintenance which includes assessment of physical condi-
tions, analysis and the possible ensuing maintenance actions” [8] plays an important role
in lifecycle engineering to improve machines’ availability and reduce maintenance costs.
State-of-the-art CBM applications have been improved recently; they use data analytics
processes on the data of the system being investigated. Very often, data analytics [9] use
Artificial Intelligence techniques that can evaluate whether the machine operations follow
a normal condition pattern or whether there is an anomaly [10]. Machine designers do
not have experience with machine operational failures; the machines operate in different
environments. Thus, the maintenance activities become increasingly significant [11]. A
closely related term is prognostics and health management (PHM) which aims for the pre-
diction of its reliability and the remaining useful lifetime (RUL) of machines and machines
health [12].

Internet of Things (IoT) technology focuses on obtaining sensor information [13–15],
then securely processing and storing it. Cloud-based data centers are widely used. The
benefits of Big Data techniques [16] are also utilized in this process. Some research suggests
using blockchain technology [17].

The monitoring of electricity and thermal energy systems, ventilation, and cool-
ing/heating systems can be traced back to measuring electrical parameters. The following
signals are typically measured: power consumption, and mechanical vibration. For exam-
ple, increasing power consumption or higher vibration may indicate an upcoming failure.
They are usually analyzed using methods such as [18] a fast Fourier transform and power
spectrum analysis.

Collecting and monitoring these data can form a base to evaluate the condition of each
piece of equipment to explore the characteristic and life curve state of a particular piece
of equipment. The remaining useful life is the length of usable time left on an asset at a
specific time [19]. The definition of what is ‘usable’ for the owner of the equipment may be
specific to the asset.

The residual life is constantly decreasing during the operation of equipment. Properly
scheduled maintenance and repairs can extend the lifetime. The advantage of condition-
based maintenance is that the maintenance events of the equipment need to happen only
when its status characteristics justify this. The investigation of the dynamics of physical
signal characteristics and performance measurements may indicate the failure of parts of
the equipment so that the maintenance time and cost can be minimized with the help of
the accurate prediction of forthcoming failures. Another advantage is that purchasing and
storing those parts can be more efficiently scheduled.

CBM may be based on offline and online measurements. In the offline case, the
measurement and data acquisition are performed periodically, followed by recurring
data processing. This is a cost-effective way for monitoring equipment whose lifetime
degradation is known and nearly constant.

The other type is as follows: online, real-time measurement and monitoring is feasible
to use in cases where the lifetime degradation is unknown or very uncertain. Furthermore,
this strategy is valuable when the loss of the equipment is great, there is a potential personal
injury, or the environmental damage is greater than the cost of real-time process monitoring.

Figure 1 shows the most typical CBM techniques presented by [20]. There are three
major families of techniques: data processing, diagnostics, and prognostics. Data process-
ing focuses on handling and analyzing data or signals and transforming them into an
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interpretable form. Diagnostics are responsible for fault detection, when and what kind
of fault happened, and which components were affected. Prognostics attempt to predict
upcoming faults.
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Another comprehensive review of the available CBM models was given in [21]. The
paper treats two distinct strategies: time-based maintenance and condition-based main-
tenance. CBM techniques are divided into prognostic methods, and machine learning
approaches are also discussed such as artificial neural networks, fuzzy logic, and expert
systems. Common data-driven methods include the principal component analysis, learning
vector quantization, and hidden Markov models.

The structure of the rest of the paper is as follows: Section 2 describes the research work,
and then a review is given of the scientific literature. Section 3 describes the characteristics
of the dataset. Then, the AdaBoost algorithm is introduced to predict failures using the
given dataset. Finally, in Section 4 the conclusions are formulated.

2. Materials and Methods

In this paper, a data-driven method is studied. The research hypothesis is that by
investigating a database that contains records of machine errors and failures along with
further telemetry data of those machines, this will allow the machine errors to be predicted
with some expected probability. The research project focused on investigating a boosting
algorithm, which will be discussed later. In our methodology, the dataset was divided into
two parts. Within the available time range, the time of the investigation split the dataset
into historical and future data. By using the historical data, predictions were made for the
‘future’, i.e., to the time after that point. The predictions were then compared with the real
facts. The research workflow is depicted in Figure 2.
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2.1. Estimations of Machine Failures

We considered a constraint when an estimation should be given on the expected time
of a machine failure. The following sections give an overview of the estimation methods
that have been investigated in this paper.

2.1.1. Estimation by Mean Operation Time

Let us assume that the data of some similar machines operating in a similar environ-
ment are available for investigation. It can be noticed that the machine failure will be close
to the mean life (unless the usage of a given machine is different from the other machines).
Let us have n machines. The start time of the machine is denoted by si. Let us denote
the fi as the failure time of the ith machine. The operation time of the ith machine can be
calculated as:

ti = fi − si (1)

The mean operation time is:
−
t =

∑n
i=1 ti

n
(2)

Let us assume the kth machine starts at sk. The average time of the expected failure
time can be calculated by (3):

sk +
−
t (3)

The precision of the estimation can be described by the distance between the expected
and real failure time. The absolute value of the distance or the square of the distance is
an appropriate indicator. It is expected that the more machines we have, the more precise
the calculation of the expected value. The precision of the estimation can be improved
incrementally. Let us assume there is an appropriate number of data samples to calculate
the average operation time. When a new failure is noted, the value of the mean operation
time can be updated by (2).

