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Abstract

:

The moth search algorithm (MS) is a relatively new metaheuristic optimization algorithm which mimics the phototaxis and Lévy flights of moths. Being an NP-hard problem, the 0–1 multidimensional knapsack problem (MKP) is a classical multi-constraint complicated combinatorial optimization problem with numerous applications. In this paper, we present a hybrid learning MS (HLMS) by incorporating two learning mechanisms, global-best harmony search (GHS) learning and Baldwinian learning for solving MKP. (1) GHS learning guides moth individuals to search for more valuable space and the potential dimensional learning uses the difference between two random dimensions to generate a large jump. (2) Baldwinian learning guides moth individuals to change the search space by making full use of the beneficial information of other individuals. Hence, GHS learning mainly provides global exploration and Baldwinian learning works for local exploitation. We demonstrate the competitiveness and effectiveness of the proposed HLMS by conducting extensive experiments on 87 benchmark instances. The experimental results show that the proposed HLMS has better or at least competitive performance against the original MS and some other state-of-the-art metaheuristic algorithms. In addition, the parameter sensitivity of Baldwinian learning is analyzed and two important components of HLMS are investigated to understand their impacts on the performance of the proposed algorithm.
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1. Introduction


The multidimensional knapsack problem (MKP) [1,2] is a generalization of the 0–1 knapsack problem (0–1 KP) [3]. As a classical combinatorial optimization problem, numerous real-world applications can be modeled as MKP, such as capital budgeting [4,5], cutting stock [6], and loading problem [7,8].



Then the MKP is: given a set of n items and a set of m knapsacks (m < n), with cj = profit of item j, bi = capacity constraint of knapsack i,aij = resource consumption of item j in the ith knapsack. The goal of MKP is to select a subset of items so that the total profit of the selected items is a maximum while the total weights in each dimension i (i = 1, 2, …, m) do not exceed the corresponding capacity bi. Formally,


  m a x        z =   ∑  j = 1  n    c j         x j   



(1)






  s . t .          ∑  j = 1  n    a  i j          x j  ≤  b i  ,       ∀    i ∈ { 1 , 2 , … , m }  



(2)






   x j  ∈ { 0 , 1 } ,       ∀    j ∈ { 1 , 2 , … , n }  



(3)




where xj (j = 1, 2, …, n) is a 0–1 decision variable, such that xj = 1 if item j is assigned to a knapsack, xj = 0 otherwise. When m = 1, MKP reduces to the 0–1 KP.



Known as the NP-hard combinatorial optimization problem of MKP, the conventional exact algorithms usually are unable to obtain a satisfactory solution in a reasonable time, especially for large-scale instances. It is because that combinatorial optimization problems often feature a combination of the explosion and then the search space grows exponentially with the expansion of the scale. In this case, metaheuristic algorithms are effective methods for MKP, which can obtain near-optimal solutions in a reasonable acceptable time. Representative metaheuristic algorithms for solving MKP include the two-phase tabu evolutionary algorithm (TPTEA) [9], binary particle swarm optimization (PSO) [10], quantum particle swarm optimization (QPSO) [11], diversity-preserving quantum particle swarm optimization (DQPSO*) [12], hybrid estimation of distribution algorithm (EDA) [13], memetic algorithm (MA) [14], binary grey wolf optimizer (GWO) [15], hybrid harmony search algorithm (HS) [16], binary multi-verse optimizer (MMVO) [17], cuckoo search (CS) [18], pigeon-inspired optimization algorithm (PIO) [19], binary moth search algorithm (MS) [20], sine cosine algorithm (SCA) [21], and binary slime mould algorithm (BSMA) [22]. For more information on evolutionary algorithms (EAs) [23] and exact methods for solving MKP problem, please refer to [24].



Recently, some novel metaheuristic algorithms have been proposed and used to solve various optimization problems, including continuous optimization problems and discrete optimization problems, such as differential evolution algorithm (DE) [25,26], cuckoo search algorithm (CS) [27], bat algorithm (BA) [28], krill herd (KH) [29,30], elephant herding optimization (EHO) [31], monarch butterfly optimization algorithm (MBO) [32,33], brain storm optimization algorithm (BSO) [34], fruit fly optimizer (FFO) [35], whale optimization algorithm (WOA) [36], wind driven optimization (WDO) [37], salp swarm algorithm (SSA) [38], Harris hawks optimization (HHO) [39], artificial Jellyfish Search (JS) optimizer [40], artificial rabbits optimization (ARO) [41], mountain gazelle optimizer (MGO) [42], moth-flame optimizer (MFO) [43], and many more.



The moth search (MS) [44,45] algorithm was recently developed by Wang and inspired by the phototaxis and Lévy flights of moths. Owing to its simplicity and high search efficiency, MS has been successfully applied to solve various optimization problems, such as the cloud task scheduling problem [46], drone placement problem [47], constrained optimization problems [48], discounted {0–1} knapsack problem [49], and set-union knapsack problem [50]. Previous studies have shown that MS is effective for solving various combinatorial optimization problems, especially for various variants of KP problems [49,51]. To the best of our knowledge, there are few literatures on applying MS to solve MKP. Hence, we concentrated on the MS algorithm for solving MKP.



In recent years, the learning-based metaheuristic algorithms have been extensively reported in literature because of their effectiveness and efficiency in solving various optimization problems. The core idea is that the metaheuristic algorithm combines specific learning operators or learning mechanisms to enhance itself some learning ability, and then owning better optimization behavior. There are many learning methods, for example, deep learning [52,53], reinforcement learning [54,55,56], transfer learning [57], Q-learning [58], information feedback [59], orthogonal learning [34], comprehensive learning [60], Baldwinian learning, and so on.



Inspired by Darwinian evolution, evolutionary computation mainly includes the random variation of individuals and fitness selection mechanism [61]. It seems time-consuming to search randomly for good genotypes without using phenotypes. One of the possible ways to surmount this deficiency is to integrate the learning mechanism into the evolutionary search. The learning mechanism can provide a more effective search path [62]. Hence, learning-based mechanisms have been extensive researched and applied in enhancing the search performances of evolution algorithms [14,31]. The Baldwin effect, sometimes called Baldwinian learning, was widely incorporated into a variety of evolutionary computing models to enhance their performance [61,63,64]. The above works motivate us to propose a Baldwinian learning MS to solve MKP.



Harmony search (HS) [65] is metaheuristic and imitates the musical improvization process to search for a perfect state of harmony. Since proposed, HS has always attracted much attention from researchers and has been successfully applied to deal with various optimization problems. An effective variant of HS, called global-best HS (GHS), was proposed by Omran [66]. Compared with HS and other variants, GHS alleviates the problem of tuning the parameter bw and can work efficiently on both continuous and discrete problems. The GHS algorithm, due to its easy implementation and quick convergence, has been applied to many fields. Xiang et al. [67] proposed a discrete GHS (DGHS) for solving 0–1 KP. Keshtegar et al. [68] proposed a Gaussian GHS (GGHS) algorithm for solving numerical optimization problems. EI-Abd et al. [69] proposed an improved GHS (IGHS) algorithm to solve continuous optimization. In essence, musical performances seek to find pleasing harmony, just like the process of finding the global optimal solution through continuous learning. Based on this, GHS, as another learning scheme, is integrated into the MS for a global search.



Aiming at resolving the above issues, we propose a hybrid learning MS (HLMS), by introducing the Baldwinian learning and GHS learning mechanism. In HLMS, a novel Baldwin learning strategy based on Cauchy distribution is proposed instead of Gaussian distribution in [70]. During the evolutionary process, each individual in the whole population performs GHS learning and Baldwinian learning successively with a certain probability to reduce the time-consumption. The beneficial combination and complementarity of these two mechanisms lead HLMS to evolve towards the global optimum. Intuitively, HLMS has better search performance than the original MS because of the good balance between the exploration capacity of GHS learning and the exploitation ability of the Baldwinian learning.