2.1.2. Estimation Based on the Relative Frequency

When the estimation targets a fixed time interval, we can count the occurrences of
the failures of the previous periods, and the relative frequency can be considered as the
probability of occurrence. This is a calculation that is not computationally expensive and
provides an approximate value for future occurrences without considering the distribution
of the failures. An advantage of the method is that adding new samples to the dataset will
make the estimation more precise. The disadvantage is that the entire time interval must
be considered. Properly selected aggregation methods can eliminate the linear growth
of computing time. This method cannot ’forget’, i.e., all the data samples are taken into
account. We may want the model not to consider failure data too old, or ’refresh’ memory
after a repair of the machines. Applying a sliding time window can improve this method.
Another characteristic of the model is that certain time windows contain no failure data at
all; therefore, the predicted probability of failure is zero.
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2.1.3. Estimation by the Expected Value

Since time is a continuous value, the likelihood is 0 that the failure will occur exactly
at the estimated time. For this reason, it is expedient to estimate for a period. Let us utilize
Markov’s inequality [22], which looks as follows:

P(ξ > δ·E(ξ)) ≤ 1
δ
) (4)

where ξ is a probability variable and δ ∈ R. In our case, ξ refers to the lifetime of the

equipment. The expected value E(ξ) can be predicted by the aforementioned
−
t value. In the

case of a homogeneous sampling, when n→∞ the value of
−
t will approach the expected

value. If there is an estimation for the expected value, any arbitrary δ > 0 value can be used
to estimate whether a specific machine would fail within a specified period. Let us denote
this period h ∈ R. For the estimation, let us use (5):

1− P(ξ ≤ δ·E(ξ)) ≤ 1
δ
) (5)

from which
1− P(ξ ≤ h) ≤ 1

δ
) (6)

as
δ =

h
E(ξ)

(7)

Rearranging the equation results:

P(ξ ≤ h) ≤ 1− E(ξ)
h
≈ 1−

−
t
h

(8)

Note that h ≥ E(ξ) must be true.
It is important to note that this estimation does not take into account how long the

machine has been working. The estimated probability can be calculated when the machine
is started. From a practical point of view, it is more advantageous to give an estimate for a
specified interval such as one day, one week, or one month forward. A threshold for the
estimated probability of the failure occurring in the interval can be calculated based on a
metric. Such a metric can be the proportion of correct and incorrect failures. In order to
calculate this, a known period must be investigated and the expected and obtained results
should be compared. Frequencies and relative frequencies can be used. The advantage
of using the frequency is that it contains the size of the samples as meta information. The
use of relative frequencies makes the result easier to compare with other calculations. To
evaluate the method by investigating the number of failures, we can use:

• The absolute value of the difference between the observed and calculated results;
• The square of the difference between the observed and calculated results;
• And p-norm as a generic case. Let ∆ be the vector of differences, and p ∈ R, p ≥ 1.

p-norm [23] is defined as:

‖∆‖p =
(
∑n

i=1|∆i|p
) 1

p (9)

where n is the number of discrete times considered for the estimation.

If the question is only whether the machine operates with or without failure during
the period, then the problem can be considered as a classification problem. The simplest
case is binary classification: to have one class for the failures and one for no failure. If the
failure count is an important factor, then additional classes can be introduced to represent
the number of failures.
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2.1.4. Estimation by the Expected Value

With Markov inequality [22], we can only provide a very rough probability of failures.
Let us have a ξ probability value, whose expected value is E and its standard deviation is
D. For an arbitrary ε ∈ R, ε > 0, the following is true:

P(|ξ − E(ξ)| ≥ ε) ≤ D2(ξ)

ε2 (10)

Therefore, the inequality (10) shows the probability of the values that are likely to fall
into the ε radius of the expected value. In practice, this can be used as follows:

• Based on the available samples, give an estimation for the expected average value and
the standard deviation;

• Specify an ε value that will select a time interval of 2ε length on the time axis, with the
expected value in the center;

• Give an estimation of the probability of an item being inside/outside of the interval;
• Often, the result can be interpreted as giving the probability of the failure to fall into

the examined interval. With the rearrangement of the equation, this can be calculated
as:

P(|ξ − E(ξ)| < ε) ≥ 1− D2(ξ)

ε2 (11)

if

1− D2(ξ)

ε2 > 0⇒ 1 >
D2(ξ)

ε2 ⇒ ε2 > D2(ξ)⇒ ε > D(ξ) (12)

It can also be noticed that the increase in the value of ε, the size of the period, and the
probability of a failure to fall into the period will increase.