The novelty and main contributions of this work include.



	
A novel Baldwinian learning strategy based on Cauchy distribution is proposed, the analysis and experiment of which show this strategy is more effective than the Baldwin learning strategy based on Gaussian distribution.



	
Combined with Baldwin learning, GHS is an effective global search operator to enhance the exploration ability of HLMS. Meanwhile, the pitch adjustment process based on dimensional learning can generate a large jump in the search process.



	
To reduce computation costs, the proposed HLMS triggers Baldwin learning and GHS learning with a certain probability in each iteration.



	
Exploration and exploitation are two common and fundamental features of any optimization method. In the evolution of HLMS, Lévy flight and GHS learning are mainly responsible for exploration, whilst flight straightly and Baldwinian mainly implement exploitation.






The rest of this paper is organized as follows. Section 2 reviews the MS algorithm, the Baldwinian learning scheme, and the GHS algorithm. In Section 3, the proposed HLMS for the MKP is introduced in detail. Extensive experiments and comparisons are conducted in Section 4. Finally, conclusions and suggestions are provided in Section 5.




2. Preliminaries


In this section, we summarize the core idea of MS, Baldwinian learning, and Global-best HS algorithm, which form the basis of the proposed HLMS framework.



2.1. Moth Search Algorithm


The moth search algorithm (MS) [44] is a new metaheuristic algorithm developed by Wang and inspired by the phototaxis and Lévy flights of moths. Based on these two behaviors, the flight straightly operator and Lévy flight operator of MS are derived, which can achieve good balance between the exploration capability and exploitation ability. Meanwhile, the whole population is subdivided into two subpopulations (named subpopulation1 and subpopulation2) based on the fitness of moth individuals. To this end, the position of offspring in subpopulation1 and subpopulation2 is updated by Lévy flight and flight straightly, respectively.



In the Lévy flight stage, the core mathematical formulation is:


   X i  t + 1   =  X i t  + α L ( s )  



(4)






  α =  S  m a x   /  t 2   



(5)






  L ( s ) =   ( β − 1 ) Γ ( β − 1 ) sin  (    π ( β − 1 )  2   )    π  s β     



(6)




where Xit and Xit+1 denote the position vector of the ith moth at generation t and t + 1, respectively.  α  is the scale factor and Smax is the max walk step. L(s) represents the step drawn from Lévy distribition with  β  = 1.5 and   Γ ( x )   is the gamma function.



In the flight straightly stage, the ith individual in subpopulation2 is considered to fly in a straight line towards the light source. The mathematical model of the flight straightly operator is formulated as follows:


   X i  t + 1   =  {    λ × (  X i t  + φ × (  X  b e s t  t  −  X i t  ) )        i f     r a n d > 0.5                λ × (  X i t  +  1 φ  × (  X  b e s t  t  −  X i t  ) )        e l s e          



(7)




where  λ  is the scale factor, which is used to control the convergence speed of the algorithm and improve population diversity.  λ  is set to a random number drawn by the standard uniform distribution. The acceleration factor  φ  is set to golden ratio (0.618).    X  b e s t  t    is the best moth individual at generation t. rand returns a random number that is uniformly distributed in (0, 1).



The pseudo code of MS is shown in Algorithm 1.



	Algorithm 1. Moth search algorithm



	Begin

 Step 1: Initialization.

 Set the maximum iteration number MaxGen and iteration counter G = 1; Initialize the parameters max walk step Smax, the index  β , and acceleration factor  φ .

 According to uniform distribution, the population with NP individuals is randomly initialized.

 Step 2: Fitness calculation.

 Compute the initial objective function values of each individual according to their position. Memory the best individual (denotes as Xbest).

 Step 3: While (G < MaxGen) do

 Divide the whole population into two subpopulations with equal size: subpopulation1 and subpopulation2, based on their fitness.

 Update subpopulation1 by using Lévy flight operator (Equation (4)).

 Update subpopulation2 by using flight straightly operator (Equation (7)).

 Evaluate the objective function values of each individual and update Xbest.

 G = G + 1.

 Sort the population by fitness.

 Step 4: End while

 Step 5: Output: the best results.

 End.









2.2. Baldwin Effect and Baldwinian Learning


The interactive way of learning and evolution was first proposed by Baldwin, known as the Baldwin effect. Hence, different Baldwinian learning models have been proposed based on the Baldwin effect. Hinton and Nowlan [62] found that it was difficult to find the optimal solution of more complex problems only by an evolutionary algorithm. However, when combined with Baldwinian learning, the performance of the hybrid algorithm can be effectively improved.



Generally speaking, Baldwinian learning is a type of local search strategy in an evolutionary algorithm. The Baldwinian learning mechanism was first combined with the clonal selection algorithm (CSA) by Gong et al. [61] to improve the performance of BCSA. Based on this, Peng et al. [70] proposed four Baldwinian learning strategies inspired by the trial vector generating strategy of differential evolution (DE).



In evolutionary computation, Cauchy mutation and Gaussian mutation are two popular and effective mutation techniques [71]. The characteristic of Gaussian mutation is to speed up the local convergence, and Cauchy mutation is better at escaping from local optimum. However, compared with Gaussian mutation, Cauchy mutation is insensitive to mutation step size and can achieve the acceptable performance.



According to the above analysis, the newly designed Baldwinian learning operator based on Cauchy distribution is proposed in HLMS. The mathematical expression is as follows:


   Y i  =  X  r 1   + c ⋅ (  X  r 2   −  X  r 3   )  



(8)




where    Y i    is the donor vector for each moth individual    X i    from the current population after applying Baldwinian learning.    X  r 1    ,    X  r 2    , and    X  r 3     are sampled randomly from the current population and r1, r2, and r3 are mutually exclusive integers randomly chosen from the range [1, NP], which are also different from the selected individual index i. The parameter c is the strength of Baldwinian learning and is a random number based on Cauchy distribution.




2.3. Global-Best HS Algorithm


GHS is a novel variant of HS and inspired by the concept of swarm intelligence of PSO [66]. The difference from the original HS is that the new harmony can mimic the best harmony in the harmony memory HM. Meanwhile, the parameter bw in HS is replaced and a social dimension is added to the GHS. In addition, the GHS dynamically updates the pitch adjusting rate PAR according to the following equation [72]:


  P A R  ( t )   =  P A  R  m i n   +   P A  R  m a x   − P A  R  m i n     N I   × t  



(9)




where PAR(t) is the pitch adjusting rate for generation t,   P A  R  m i n     is the minimum adjusting rate, and   P A  R  m a x     is the maximum adjusting rate. NI is the number of improvisations and t is the generation number.



The procedure of GHS is given in Algorithm 2.



	Algorithm 2. The Global-best HS algorithm (GHS)



	Begin

 For each   i ∈ [ 1 , n ]   do     /*n is the dimension of the problem*/

 If U(0, 1) ≤ HMCR then   /* memory consideration*/

    x i h  =  x i j   , where   j ∼ U ( 1 , … , H M S )  

 If U(0,1) ≤ PAR (t) then /*pitch adjustment*/

    x i h  =  x k  b e s t    , where best is the best harmony in the HM and   k ∼ U ( 1 , n )  

 Else         /*random selection*/

    x i h  = L  B i  + r a n d * ( U  B i  − L  B i  )  

 End.








Furthermore, it should be emphasized that, the concept of dimensional learning [73] is embodied in Algorithm 2, as shown below:


   X i h  =  X k  b e s t    



(10)







In Equation (7) of MS, the same dimension j is selected in    X  b e s t  t  −  X i t    for conducting the new solution. Under this dimension, if the component value of the ith individual is similar to the best individual, the difference    X  b e s t  t  −  X i t    will be very small, especially in the later stage of evolution. This means that such a step size is not conductive to    X i    jumping to a far position. If the best moth individual is local optimum, the solution hardly escapes from the local extremum. In Equation (10), the dimension index i of    X h    is not equal to the dimension index k of    X  b e s t    . Generally, the difference between two different dimensions is large. Different dimensions can carry different information.



Based on the above analysis, dimension learning is embedding into Algorithm 2 and it should be an effective global search operator.





3. The Proposed HLMS for the MKP


The proposed HLMS algorithm for MKP is inspired from the studies [66,70] and distinguishes itself with two new features. First, GHS as a powerful global search operator is introduced to enhance the exploration ability of the algorithm. Second, a new Baldwinian learning strategy by replacing Gaussian distribution with Cauchy distribution is introduced on HLMS. The proposed algorithm framework and the main components of the MKP problem are described in the following subsection.



3.1. Population Initialization


In this stage, NP moth individuals are randomly generated in the search space. The swarm X = {X(1), X(2), …, X(NP)} is maintained and evolves, where each moth individual X(i) is a n-dimensional real-valued vector   X ( i ) = (  x 1 i  ,  x 2 i  , … ,  x n i  )   with    x j i  ∈ { − a , a } ∧ j ∈ { 1 , 2 , … , n }   and n is the number of objects or items. Here, a takes the value 3 or 5 in this paper. Then, each moth individual X(i) is transformed into an n-dimensional binary vector by a mapping method, which is called discrete moth   Y ( i ) = (  y 1 i  ,  y 2 i  , … ,  y n i  )   with    y j i  ∈ { 0 , 1 } ∧ j ∈ { 1 , 2 , … , n }  .




3.2. Solution Representation


In HLMS, an n-bit binary string consisting of 0 and 1 is used to represent a candidate solution. If the item is selected, the bit is 1, otherwise it is 0. It should be noted that the MKP is a constrained optimization problem, so the solution generated in the evolution process may be infeasible.



In this paper, a simple and effective transfer function [50] is adopted and the function expression is as follows:


  T ( x ) = x  



(11)







The transfer method from a real-valued variable    x i    to a binary variable    y i    is calculated by:


   y i  =  {    1 ,     i f     T (  x i  ) > 0             0 , else      



(12)








3.3. Quick Repair Operator


Learning from previous research work [10,74], the HLMS algorithm also adopts a popular quick repair operator based on pseudo-utility which was proposed by Luo et al. [15]. In order to effectively apply the repair operator, the given MKP instance needs to be preprocessed. Specifically, all the items are renumbered in an ascending order based on their scaled pseudo-utility ratios    σ j    [75] defined as follows:


   σ j  =    c j      ∑  i = 1  m      a  i j      b i        , ∀ j ∈  { 1 , 2 , … , n }   



(13)







More exactly, the index values of all sorted items are stored in array J [1…n], such that    σ  J [ 1 ]   ≥  σ  J [ 2 ]   ≥ … ≥  σ  J [ n ]    . The vectors   (  c 1  ,  c 2  , … ,  c n  )   and    a  i , j     (i = 1, 2, …, m, j = 1, 2, …, n) should be adjusted as well. The main framework of the quick repair procedure can be summarized in Algorithm 3.



	Algorithm 3. The quick repair operator base on the scaled pseudo-utility



	Begin

 Step 1: Input.   X = {  x 1  ,  x 2  , … ,  x n  } ∈   { 0 , 1 }  n   .

 Step 2: Calculation. Calculate the current total consumption of each resource.

    r i  =   ∑  j = 1  n    a  i j     *  x j  , ∀ i = 1 , 2 , … , m  .

 Step 3: Repair process.

 For j = n to 1 do

 If    r i  ≤  b i  , ∀ i = 1 , 2 , … , m   then

 Break.

 else if    x  J [ j ]     = 1 then

 Set    x  J [ j ]    = 0, and    r i  ←  r i  −  a  i J [ j ]   , ∀ i = 1 , 2 , … , m .  

 End

 End

 Step 4: Optimization process.

 For j = 1 to n do

 If    x  J [ j ]   = 0   and    r i  +  a  i J [ j ]   ≤  b i  , ∀ i = 1 , 2 , … , m   then

 Set    x  J [ j ]   = 1   and    r i  ←  r i  +  a  i J [ j ]   , ∀ i = 1 , 2 , … , m .  

 End

 End

 Step 5: Output:   X = {  x 1  ,  x 2  , … ,  x n  } ∈   { 0 , 1 }  n   .

 End.








Obviously, the quick repair operator of Algorithm 3 mainly consists of two phases. In the first phase, called the repair process, according to the ascending order of the scaled pseudo-utility ratios, the items are removed from the knapsack one by one until the solution is feasible. In the second phase, called the optimization process, for all the feasible solutions, greedily packed the items to be loaded into the knapsack based on the descending order of the scaled pseudo-utility ratios one by one. In this process, the feasibility of the solution needs to be maintained all the time. In brief, the first phase makes all the infeasible solutions become feasible, and the second phase enables the quality of feasible solutions better.




3.4. Procedure of HLMS for MKP


Based on the analysis above, the proposed HLMS algorithm for MKP is outlined in Algorithm 4. The algorithm framework includes the following main steps. (1) After initialization, the repaired population is divided into two subpopulations based on the fitness. (2) Subpopulation1 and subpopulation2 apply the Lévy flight operator and flight straightly operator, respectively. (3) GHS learning and Baldwinian learning are implemented in sequence to the whole population with a probability of 0.5. (4) The mapping from the real-valued vector to the binary vector is realized with a transfer function and then the repair of infeasible solutions and the optimization of feasible solutions are performed. (5) Evaluating the solution is based on the objective function and then the whole population is divided into two subpopulations. Steps (2)–(5) are repeated until the termination condition is reached.






	Algorithm 4. Procedure of HLMS for MKP



	Begin

	
 Step 1: Initialization.



	
Set the maximum iteration number MaxGen and iteration counter G = 1; Initialize the parameters max walk step Smax, the index  β  φ , strength of Baldwinian learning c.



	
According to uniform distribution, the population with NP individuals is randomly initialized.



	
The transform function is used to discretize the real number vector to obtain the initial solution   X = {  x 1  ,  x 2  , … ,  x n  } ∈   { 0 , 1 }  n   .



	
Repair the initial solution by Algorithm 3.



	
Step 2: Fitness evaluation.



	
Evaluate the initial solution using the objective function of MKP.



	
Step 3: Whileg < MaxGen do





 3.1 Divide the whole population into two subpopulations with equal size: subpopulation1 and subpopulation2, based on their fitness.

    3.2 Update subpopulation1 by Lévy flight operator.

    3.3 Update subpopulation2 by flight straightly operator.

    3.4 GHS search

     If U(0, 1) ≤ 0.5

  Apply GHS algorithm on each individual X and generate the trial individual Y.

       Choose the best one of X and Y to enter the next generation.

    3.5 Baldwinian Learning

     If U(0, 1) ≤ 0.5

  Apply Baldwinin learning strategy on each individual X and generate the trial individual Y.

       Choose the best one of X and Y to enter the next generation.

    3.6 Apply transform function to obtain the potential solution of MKP.

    3.7 Repair the potential solution by Algorithm 3.

    3.8 Evaluate the fitness of the population and record the global best fitness.

 G = G + 1.

    3.9 Sort the population by fitness.

   Step 4: End while

   Step 5: Output: the best results.

 End.








The algorithm framework is shown in Figure 1.




3.5. Computational Complexity of One Iteration of HLMS


The computational complexity of one iteration of HLMS based on Algorithm 4 is described as follows.



	(1)

	
The initialization of HLMS requires O(NP × n) time, where NP denotes the population size, and n is the dimension of MKP (the number of the items).




	(2)

	
The discretization process of NP moth individual costs O(NP × n) time.




	(3)

	
The quick repair operator takes O(n × m) time, where m is the constraints of the MKP instance.