It is possible to use inequality in another form. If the probability p is known and the
size of the period is the question, then the inequality can be rearranged as follows:

p = 1− D2(ξ)

ε2 (13)

To express ε:

ε =

√
D2(ξ)

1− p
(14)

The higher the probability p, the higher ε will be. Note that the equalities refer to
known theoretically expected values and standard deviations. In most cases, however, they
are not available for the equipment.

2.2. Analysis of the Dataset

In this section, the dataset used is described. The target of the investigations made in
this paper was acquired with a real dataset (see data availability statement at the end of
the paper), which contained data from 100 machines, see Table 1. A brief overview of the
information gained about the machine’s lifetime is as follows:

• The lifetime of the machines is between 0 and 20 years;
• No typical distribution is identified for the age of the machines;
• The average lifetime of the machines is 11.33 years;
• The age of the machines is approximately 5.8 years;
• No 13-year-old machines are in the set—all other ages in the range of [0, 20] can be

seen; see Figure 3;
• The most frequent is the 14-year-old machines with the count 14. The second most

common age is 10 years, with 10 instances.



Mathematics 2023, 11, 1801 7 of 24

Table 1. Machine model and age data.

Machine ID Model Age

1 model3 18
2 model4 7
3 model3 8

. . .
98 model2 20
99 model1 14

100 model4 5
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Some remarks on model types:

• The distribution of the number of similar machines is not uniform. The individual
model counts are 16, 17, 35, and 32;

• The most common machine of type #3 is 14 years old having 6 instances;
• The average age of type #4 is outstanding: the average ages of other types are 12.25,

12.76, and 12.03, respectively, while type #4 is about 9.34 years old on average;
• The highest standard deviation regarding ages is for type #4;
• The maximum lifetime for each type is 20 years. The minimum lifetime is between 0

and 2 years.

Figure 3 depicts the histogram of the machine ages in the dataset.

2.3. Performed Statistical Analysis

In this section, we perform a specific statistical analysis.

Correlation Analysis

Initially, some quantitative indicators were determined. In the sample dataset, the
nr_failures (count of failures), nr_errors (count of error statements), and nr_maintenance
(count of maintenance activities) were identified for the analysis.

For the data analysis, we performed a verification of the outliers first, followed by the
verification of the data normality.

An outlier that could appear in a dataset is an extreme that is statistically significantly
much higher or lower than the other values from the same dataset. The appearance of
outliers in datasets can influence to a high degree the evaluation results. For instance, if
the mean must be calculated, a very high or low outlier influences the result to a high
degree. We have verified applying the two-tailed Grubbs outliers detection test [24] at
the significance level αGR = 0.05 for identifying outliers, in all the datasets, nr_errors,
nr_failures, and nr_maintenance. The Grubbs test applied to the number of errors did not
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detect any outlier, just the value 60 that was statistically furthest from the rest. The Grubbs
test applied to the number of failures did not detect any outlier, just the 19 value that was
statistically furthest from the rest. The Grubbs test applied to the number of maintenances
did not detect any outlier, just the 25 value that was statistically furthest from the rest. In
the following analyses, we have considered even these farthest from the rest of the values.

There are diverse goodness-of-fit tests that can be applied for the verification of
data normality. Among the most frequently used goodness-of-fit normality tests can be
mentioned the Kolmogorov–Smirnov (KS) test [25,26]; Lilliefors (Lill) test [27], which is a
Kolmogorov–Smirnov test with a specific Lilliefors correction; Anderson Darling test [28]
and Shapiro–Wilk (SW) test [29]. According to [30], from the previously mentioned tests,
the SW test has the highest power, but it has disadvantages as well. The SW test is
recommended to be applied for small samples (where the sample size≤ 30). In the case of a
large sample size, we recommend the application of the Lill test. As the significance level of
the Lill normality test, we considered in most of the cases αnorm = 0.05. The p-value of the
normality test can be interpreted if p-value < αnorm, then the Null hypothesis (H0) should be
rejected, and H1 accepted as the alternative hypothesis; the data failed to pass the normality
assumption at the αnorm significance level. Elsewhere, if p-value ≥ αnorm, H0 could not be
rejected, and the data passed the normality assumption at the αnorm significance level.

For additional visual validation of the result of the Lill normality test, we recommend
the use of the quantile-quantile plot (Q-Q plot) visual representation [31]. The Q-Q plot
is a scatterplot appropriate for normality visual appreciation. If the data are normally
distributed data, the points should fall approximately along this reference line. The larger
the departure from the reference line, the greater the evidence for the conclusion that the
data failed the normality assumption.

We considered that the data sample normality was an influencing factor that must be
analyzed for the data characterization. In the following, we have verified the assumption
of normality of the variables nr_errors, nr_failures, and nr_maintenance.

For the verification of normality, based on the fact that the sample size was larger by
30, we applied the Kolmogorov-Smirnov test with the Lilliefors improvement (Lill test) [29]
at the αnorm = 0.05 significance level. Table 2 presents the obtained results by applying the
Lill test, with the considered αnorm = 0.05 significance level.