	(4)

	
Fitness evaluation has O(NP) time.




	(5)

	
Lévy flight operator has O(NP1 × n) time, where NP1 is the number of individuals of subpopulation1.




	(6)

	
Flight straightly operator has O(NP2 × n) time, where NP2 is the number of individuals of subpopulation2.




	(7)

	
GHS learning requires O(NP × n) time.




	(8)

	
Baldwinian learning requires O(NP × n) time.




	(9)

	
Sort the population based on Quick sort algorithm and it takes time O(NPlogNP).







In summary, the total computational complexity is O(NP × n) per generation for fixed m.





4. Experimental Studies


To comprehensively evaluate the performance of the proposed HLMS, large numbers of experiments are implemented on the benchmark instances commonly used in the literature and a comparative study is conducted between HLMS and several populations based on optimization algorithms.



4.1. Benchmark Test Functions


In this paper, four sets of well-known benchmark data for MKP are used to test the performance of HLMS. These instances are described in [74] and available at OR-Library (http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html, accessed on 1 July 2021).



Test set I contains 18 small-scale instances with m = 2 to 30 and n = 20 to 105, which are denoted as Sento [76], HP [77], PB [77], and Weing [4].



Test set II contains 30 medium-scale instances with m = 5 and n = 30 to 90, which are marked as Weish [7].



Test set III contains 30 large-scale instances. These instances are divided into two subsets. Subset I includes 15 instances with m = 15 and n  ∈  {100, 250, 500}, which are labeled as cb1, cb2, and cb3, respectively. Subset II also includes 15 instances with m = 15 and n  ∈  {100, 250, 500}, which are called as cb4, cb5, and cb6, respectively.



Test set IV contains 9 instances with m {15, 25, 50} and n  ∈  {100, 200, 500, 1000, 1500}, which were created by Glover and Kochenberger and then are marked as GK.




4.2. Experimental Environment and Parameters Setting


The proposed HLMS algorithm includes several important parameters, whose values are empirically set based on the preliminary experiments and the details are recorded in Table 1.



The HLMS algorithm was implemented in C language and compiled using the GNU GCC compiler. All the experiments were carried out on a computer with Intel (R) Core (TM) i7-7500 CPU (2.90 GHz and 8.00 GB RAM), running the Windows 10 operating system. HLMS was independently run 30 times for each instance to eliminate the unfairness brought by the stochastic characteristic.



To comprehensively evaluate the performance of the HLMS algorithm, fourteen MKP algorithms in the literature are selected as our comparative algorithms, which are listed as follows.



	
Modified binary particle swarm optimization (MBPSO) [78];



	
Chaotic binary particle swarm optimization with time-varying acceleration coefficients (CBPSOTVAC) [79];



	
Binary PSO with time-varying acceleration coefficients (BPSOTVAC) [79];



	
Modified multi-verse optimization (MMVO) algorithm [17];



	
New binary particle swarm optimization with immunity-clonal algorithm (NPSOCLA) [80];



	
Binary gravitational search algorithm (BGSA) [81];



	
Binary hybrid topology particle swarm optimization (BHTPSO) [81];



	
Binary hybrid topology particle swarm optimization quadratic interpolation (BHTPSO-QI) [81];



	
New binary particle swarm optimization (NBPSO) [81];



	
Binary version of PSO (BPSO) [82];



	
Binary version of the Harris hawks algorithm (BHHA) [22,83];



	
Binary version of the salp swarm algorithm (BSSA) [84];



	
Binary version of the modified whale optimization algorithm (BIWOA) [85];



	
Binary version of the sin-cosine algorithm (BSCA) [86].






It should be noted that the results of the comparative algorithms are compiled from the related papers. If the result of an algorithm for a MKP instance is not available, the result of the instance is ignored. In addition, considering that different comparative algorithms are written in different programming languages, or run on different computing platforms based on different termination conditions and algorithm parameters, we focus on comparing solution quality.



For this purpose, in this paper, eight typical statistical evaluation criteria are selected to evaluate the performance of all the comparative algorithms.



	
Best value (Best):








  B e s t = max (  f i  ) , for     ∀ i ∈ [ 1 , t ]      



(14)




where    f i    is the fitness value for   i t h   time. t is the total number of independent experiments.



	
Worst value (Worst):







   W o r s t = min (  f i  ) , for     ∀ i ∈ [ 1 , t ]       



(15)





	
Mean value (Mean):







   M e a n =  1 t    ∑  i = 1  t    f i      



(16)





The mean value characterizes the centralized trend of the values of random variables. The larger the mean value, the more concentrated the results of multiple runs of the algorithm will be.



	
Standard deviation (Std):







   S t d =    1 t    ∑  i = 1  t   (  f i  − m e a n )       



(17)





Standard deviation describes the degree of dispersion of random variable values relative to the mean value. Meanwhile, standard deviation reflects the fluctuation in the value of a random variable. In other words, stability is an important evaluation criterion of a stochastic algorithm. If the Std value is high, the stability of the algorithm is poor, otherwise, its performance is good.



	
Success rate (SR):








  S R =   s t  t   



(18)




where st denotes the success times, that is, the number of the known theoretical optimal solution is obtained. The high success rate indicates that the algorithm has good stability and optimization performance.



	
Percent deviation (PDev):








  P D e v =   O p t − M e a n   O p t   ∗ 100  



(19)




where Opt represents the optimal or the best-known solution. PDev reflects the degree to which the mean value deviates from the known theoretical optimal solution when the algorithm solves a single instance.



	
Average error (AE):







   A E =  1 N  ∗   ∑  i = 1  N     ( O p t − p r o f i t )   O p t     ∗ 100   



(20)





Average error is an indicator that reflects the general level of error between random variables and Opt. Here, profit can be Best, Worst, or Mean. N is the number of benchmark instances. Clearly, the smaller AE value indicates that the algorithm has better performance. AE indicates the overall performance of the algorithm for solving a set of MKP instances.



	
Percentage gap (Gap):







   G a p =   O p t − B e s t   O p t   ∗ 100   



(21)





Similar to AE, for the maximization problem, the smaller the Gap is, the better the performance of the algorithm is. Gap investigates the performance of the algorithm to solve a single MKP instance.



Moreover, to determine whether there are significance differences between HLMS and other algorithms, the p-value based on the nonparametric Wilcoxon signed ranks test at the 95% confidence level is reported as well. Note that a p-value less than 0.05 represents that there exists a significant difference between the paired compared results. All the statistical results have been performed by the statistical software R language.




4.3. Comparisons on the Small-Scale Test Set


The proposed HLMS is first substantiated based on the 18 small-scale instances of Test set I and the experimental result is listed in Table 2, along with the available results of the comparative algorithms. In Table 2, the first three columns record the names of instances, the dimension information (n is the number of items, and m is the number of knapsacks), and the known optimum results (Opt), respectively. In addition, aggregate data are recorded at the bottom of the table. #Opt shows the number of the best-known solution obtained by the corresponding algorithm. #SR and #Std represent the number of instances for which the corresponding algorithm obtained a better result in terms of SR and Std among the comparative algorithms. MSR is the mean value of success rate and the ranks in descending order on the MSR are provided. Besides, the best findings among the comparison results are indicated in bold.



From Table 2, the proposed HLMS is able to obtain the known optimum solution for almost all the 18 instances except for Weing7. However, MS can only reach the known optimum solution for 13 instances. Considering the #SR, HLMS performs much better than the competing algorithms. In terms of MSR, HLMS is slightly worse than CBPSOTVAC and ranks two. Moreover, the clear superiority of HLMS is established in comparison with MS in terms of all evaluation criteria. Therefore, we can conclude that it is beneficial to use the GHS global search algorithm combined with the Baldwinian learning strategy. In terms of the p-value of SR, the difference between HLMS and MS, HLMS and MBPSO is statistically significant (p-value < 0.05). However, there are no significant differences in Std among the latter two groups (p-value > 0.05).



The related box plots are given in Figure 2 in terms of SR. As can be seen from Figure 2, the difference of SR among four algorithms is very obvious. Although the distributions of the SR value of MS and MBPSO are more uniform than that of HLMS and CBPSOTVAC, the interquartile ranges of the former are worse than that of the latter. Moreover, outliers exist in MS and MBPSO on the SR value. In addition, we also observe the maximum, upper quartile, the mean value of HLMS is equal to or close to 1.0, 0.8, and 0.6, respectively.



Based on the above analysis, we can draw a conclusion that HLMS can obtain the best-known solution of 18 small-scale instances with a high success rate.




4.4. Comparisons on the Medium-Scale Test Set


In the second experiment, HLMS is used to solve medium-scale test instance (Test set II) to verify the performance of algorithms. The results are reported in Table 3, together with the results of other six state-of-the-art MKP algorithms, including MS, BIWOA, BMMVO, BSCA, BHHA, and BSSA. Note that these six algorithms are all novel swarm intelligence algorithms proposed in recent years and it is meaningful to select them for comparative study of MKP.



From Table 3, the results demonstrate that HLMS reaches the optimum solutions on 27 out of 30 instances, while the six comparative algorithms obtain the optimum solutions only on 20, 16, 14, 18, 19, and 19, respectively. In terms of #Worst, BSSA outperforms the other six algorithms on 23 instances. PDev measures the deviation between the mean and the best-known solution. The small mean value of PDev also confirms the superiority of HLMS. Comprehensively speaking, MS has the worst performance among all the comparative algorithms. Moreover, there are significant differences (p-value < 0.05) between the comparisons of the first four groups concerning PDev.



Figure 3 presents the box plots of the PDev values for all the comparative algorithms. The span of each box implicitly reflects the stability of the algorithm. The smaller the span is, the better the stability of the algorithm is. As can be seen from Figure 3, HLMS has a significant advantage over the other six algorithms since the span of the box for HLMS is obviously smaller than that of the other comparative algorithms. It should be noted that the dot in Figure 3. represent outliers.



In summary, the results in Table 3 and Figure 3 indicate that our HLMS algorithm is very competitive compared to the other six MKP algorithms. The findings are based on the fact that the GHS learning scheme enhances the global search ability of HLMS. On this basis, Baldwinian learning can effectively adjust the shape of search space and thereby provides good search paths towards the best solutions.




4.5. Comparisons on the Large-Scale Test Set


In the third experiment, the performance of HLMS is verified by solving large-scale problems, and the comparative results on Test set III and Test set IV are reported in Table 4 and Table 5. In order to make a fair comparison with different classical algorithms using appropriate evaluation criteria, the experiment is divided into three groups on different scale instances.



4.5.1. Performance Comparison on Test Set III (cb1–cb3)


Table 4 summarizes the experimental results of the first group large-scale benchmarks. From Table 4, it can be seen clearly that the proposed HLMS still keeps the best performance in terms of all six evaluation criteria. Specifically speaking, HLMS outperforms the other comparative algorithms. In addition, the p-value indicates that there is significant difference between HLMS and MS, BGSA, BHTPSO, and BHTPSO-QI in terms of mean. However, the p-value is 0.201 for MMVO (p-value > 0.05) and then reject the null hypothesis. Hence, insignificant difference can be detected between HLMS and MMVO.



The performance comparison of six methods based on AE is plotted in Figure 4. It is evident that the axis of HLMS on radar charts has a point nearer to the center in comparison with the other five algorithms when considering AE of Best, AE of Mean, and AE of Worst, which indicates that it is more effective with respect to quality of solutions. It can be considered that HLMS obtained optimal or near-optimal for most of the instances in terms of Best, Mean, and Worst, and could beat all the other competing algorithms.



To observe the stability of MS and HLMS more intuitively, the error bar based on variance and the trends plot based on Std are shown in Figure 5 and Figure 6, respectively. It can be observed clearly from Figure 5 that the variances of HLMS are apparently smaller than that of MS for all benchmarks. Moreover, the variances will increase with the growth of the scale of instances. It is clear from Figure 6 that the trend lines of HLMS are located in the relatively low area for ten instances of cb1 and cb2. However, the curve of cb3 has an upward trend. In brief, the curve of MS is higher than that of HLMS, which indicates that HLMS has more stable performance than MS.




4.5.2. Performance Comparison on Test Set III (cb4–cb6)


Table 5 summarizes the experimental results of the second group large-scale benchmarks. Table 5 shows that HLMS is also very efficient for 15 large instances with m = 10. Moreover, HLMS is superior to other five algorithms in absolute advantage, which is confirmed by the small p-values (0.000 ≤ 0.05).



Similarly, radar charts are plotted to visualize three evaluation criteria, AE of Best, AE of Mean, and AE of Worst in Figure 7. From Figure 7, the phenomenon is almost consistent with Figure 4. The point on the HLMS axis is very close to the center point. By implication, HLMS has smaller AE value compared with other algorithms.



The error bar based on variance for HLMS and MS is illustrated in Figure 8, which is to assess the stability of algorithms. As can be seen from Figure 8, the variance of HLMS is almost unaffected by the scale of MKP. However, with the expansion of the scale, the variance of MS is increasing gradually.



The trend plot of Std for HLMS and MS is given in Figure 9. It can be seen from Figure 9 that the trend curve of MS is significantly higher than that of HLMS, which further indicates that HLMS has better stability than MS.




4.5.3. Performance Comparison on Test Set IV


Table 6 summarizes the experimental results of the third group large-scale benchmarks. Overall, HLMS still outperforms all other comparative algorithms. In terms of #Best, #Worst, and #Mean, HLMS obtains a better result respectively on 5, 1, and 3 out of 9 instances. The results of BIWOA are respectively on 2, 2, and 2 out of 9 instances. BSSA with better performance obtains 2, 6, and 5 out of 9 instances, respectively. For the significance, the p-values for BMMVO and BSCA are both smaller than 0.05 concerned with Mean, except for MS, BIWOA, BHHA, and BSSA, which indicates that the difference between HLMS and most comparative algorithms is not significant when facing Test set IV.



Graphically, Figure 10 shows the AE of Best, AE of Mean, and AE of Worst obtained by seven methods. In terms of Best, HLMS outperforms the other comparative algorithms in absolute small AE value. However, HLMS is slightly worse than BIWOA in terms of AE of Mean.



In summary, the above experimental results and comparisons show that the proposed HLMS also has excellent optimization performance in solving large-scale MKP instances, in terms of solution quality, convergence, and stability of algorithms. This is mainly due to GHS learning and Baldwinian learning being able to effectively balance exploration and exploitation in the evolution process. Compared with the original MS, the hybrid learning strategy focuses more on discovering and utilizing useful information from the whole population and whole search experience, rather than the experience of some random local individuals.





4.6. Sensitivity Analysis on the Positional Parameter and the Scale Parameter


As is known to all, Gaussian distribution and Cauchy distribution are two important distributions, which have been integrated into many algorithms and proved an effective strategy to enhance the ability of an elaborate search. The strength of Baldwinian learning in [47] is random real number obeying Gaussian distribution. However, previous studies have revealed that Cauchy mutation possesses more power in escaping local optima and converging to the global optimum. Hence, the parameters used in [47] for Gaussian distribution and the positional parameter x and the scale parameter y for Cauchy distribution are investigated in this subsection. It is noted that, to eliminate the influence of GHS, HLMS only adopted the Baldwinian learning strategy in this experiment. We tested HLMS for Gaussian distribution and different combinations for (x, y) of Cauchy distribution: (0, 1), (0, 0.5), (0, 2), and (−2, 1). Table 7 summaries the Mean and SR for 18 instances of Test set I. In addition, boxplot for five parameter combinations on SR is plotted in Figure 11.