Table 2. Verification of data normality assumption using the Lill test, αnorm = 0.05.

nr_Errors nr_Failures nr_Maintenance

Test statistics 0.095 0.087 0.120
p-value 0.026 0.058 0.001

p-value ≥ αnorm No Yes No
Normality assumption passed
(No reason for rejection of H0) No Yes No

For additional visual validation of the numerical normality analysis results, we created
the Q-Q plots corresponding to the variables, nr_errors (Figure 4), nr_failures (Figure 5),
and nr_maintenance (Figure 6). Based on the obtained numerical results and the visual val-
idations, it can be concluded that the number of failures passed the normality assumption.
The number of errors failed to pass the normality assumption. The number of mainte-
nances failed to pass the normality assumption. Figure 7 depicts the relation between error
statements, failures, and maintenance count.

For calculating the correlation coefficient of two variables, we recommend the Pear-
son [7,32] or Spearman [32,33] correlation coefficient as being the most appropriate in many
cases. We have defined the decision rule for choosing between the Pearson or Spearman
correlation coefficient based on the normality of the variables whose correlation was studied.
The Spearman correlation coefficient is more appropriate in the nonparametric case when
the data (variable) fail to pass the normality assumption. When the data (variable) normality
assumption passes, we recommend the Pearson correlation coefficient [32] to be used.
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Based on the results of the normality analysis, we decided to use the Spearman
correlation coefficient r [33,34] between the number of errors and the number of failures.
The obtained Spearman r = 0.448 numerical value indicated a moderate correlation. For
verification, if r was statistically significant, we have calculated the 95% confidence interval
(CI) obtaining [0.2703, 0.5961]. We found that r > 0 and 0.2703 > 0, which proves that
the correlation was statistically significant. Additionally, we have applied the statistical
ANOVA test at the significance level αANOVA = 0.05 for verification of the hypothesis that r
was statistically significantly different from 0. The obtained p-value of 0.0001 indicated that
the difference was statistically significant (0.0001 < αANOVA).

We calculated the Spearman correlation coefficient r between the number of failures
and the number of maintenances obtaining a very small r = −0.04585. For verification, if
r was statistically significant, we have calculated the 95%CI obtaining [−0.2457, 0.1577].
Therefore, r < 0 and 0.1577 > 0 proved that there was no correlation. Additionally, we have
applied the statistical ANOVA test at the αANOVA = 0.05 significance level for verification
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of the hypothesis that r was statistically significantly different from 0. The obtained p-value
of 0.6506 indicated that the difference was not statistically significant (0.6506 > αANOVA).

We calculated the Spearman correlation coefficient r between the number of errors and
the number of maintenances, obtaining a very small r = −3.028 × 10−6. For verification, if
r was statistically significant, we have calculated the 95% CI obtaining [−0.2021, 0.2021].
r < 0 and 0.2021 > 0 proved that there was no correlation. Additionally, we have applied the
statistical ANOVA test at the 0.005 significance level for verification of the hypothesis that r
was statistically significantly different from 0. The obtained p-value of 0.9999 indicated that
the difference was not statistically significant (0.9999 > αANOVA).

In conclusion, the correlation analysis was realized using the Spearman correlation
coefficient on the number of error statements and the number of maintenance events. The
correlation analysis has provided the following results:

• There was a moderate correlation between error statements and failures, with a value
of 0.448. This was only −3.028 × 10−6 between error statements and maintenance,
while in the case of failures and maintenance, this was −0.04585;

• Our initial expectation was that the more failures there were, the more maintenance
there was. In fact, due to regular/predictive maintenance, the correlation between the
two types of events was not significant.

• There was no relationship between error statements and maintenance.

2.4. Discussion on Error Statements by Machines

It can be assumed that if there are many similar types of machines in the supervised
system, the phenomena observed on a machine could happen with similar machines as
well. If we can provide a good estimation of the distribution of the error statements per
machine, the error statement itself can be predicted with greater reliability.

For a fixed period, the number of error statements can be counted. From the distribu-
tion of these (see Figure 8), the following conclusions can be drawn:

• The expected value can be estimated by the average values in the period;
• The standard deviation indicates how similar the machines are.
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In the following, we have studied how the age of machines affected the count of
error statements. This can be seen in Figure 9; the visual analysis indicates no correlation.
This can be interpreted as the maintenance work performed on the machines reducing the
significance of the machines’ ages.
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The histogram of elapsed time between errors can be seen in Figure 10. To be visually
more illustrative, we have considered classes.
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The dataset contained telemetry data as well. According to our assumption, telemetry
data may have a relationship between the signals and the failures/error statements. It is
assumed that telemetry data may be used to forecast future errors of the machine, and thus
it may indicate the need for (condition-based) maintenance. For example, vibration and
resonance may cause degradation of the lifetime of a rotating component, thus leading to
mechanical failures. This research aimed to verify if recognizing patterns in telemetry data
can be used to predict forthcoming failures, and thus form a base of CBM.