From Table 7, all HLMS with four different combinations of x and y find better results than that of HLMS combined with Gaussian distribution. In terms of #Mean, #SR, and MSR, HLMS with four groups (x, y) shows similar results. It can be observed from Figure 11 that HLMS-C2 shows excellent comprehensive performance. HLMS-C2 has the best maximum and three-quarter quantile. Hence, considering all of the parameter combinations, we concluded that the setting x = 0 and y = 0.5 for the HLMS is an appropriate choice.



We can draw a conclusion from this experiment that it is better to use a random real obeying Cauchy distribution than Gaussian distribution as the Baldwinian learning strength. The reason may be that Cauchy mutation has stronger ability to jump from local optimum than Gaussian mutation.




4.7. The Effectiveness of the Two Components in HLMS


As mentioned above, HLMS includes two learning strategies: Baldwinian learning strategy and GHS learning strategy. The aim of this subsection is to investigate the effectiveness of these two learning strategies. Therefore, one additional experiment is conducted on Test set I and the results are summarized in Table 8. HLMS, which only adopted the Baldwinian learning strategy, is denoted as HLMS-B. HLMS, which only adopted the GHS learning strategy, is denoted as HLMS-H.



As can be seen from Table 8, compared with HLMS-B, HLMS-H, and HLMS, MS shows the worst performance in terms of #Mean, #SR, and MSR. The results further reveal that two learning strategies are effective in the search process. Additionally, it is noted that HLMS-B shows similar performance with MS while the performance difference between HLMS-H and MS is significant. However, the performance of HLMS integrated with two learning strategies is obviously better than that of any one.



Moreover, the convergence graphs of the average objective function values obtained by four algorithms are plotted in Figure 12 and Figure 13 for four representative instances: Sento1, Sento2, Weing7, and Weing8. As seen from Figure 12 and Figure 13, MS has the slowest convergence speed, while HLMS-H and HLMS have similar convergence speed and converge both faster than MS and HLMS-B.



In summary, we can draw a conclusion that the above two learning strategies can realize complementary advantages to enhance the performance of MS. Indeed, only using Baldwinian learning is not sufficient for exploitation. The conclusion is that the beneficial combination of the two strategies is significant for improving the performance of the algorithm.




4.8. Discussion


Comparison results demonstrate that the Baldwinian learning and GHS learning strategies can really improve the performance of HLMS, thereby making it better than the original MS and most other comparative algorithms on the majority of MKP instances, in terms of solution accuracy, convergence speed, and algorithm stability. The advantage of HLMS mainly lies in that GHS is used to guide the global search and dimensional learning can achieve a large jump to help solutions escape local extremum. The other reason is that Baldwinian learning as a local search strategy has the effect of changing the fitness landscape. This interaction between learning and evolution is very beneficial. Accordingly, both Baldwinian learning and GHS learning are more efficient and effective than MS alone.



In fact, based on the previous experimental results, we can find that considering small-scale MKP instances, medium-sized MKP instances, and large-scale MKP instances, the HLMS algorithm combining Baldwinian learning and GHS learning is an effective algorithm for solving MKP problems. Besides that, balancing exploration and exploitation is an important factor in metaheuristic algorithms by maintaining adequate diversity in swarm individuals so that reducing the probability of trapping in local optimal locations. In HLMS, GHS learning and Baldwinian learning respectively play the roles of exploration and exploitation, making the optimization performance of the algorithm better.





5. Conclusions and Future Work


This paper proposed a hybrid learning moth search algorithm (HLMS) inspired by the idea that the learning strategy could direct the evolutionary process. The framework proposed in this work includes two learning strategies: Baldwinian learning and GHS learning. In the search process, the two learning strategies play the role of local exploitation and global exploration, respectively.



HLMS is verified by solving the NP-hard 0–1 multidimensional knapsack problems. The experimental results on the 87 instances commonly used in literature showed that HLMS performs competitively in comparison with MS and other state-of-the-art meta-heuristics algorithms. Sensitivity analysis of Gaussian distribution and Cauchy distribution on Baldwinian learning is provided. The results proved that Cauchy mutation is more effective than Gaussian mutation as learning length. The effectiveness of two important learning strategies of HLMS is investigated. The results demonstrated that Baldwinian learning and GHS learning both play a major role in improving the performance of HLMS. MS with two learning strategies surpasses MS and MS with a single strategy. It confirms the effectiveness of our proposed learning strategies.



Future research on MS can be divided into two main directions: research on more real-world applications and research on improvements of the algorithms. Concerning the application of MS, it has the potential to solve more combinatorial optimization problems, such as maximum diversity problems (MDP), multi-objective knapsack problems (MOKP), and multi-demand multidimensional knapsack problems (MDMKP). In terms of the improvements of algorithms, more effective learning based on strategies can be adopted to enhance the search ability of the algorithm, such as orthogonal learning, reinforcement learning, and adaptive learning.
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Figure 1. The framework of HLMS for MKP. 
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Figure 2. Boxplot for 4 comparative algorithms on SR for Test set I. 
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Figure 3. Boxplot for 7 comparative algorithms on PDev for Test set II. 
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Figure 4. The performance comparison of 6 methods based on AE for Test set III (cb1–cb3). 
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Figure 5. The error bars (Variance) for MS and HLMS on Test set III (cb1–cb3). 
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Figure 6. The trends of Std for MS and HLMS on Test set III (cb1–cb3). 
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Figure 7. The performance comparison of 5 methods based on AE for Test set III (cb4–cb6). 
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Figure 8. Error bars (Variance) for MS and HLMS on Test set III (cb4–cb6). 
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Figure 9. The trends of Std for MS and HLMS on Test set III (cb4–cb6). 






Figure 9. The trends of Std for MS and HLMS on Test set III (cb4–cb6).



[image: Mathematics 11 01811 g009]







[image: Mathematics 11 01811 g010 550] 





Figure 10. The performance comparison of 7 methods based on AE for Test set IV. 
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Figure 11. Boxplot for 5 parameter combinations on SR for Test set I. 
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Figure 12. Convergence graphs of MS, HLMS-B, HLMS-H, and HLMS on Sento1 and Sento2. 
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Figure 13. Convergence graphs of MS, HLMS-B, HLMS-H, and HLMS on Weing7 and Weing8. 
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Table 1. Settings of parameters of HLMS.
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	Parameters
	Section
	Description
	Values





	Smax
	2.1
	The max step used in Equation (5)
	1.0



	  φ 
	2.1
	The acceleration factor used in Equation (7)
	0.618



	  λ 
	2.1
	The scale factor used in Equation (7)
	a random number of uniform distribution in [0, 1]



	  β 
	2.1
	Parameter used in Equation (6)
	1.5



	c
	2.2
	The strength of Baldwinian learning
	A random number based on Cauchy distribution



	PARmax
	2.3
	Parameter used in Equation (9)
	0.99



	PARmin
	2.3
	Parameter used in Equation (9)
	0.01



	HMCR
	2.3
	Parameter used in Algorithm 2
	0.9



	NP
	3.4
	The population size
	50



	NFE
	3.4
	The maximal number of function evaluation
	100,000
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Table 2. The results of HLMS with 3 comparative algorithms for Test set I.
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Prob.

	
n × m

	
Opt.