As discussed before, the dataset investigated consisted of a telemetry dataset of various
machines. For example, the telemetry data of machine 1, sample 0 are plotted in Figure 11
as follows:
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3. The Study of the AdaBoost Algorithm for Prediction

In this section, the details of the study are presented. In the previous sections, the goal
of the research and the available dataset were discussed. First, the AdaBoost algorithm
will be shown. After that, an overview will be given of the existing application areas of the
algorithm. Finally, two experiments will be evaluated on the dataset.

3.1. A Summary of the AdaBoost Algorithm

The AdaBoost algorithm [35,36] is appropriate for accelerating machine learning
algorithms and increasing their performance by making a strong classification as a linear
combination of weak classifications with appropriate weights. The AdaBoost algorithm
belongs to the class of boosting algorithms [37]. The quality of the resulting classification is
influenced to a high degree by the definition of initial weak classifiers. The studies [38,39]
proved that combining weak learners may form a string learner. Some enhancements of
the original algorithm have been evaluated when running the method. The authors of [39]
proposed a weight allocation scheme to enhance the generalization effect. By selecting and
combining information in the dataset, different prediction models can be created.

The AdaBoost algorithm is a special case of combined classification methods. Com-
bined classifiers are created by mixing multiple classes of classifiers and methods for
making forecasts. This way, they increase the accuracy of the classification. During the
learning phase, base classifiers are created. The classification itself relies on voting. The al-
gorithm in its general form is described by the following pseudo-code: Algorithm AdaBoost
(Algorithm 1).

Algorithm 1: Algorithm AdaBoost

Input: X: domain dataset; Y: label dataset; T: number of steps;
Output: H = C, the final hypothesis
Create D0 initial distribution
for t = 1 to T do

Compute Dt+1 from Dt;
Construct a Ct classifier from Dt;

end for
for (all xi ∈ S test records) do

C(xi) = Vote C1(x1),C2(x2), . . . ,Cm(xm);
end for

End AdaBoost
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The explanation of the algorithm is as follows. The training dataset consists of sug-
gestions: (x1, y1) . . . (xm, ym) where xi belongs to the domain space X, and yi is the cor-
responding label. In our research, we assumed Y = {−1, 1}. (xi, yi) is the experimental
classification of phenomenon i, which can be inaccurate. Dt is the distribution on round
t, in other words, a weight that describes the importance of the classification of xi. In this
algorithm, the weight is increased so that it acquires more focus when the classification
is incorrect. Initially, the weights are equal (see Equation (15)). At each iteration step,
an error is calculated, see Equation (16), and the distribution is updated and normalized
(see Equations (17)–(19)). The output is the final hypothesis, which is a result of a voting
mechanism. In this paper, a linear combination was used (20), but there can be other voting
algorithms as well.

Boosting algorithms [40] are sequential in the sense that the creation of consecutive
classification models depends on the data of the previous model. In the first model, we
took into account each object of the training dataset with the same weight to see whether
the model classified each instance correctly or incorrectly. In the former case, we reduced
the weights in the latter to pay more attention to the improperly classified objects in the
next round. During the procedure, this step was repeated through several iterations, with
the purpose that the algorithm at a certain iteration will be correctly classified as the
appropriate class.

There are several variants of the general boosting algorithm depending on how the
parameters are used (how to apply weights on instances, what kind of basic classifier to
use, and how to combine the models obtained during the process). The most widespread of
these is the state-of-the-art AdaBoost algorithm [41–43]. Ref. [44] compared the prediction
capabilities of the AdaBoost algorithm with the backpropagation neural network (BPNN),
regression classifier, support vector machine (SVM), and support vector regression (SVR).

3.2. Applications of the AdaBoost Algorithm

Various application fields of the AdaBoost algorithm can be found in the scientific
literature. Ref. [45] used the AdaBoost algorithm in the road engineering field to predict
performance indicators of asphalt concrete roads. Leaf nitrogen concentration was esti-
mated by the AdaBoost-based machine learning algorithm in [46]. Vertical total electron
content forecasting of the Earth’s ionosphere was discussed in [47]. COVID-19 signifi-
cantly changed the financial performance of enterprises. An AdaBoost-based intelligent
driving algorithm for heavy-haul trains was described in [48] to realize the intelligent
control of the air brake, optimized based on two aspects: the extraction method of the
training sample subset and the voting weight. A neurobiological application can be found
in [49], which described a model to improve dementia prediction accuracy; in the paper,
an intelligent learning system was described. AdaBoost was used for electroencephalo-
gram epileptic signals investigation [50]. An energetical application was described in [51]:
the state-of-charge prediction of lead-acid batteries by AdaBoost. An online sequential
extreme learning machine model was proposed in [52] where AdaBoost and the recurrent
neural network models were used for lithium batteries’ state-of-charge estimation. The
architectural engineering application of the AdaBoost algorithm was reported in [53] to
predict some mechanical properties of surrounding rock in tunneling. The authors of [54]
presented a video-based fire smoke detection using robust AdaBoost. AdaBoost was used
to increase the accuracy and reliability of a framework for daily activities and environment
recognition using mobile device data [55].

3.3. Implemented and Evaluated Version of the AdaBoost Algorithm
3.3.1. AdaBoost Algorithm for Condition-Based Maintenance

In this paper, the AdaBoost algorithm will be applied to a binary classification problem
in the field of condition-based maintenance, so this version is reviewed. The algorithm is
capable of executing both binary classification and multiclass problems [56]. In this case,
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the input dataset consists of (x1, y1), (x2, y2), . . . ,(xN, yN) pairs, where xi is the property
vector of the specified entity, yi = {0, 1} is a label, and i = {1, 2, . . . , N}.

Suppose teaching consists of t turns. The AdaBoost algorithm calls ht a weak classi-
fication procedure in each step. Most often, the decision chunk algorithm is used, which
divides the teaching patterns along a single attribute value and cuts at a threshold d. The
procedure is similar to a single-level decision tree model, i.e., one leaf of the tree will have
an attribute value smaller than d, while the other leaf is larger than d.

Let us denote the weight of the i-th learning dataset of step t Dt(i). Initially, all the
weights are calculated by (15):

Dt(0) =
{ 1

2m i f yt = 0
1
2l i f yt = 1

(15)

where m and l are the counts of negative and positive examples, respectively. In each
iteration, the algorithm re-divides the weight of the training samples by increasing the
weight of poorly classified patterns. As a result, poorly performing learning classifiers will
receive more attention. The error [57] is evaluated as follows. Let us denote X as the set of
property vectors of the data also known as a weak hypothesis: hi: X→{−1, 1}. In step t, the
error εt of the hypothesis can be calculated as the weighted sum of the wrongly classified
entities, in other words, where the predicted ht(xi) is not equal to the training sample yi:

εt =
N

∑
i:ht(xi) 6=yi

Dt(i) (16)

To calculate the distribution in the next step, we need an update parameter. Ref. [40]
suggested choosing an α update parameter as:

α =
1
2
·ln
(

1− εt

εt

)
(17)

In step t + 1, the weights are calculated as

Dt+1(i) = Dt(i)·est(i)αtht(xi) (18)

st(i) is a sign which is −1 if the hypothesis i is correct, +1 otherwise:

st(i) =
{
−1 i f ht(xi) = yi
+1 i f ht(xi) 6= yi

(19)

As Dt+1(i) is a distribution, we need to apply a normalization in each step using a
normalization factor Zt.

Dt+1(i) =
Dt+1(i)

Zt
(20)

The final hypothesis is the linear combination of the individual hypotheses [40]:

H(xi) = sign
T

∑
t=1

αt·ht(xi) (21)

3.3.2. Experimental Evaluation of the AdaBoost Algorithm

To cover a larger diversity of situations, we have performed more representative
experiments.

Experiment 1—using no iteration
In the first experiment, the AdaBoost algorithm was executed to predict error state-

ments and failures. There were one hundred machines in the dataset, and four telemetry
types for each, so a total of four hundred records were available. The goal was to process
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three-quarters of the data to predict the failures in the fourth quarter. The input of the
algorithm contained the number of maintenance events in the known quarters. Two types
of weak classifiers were used, and the experiments were run ten times as the weight cal-
culation had a random factor. Table 3 presents a screenshot of the obtained experimental
evaluation results.

Table 3. Evaluation results for experiment 1.

Nr. of Experimental Evaluation PDS PSV

1 0.675 0.06083
2 0.675 0.625
3 0.7333 0.6083
4 0.7083 0.6917
5 0.7583 0.6583
6 0.675 0.6167
7 0.675 0.65
8 0.7333 0.633
9 0.675 0.65

10 0.675 1.575

In order to formulate accurate conclusions, we performed an in-depth statistical
analysis of the results obtained. For both precision with decision stump (PDS) and precision
with support vector classifier (PSV) as a first step, we have verified, using the Grubbs
outliers detection test at the αGR = 0.05 significance level, whether outlier values could be
detected that were statistically significantly different from those others. By applying the
Grubbs test to the PDS, it was identified that the value 0.7583 was the furthest from the rest,
but not a significant outlier (the obtained p-value, p-value > αGR). By applying the Grubbs
test, at the αGR significance level, to PSV, it was identified that a value of 0.6917 was furthest
from the rest, but not a significant outlier (the obtained p-value, p-value > αGR 0.05).

As a next step, we have made a descriptive statistic for both PSD and PSV. For measur-
ing the variability, we calculated the standard deviation (SD). Furthermore, we calculated
the minimum, maximum, range, mean, 95 CI% of the mean, and median. For measuring
the data homogeneity-heterogeneity, the coefficient of variation (CV) CV = SD

mean × 100
was calculated, where CV < 10 indicates a homogeneous dataset; CV ∈ [10, 20) indicates a
relatively homogeneous dataset; CV ∈ [20, 30) indicates a relatively heterogeneous dataset;
CV ≥ 30 indicates a heterogeneous dataset. Table 4 presents the obtained experimental
evaluation results and descriptive statistical characterization.