	
MS

	
HLMS

	
MBPSO

	
CBPSOTVAC




	
SR

	
Std

	
SR

	
Std

	
SR

	
Std

	
SR

	
Std






	
Sento1

	
60 × 30

	
7772

	
0.17

	
54.46

	
0.90

	
33.73

	
0.16

	
43.23

	
0.39

	
357.78




	
Sento2

	
60 × 30

	
8722

	
0.00

	
27.79

	
0.47

	
4.72

	
0.03

	
18.80

	
0.20

	
101.03




	
HP1

	
28 × 4

	
3418

	
0.13

	
23.11

	
0.40

	
19.96

	
0.10

	
25.52

	
0.38

	
10.69




	
HP2

	
35 × 4

	
3186

	
0.00

	
26.47

	
0.40

	
32.70

	
0.11

	
39.15

	
0.59

	
21.35




	
PB1

	
27 × 4

	
3090

	
0.03

	
30.89

	
0.43

	
17.16

	
0.11

	
24.32

	
0.40

	
10.52




	
PB2

	
34 × 4

	
3186

	
0.00

	
19.95

	
0.70

	
13.83

	
0.16

	
39.31

	
0.51

	
18.73




	
PB4

	
29 × 2

	
95,168

	
0.00

	
894.68

	
0.30

	
1521.73

	
0.27

	
1803

	
0.84

	
875.1




	
PB5

	
20 × 10

	
2139

	
0.17

	
23.88

	
0.70

	
21.26

	
0.08

	
24.36

	
0.80

	
6.83




	
PB6

	
40 × 30

	
776

	
0.43

	
24.27

	
0.80

	
17.28

	
0.28

	
29.12

	
0.54

	
40.17




	
PB7

	
37 × 30

	
1035

	
0.03

	
3.86

	
0.50

	
5.83

	
0.05

	
16.29

	
0.40

	
24.25




	
Weing1

	
28 × 2

	
14,1278

	
0.90

	
214.94

	
0.93

	
89.77

	
0.82

	
250.43

	
0.92

	
281.98




	
Weing2

	
28 × 2

	
130,883

	
0.30

	
5731.34

	
0.97

	
29.21

	
0.65

	
314.08

	
0.88

	
545.50




	
Weing3

	
28 × 2

	
95,677

	
0.13

	
3767.42

	
0.80

	
1996.82

	
0.11

	
876.78

	
0.75

	
672.42




	
Weing4

	
28 × 2

	
119,337

	
0.73

	
1329.64

	
0.37

	
711.43

	
0.76

	
1270.80

	
0.97

	
378.58




	
Weing5

	
28 × 2

	
98,796

	
0.23

	
2671.33

	
1.00

	
0.00

	
0.52

	
1923.5

	
0.94

	
572.82




	
Weing6

	
28 × 2

	
130,623

	
0.23

	
164.95

	
0.97

	
71.20

	
0.36

	
322.40

	
0.97

	
343.45




	
Weing7

	
105 × 2

	
1,095,445

	
0.00

	
482.74

	
0.00

	
2872.29

	
0.02

	
1130.60

	
0.00

	
30,020.00




	
Weing8

	
105 × 2

	
624,319

	
0.33

	
1966.37

	
0.03

	
1135.87

	
0.03

	
4704.30

	
0.20

	
75,169.00




	
#Opt

	
13

	

	
17

	

	
18

	

	
17

	




	
#SR

	
0

	

	
12

	

	
1

	

	
5

	




	
#Std

	
1

	

	
10

	

	
0

	

	
7

	




	
MSR

	
0.21

	

	
0.54

	

	
0.26

	

	
0.59

	




	
Rank of MSR

	
4

	

	
2

	

	
3

	

	
1

	




	
p-value

	
0.001

	
0.029

	

	

	
0.001

	
0.663

	
0.641

	
0.896
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Table 3. The results of HLMS with 6 comparative algorithms for Test set II.
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Prob.

	
n × m

	
Opt.

	

	
MS

	
HLMS

	
BIWOA

	
BMMVO

	
BSCA

	
BHHA

	
BSSA






	
Weish01

	
30 × 5

	
4554

	
Best

	
4554

	
4554

	
4554

	
4554

	
4554

	
4554

	
4554




	
Worst

	
4477

	
4534

	
4554

	
4554

	
4534

	
4554

	
4554




	
PDev

	
0.38

	
0.18

	
0.00

	
0.00

	
0.09

	
0.00

	
0.00




	
Weish02

	
30 × 5

	
4536

	
Best

	
4536

	
4536

	
4536

	
4536

	
4536

	
4536

	
4536




	
Worst

	
4440

	
4504

	
4536

	
4536

	
4536

	
4536

	
4536




	
PDev

	
0.38

	
0.02

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00




	
Weish03

	
30 × 5

	
4115

	
Best

	
4106

	
4115

	
4106

	
4106

	
4106

	
4106

	
4106




	
Worst

	
4106

	
4106

	
4106

	
4106

	
4106

	
4106

	
4106




	
PDev

	
0.22

	
0.19

	
3.97

	
3.05

	
0.00

	
2.24

	
3.97




	
Weish04

	
30 × 5

	
4561

	
Best

	
4561

	
4561

	
4561

	
4561

	
4561

	
4561

	
4561




	
Worst

	
4505

	
4531

	
4561

	
4561

	
4561

	
4561

	
4561




	
PDev

	
0.37

	
0.09

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00




	
Weish05

	
30 × 5

	
4514

	
Best

	
4514

	
4514

	
4514

	
4514

	
4514

	
4514

	
4514




	
Worst

	
4514

	
4514

	
4514

	
4514

	
4514

	
4514

	
4514




	
PDev

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00




	
Weish06

	
40 × 5

	
5557

	
Best

	
5557

	
5557

	
5557

	
5557

	
5557

	
5557

	
5557




	
Worst

	
5502

	
5542

	
5542

	
5542

	
5542

	
5544

	
5557




	
PDev

	
0.40

	
0.09

	
0.12

	
0.14

	
0.14

	
0.02

	
0.00




	
Weish07

	
40 × 5

	
5567

	
Best

	
5567

	
5567

	
5567

	
5567

	
5567

	
5567

	
5567




	
Worst

	
5360

	
5542

	
5567

	
5567

	
5567

	
5567

	
5567




	
PDev

	
0.53

	
0.03

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00




	
Weish08

	
40 × 5

	
5605

	
Best

	
5605

	
5605

	
5605

	
5605

	
5605

	
5605

	
5605




	
Worst

	
5478

	
5603

	
5605

	
5603

	
5603

	
5605

	
5605




	
PDev

	
0.30

	
0.01

	
0.00

	
0.03

	
0.01

	
0.00

	
0.00




	
Weish09

	
40 × 5

	
5246

	
Best

	
5246

	
5246

	
5246

	
5246

	
5246

	
5246

	
5246




	
Worst

	
5185

	
5246

	
5246

	
5246

	
5246

	
5246

	
5246




	
PDev

	
0.08

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00




	
Weish10

	
50 × 5

	
6339

	
Best

	
6339

	
6339

	
6323

	
6303

	
6303

	
6303

	
6303




	
Worst

	
6255

	
6280

	
6303

	
6303

	
6303

	
6303

	
6303




	
PDev

	
0.55

	
0.04

	
0.31

	
0.56

	
0.56

	
0.56

	
0.56




	
Weish11

	
50 × 5

	
5643

	
Best

	
5643

	
5643

	
5643

	
5643

	
5643

	
5643

	
5643




	
Worst

	
5592

	
5643

	
5643

	
5643

	
5643

	
5643

	
5643




	
PDev

	
0.03

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00




	
Weish12

	
50 × 5

	
6339

	
Best

	
6339

	
6339

	
6302

	
6301

	
6302

	
6302

	
6302




	
Worst

	
6090

	
6304

	
6302

	
6301

	
6301

	
6301

	
6301




	
PDev

	
0.94

	
0.07

	
0.58

	
0.59

	
0.59

	
0.59

	
0.59




	
Weish13

	
50 × 5

	
6159

	
Best

	
6159

	
6159

	
6159

	
6159

	
6159

	
6159

	
6159




	
Worst

	
6025

	
6025

	
6159

	
6159

	
6159

	
6159

	
6159




	
PDev

	
0.98

	
0.23

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00




	
Weish14

	
60 × 5

	
6954

	
Best

	
6954

	
6954

	
6923

	
6923

	
6923

	
6923

	
6923




	

	

	