Table 4. Results of the performed descriptive statistics.

Type of Characterization PDS PSV

Minimum 0.675 0.575
Maximum 0.7583 0.6917

Range 0.0833 0.1167
Mean 0.70333 0.6317

95 CI% of the mean [0.68, 0.7263] [0.6083, 0.655]
SD 0.032189 0.032591

CV 4.58
(4.58 < 10, homogeneous data)

5.16
(5.16 < 10, homogeneous data)

Median 0.6917 0.6292

Further, we analyzed the data normality of PDS and PSV. Based on the fact that the
sample sizes were very small 10, 10 < 30 (where 30 can be indicated as a threshold), we
have chosen the Shapiro–Wilk (SW) test of normality. The SW test has higher power [29]
compared with other very frequently applied statistical tests such as the Kolmogorov–
Smirnov, Lilliefors (Kolmogorov–Smirnov test with Lilliefors correction), and Anderson–
Darling tests. Table 5 presents the results of the SW test applied with the αnorm = 0.05



Mathematics 2023, 11, 1801 17 of 24

significance level. The obtained results indicate that PDS did not pass the normality
assumption, and just PSV passed the normality assumption.

Table 5. Verification of data normality assumption using the SW test, αnorm = 0.05.

PDS PSV

Test statistics 0.811 0.979
p-value 0.019 0.962

p-value ≥ αnorm No Yes
Normality assumption passed No Yes

For additional visual validation of the normality assumption analysis results, we have
plotted the Q-Q plot for PSD (Figure 12) and PSV (Figure 13). The visual interpretation of
Figures 12 and 13 led to the same conclusions as the SW test results (Table 5).
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Based on the results regarding the normality analysis in a nonparametric case, we
have noticed that the median was a more appropriate indicator of the central performance
tendency than the mean. For the verification of the null hypothesis (H0) that between the
medians of PSD and PSV there was no statistically significant difference, we have applied
the nonparametric Mann–Whitney test [58] at the αMW = 0.05 significance level. As the
result of the test application, it was obtained that the p-value denoted pMW = 0.0002, with
pMW < αMW indicating that the medians of PDS and PSV were statistically significantly
different. (H0 should be rejected and H1, the alternative hypothesis, must be accepted).
Based on the performed analyses, it can be concluded that the decision stump classifier
runs better than the support vector classifier.

Experiment 2 with an iteratively increased dataset
In the second experiment, the training set was iteratively increased. It always con-

tained those 3616 records, where the output was 1, and it was extended by 1 × 3616,
2 × 3616, . . . , 10 × 3616 other records randomly. This increased training data produced a
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better hit ratio (see Table 6). However, by looking at the confusion matrix of the 10th run
(22), which provided the most precise result, you could see:[

10, 780 8
1143 2

]
(22)
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5 21,696 0.8298 
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Figure 13. Q-Q-plot for PSV.

Table 6. Experiment 2 evaluation results.

Training Dataset Size Precision

1 7232 0.5442
2 10,848 0.6691
3 14,464 0.7486
4 18,080 0.7871
5 21,696 0.8298
6 25,312 0.8540
7 28,928 0.8692
8 32,544 0.8860
9 36,160 0.8965
10 39,776 0.9035

The algorithm correctly classified 10,780 of the 11,923 test input values. However,
only two failures of 1143 were classified correctly. This rate is very poor [59] for failure
prediction capabilities, and its root is probably the lack of failure records in the database.
However, there are domains where the sensitivity is extremely important, i.e., to not miss
true positives. There are two reasons for this. On the one hand, the number of normal
operation samples is almost ten times bigger than the number of failure samples. On the
other hand, there might be no relationship between the measured signals and the observed
failures. Some of the referenced applications for the AdaBoost algorithm reported better
performances, but their dataset might be better for their purpose.

Further indicators have been calculated according to [60]. The true positive rate (TPR),
also known as the sensitivity hit rate:

TPR =
TP

(TP + FN)
= 0.9041 (23)
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The true negative rate (TNR), also known as specificity or selectivity:

TNR =
TN

(TN + FP)
= 0.2 (24)

The positive predictive value (PPV), also known as precision:

PPV =
TP

(TP + FP)
= 0.9992 (25)

The negative predictive value (NPV):

NPV =
TN

(TN + FN)
= 0.0017 (26)

The false negative rate (FNR), also known as the miss rate:

FNR = 1− TPR = 0.0959 (27)

The false positive rate (FPR), also known as fall-out:

FPR = 1− TNR = 0.8 (28)

The false discovery rate (FDR):

FDR = 1− PPV = 0.007 (29)

The false omission rate (FOR):

FOR = 1− NPV = 0.9982 (30)

The positive likelihood ratio (LR+):

LR+ =
TPR
FPR

= 1.1301 (31)

The negative likelihood ratio (LR−):

LR− =
FNR
TNR

= 0.4793 (32)

The prevalence threshold (PT):

PT =

√
TPR(√

TPR +
√

FPR
) = 0.4847 (33)

The threat score (TS) or critical success index (CSI):

TS =
TP

(TP + FN + FP)
= 0.9035 (34)

The prevalence:

Prevalence =
(TP + FN)

(TP + FN + TN + FP)
= 0.9991 (35)

The accuracy (ACC):

ACC =
(TP + TN)

(TP + FN + TN + FP)
= 0.9035 (36)
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The balanced accuracy (BA):

BA = TPR + TNR = 0.5520 (37)

The F1 score, which is the harmonic mean of precision and sensitivity:

F1 =
2TP

(2TP + FP + FN)
= 0.9035 (38)

Matthew’s correlation coefficient (MCC):

MCC =
(TP + TN)− (FP + FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
= 0.0013 (39)

The Fowlkes–Mallows index (FM):

FM =
√
(PPV·TPR)) = 0.9505 (40)

Bookmaker informedness (BM):

BM = TPR + TNR− 1 = 0.1041 (41)

Markedness (MK):
MK = PPV + NPV − 1 = 0.0010 (42)

The diagnostic odds ratio (DOR):

DOR =
LRP
LRN

= 2.3578 (43)

We have analyzed the presence of outliers in the training dataset size (Table 6). The
value 7232 was identified as furthest from the rest, but no significant outlier was detected
(p-value > 0.05).

The precision data from Table 7 was analyzed in-depth. The Grubbs identified that the
value 0.5442 was furthest from the rest, but not a significant outlier (p-value > 0.05).

Table 7. Descriptive statistics for precision (data from Table 6).

Name Value

minimum 0.5442
maximum 0.9035

range 0.3593
mean 0.7988

95 CI% of the mean [0.7157, 0.8819]
SD 0.11613
CV 15.54 (relatively homogeneous data)

median 0.8419

Based on the fact that the sample size [61] was 10, which is very small, we have chosen
the application of the Shapiro–Wilk test (SW) of normality at the αnorm = 0.05 significance
level. We obtained, as the results, the test statistics 0.851 and the p-value 0.06 (0.06≥ αnorm),
which indicated that the data passed the normality assumption. Based on this finding, the
best indicator of the central tendency was the mean = 0.7988. The results also indicated
that the 95 CI% of the mean [0.7157, 0.8819] must be reported.
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4. Conclusions and Future Directions

The main purpose of this study was to assess the performance of the AdaBoost algo-
rithm for researchers who intend to use it for problem-solving for diverse data. The study
presented an approach to using sensor data to predict the probability of machine failures to
track the remaining useful life, so that the proposed algorithm applied machine learning
in the field of condition-based maintenance. The AdaBoost algorithm can analyze sensor
data from equipment to predict when a machine is likely to fail. This enables maintenance
personnel to schedule maintenance in advance, reducing downtime and maintenance costs.
By analyzing sensor data and predicting equipment failure, the AdaBoost algorithm can
help operation management to move from reactive maintenance to proactive maintenance,
thus improving productivity and reducing costs.

Two models were implemented and evaluated by experiments. In the first experiment
(300 samples, random factor of weight calculation), two types of classifiers were used.
In the decision stump method, the precision of the classification fell into 65–75%, while
the support vector classifier’s basic classifiers generally were 5–10% worse. The forecast
accuracy (especially for the first version) can be considered good, but not excellent. In the
second experiment (the training set was iteratively increased), an attempt was made to
predict error statements by the four physical telemetry signals. Since less than 0.42% of the
dataset reported errors, only some proportion of the entire dataset was taken into account
during the training.

The main purpose of this study was to show the limitations of the AdaBoost algorithm
for researchers who intend to use it for diverse data. Unfortunately, the AdaBoost algorithm
did not produce the expected forecasting capability on the data used, as proven by the
confusion matrix: the overall accuracy was not satisfactory. The reason for this could be that
the classifiers were not detailed enough or the fact that there was no relationship between
the telemetry data and error statements in the dataset we investigated. The authors also ran
the AdaBoost algorithm on simulated data, where it performed better. Unfortunately, there
were no other real-world data in the field of CBM to test the performance of the algorithm
against.

Our research included, among others, a correlation analysis for which we have pro-
posed a decision rule for choosing between the Pearson and Spearman correlation based
on data (variable) normality. For a comparison of the performance of the two algorithms,
the decision rule for establishing the appropriate central performance tendency indicator
was presented. For an accurate comparison of the central performance tendency of the two
algorithms, an in-depth statistical analysis was presented that considered the experimental
evaluation results’ variability and the existence of outlier experimental evaluation results.

As future work, the authors plan to build a sensor set with collective intelligence in a
real environment able to collect and intelligently analyze data. The authors expect that more
reliable estimations can be made using data whose collection is based on prior knowledge.
Furthermore, sensor data may be used to show the opportunity for optimization of the
processes. Another direction of future work could be to compare AdaBoost against other
machine learning algorithms. Another research direction is to study the long short-term
memory model using a diverse dataset, including the dataset used in the research presented
in this paper and its comparison with the Adaboost algorithm.
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