	
Worst

	
6769

	
6902

	
6900

	
6900

	
6900

	
6923

	
6923




	

	

	

	
PDev

	
0.80

	
0.28

	
0.71

	
0.57

	
0.66

	
0.44

	
0.44




	
Weish15

	
60 × 5

	
7486

	
Best

	
7486

	
7486

	
7486

	
7486

	
7486

	
7486

	
7486




	

	

	

	
Worst

	
7199

	
7442

	
7453

	
7449

	
7486

	
7486

	
7486




	

	

	

	
PDev

	
0.84

	
0.08

	
0.08

	
0.11

	
0.00

	
0.00

	
0.00




	
Weish16

	
60 × 5

	
7289

	
Best

	
7289

	
7289

	
7289

	
7289

	
7289

	
7289

	
7289




	

	

	

	
Worst

	
6942

	
7221

	
7288

	
7281

	
7281

	
7281

	
7281




	

	

	

	
PDev

	
0.96

	
0.14

	
0.01

	
0.10

	
0.09

	
0.10

	
0.10




	
Weish17

	
60 × 5

	
8633

	
Best

	
8633

	
8633

	
8633

	
8624

	
8633

	
8633

	
8633




	

	

	

	
Worst

	
8141

	
8633

	
8575

	
8497

	
8506

	
8633

	
8633




	

	

	

	
PDev

	
0.31

	
0.00

	
0.39

	
0.96

	
0.42

	
0.00

	
0.00




	
Weish18

	
70 × 5

	
9580

	
Best

	
9540

	
9580

	
9560

	
9456

	
9573

	
9580

	
9573




	

	

	

	
Worst

	
8857

	
9525

	
9461

	
9318

	
9451

	
9521

	
9527




	

	

	

	
PDev

	
1.42

	
0.11

	
0.65

	
1.92

	
0.62

	
0.27

	
0.17




	
Weish19

	
70 × 5

	
7698

	
Best

	
7698

	
7698

	
7698

	
7698

	
7698

	
7698

	
7698




	

	

	

	
Worst

	
7448

	
7674

	
7632

	
7629

	
7698

	
7698

	
7698




	

	

	

	
PDev

	
0.85

	
0.01

	
0.38

	
0.35

	
0.00

	
0.00

	
0.00




	
Weish20

	
70 × 5

	
9450

	
Best

	
9450

	
9450

	
9450

	
9445

	
9450

	
9450

	
9450




	

	

	

	
Worst

	
9306

	
9408

	
9400

	
9365

	
9433

	
9445

	
9450




	

	

	

	
PDev

	
0.49

	
0.03

	
0.23

	
0.57

	
0.02

	
0.01

	
0.00




	
Weish21

	
70 × 5

	
9074

	
Best

	
9074

	
9074

	
9074

	
9074

	
9074

	
9074

	
9074




	

	

	

	
Worst

	
8922

	
9008

	
9016

	
8969

	
9033

	
9074

	
9074




	

	

	

	
PDev

	
0.44

	
0.05

	
0.19

	
0.64

	
0.03

	
0.00

	
0.00




	
Weish22

	
80 × 5

	
8947

	
Best

	
8790

	
8929

	
8909

	
8886

	
8909

	
8912

	
8912




	

	

	

	
Worst

	
7904

	
8708

	
8908

	
8886

	
8886

	
8909

	
8912




	

	

	

	
PDev

	
5.51

	
0.58

	
0.43

	
0.68

	
0.63

	
0.39

	
0.39




	
Weish23

	
80 × 5

	
8344

	
Best

	
8170

	
8344

	
8303

	
8250

	
8344

	
8344

	
8344




	

	

	

	
Worst

	
7246

	
8154

	
8245

	
8233

	
8245

	
8250

	
8303




	

	

	

	
PDev

	
5.74

	
0.85

	
0.66

	
1.16

	
0.89

	
0.71

	
0.26




	
Weish24

	
80 × 5

	
10,220

	
Best

	
10,189

	
10,220

	
10,189

	
10,058

	
10,215

	
10,202

	
10,220




	

	

	

	
Worst

	
9807

	
10,091

	
10,053

	
9787

	
10,042

	
10,134

	
10,132




	

	

	

	
PDev

	
1.70

	
0.16

	
1.23

	
3.14

	
0.86

	
0.57

	
0.48




	
Weish25

	
80 × 5

	
9939

	
Best

	
9922

	
9939

	
9885

	
9844

	
9939

	
9939

	
9939




	

	

	

	
Worst

	
9703

	
9885

	
9808

	
9710

	
9885

	
9915

	
9915




	

	

	

	
PDev

	
1.02

	
0.03

	
0.94

	
1.63

	
0.20

	
0.21

	
0.11




	
Weish26

	
90 × 5

	
9584

	
Best

	
9581

	
9584

	
9575

	
9575

	
9575

	
9575

	
9575




	

	

	

	
Worst

	
8904

	
9514

	
9477

	
9439

	
9476

	
9488

	
9575




	

	

	

	
PDev

	
1.66

	
0.19

	
0.69

	
1.17

	
0.92

	
0.24

	
0.09




	
Weish27

	
90 × 5

	
9819

	
Best

	
9764

	
9819

	
9778

	
9589

	
9764

	
9764

	
9764




	

	

	

	
Worst

	
9319

	
9764

	
9773

	
9487

	
9631

	
9678

	
9764




	

	

	

	
PDev

	
2.09

	
0.50

	
0.45

	
2.53

	
0.88

	
0.61

	
0.56




	
Weish28

	
90 × 5

	
9492

	
Best

	
9492

	
9492

	
9454

	
9400

	
9454

	
9454

	
9454




	

	

	

	
Worst

	
9034

	
9438

	
9411

	
9183

	
9400

	
9400

	
9400




	

	

	

	
PDev

	
1.54

	
0.19

	
0.49

	
1.70

	
0.78

	
0.62

	
0.45




	
Weish29

	
90 × 5

	
9410

	
Best

	
9369

	
9410

	
9369

	
9369

	
9369

	
9369

	
9369




	

	

	

	
Worst

	
8927

	
9369

	
9369

	
9135

	
9369

	
9369

	
9369




	

	

	

	
PDev

	
1.45

	
0.40

	
0.43

	
1.75

	
0.43

	
0.43

	
0.43




	
Weish30

	
90 × 5

	
11,191

	
Best

	
11,148

	
11,187

	
11,121

	
11,025

	
11,169

	
11,169

	
11,169




	

	

	

	
Worst

	
10,808

	
11,155

	
10,979

	
10,790

	
10,948

	
11,135

	
11,154




	

	

	

	
PDev

	
1.44

	
0.08

	
1.23

	
2.49

	
0.61

	
0.27

	
0.20




	
#Opt

	

	
20

	
27

	
16

	
14

	
18

	
19

	
19




	
#Worst

	

	
2

	
9

	
12

	
10

	
12

	
18

	
23




	
The mean of PDev

	

	
1.11

	
0.15

	
0.47

	
0.86

	
0.31

	
0.28

	
0.29




	
p-value (PDev)

	

	
0.000

	

	
0.011

	
0.000

	
0.033

	
0.328

	
0.848
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Table 4. The results of HLMS with 5 comparative algorithms for Test set III (cb1-cb3).
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Prob.

	
n × m

	
Opt.

	
Profit

	
MS

	
HLMS

	
MMVO

	
BGSA

	
BHTPSO

	
BHTPSO-QI






	
cb1-1

	
100 × 5

	
24,381

	
Best

	
24,253

	
24,381

	
24,192

	
24,152

	
24,169

	
24,301




	

	

	
Mean

	
24,004

	
24,301

	
24,050

	
23,835

	
23,822

	
23,821




	

	

	
Worst

	
23,311

	
24,238

	
23,920

	
23,175

	
23,415

	
23,287




	
cb1-2

	
100 × 5

	
24,274

	
Best

	
24,258

	
24,274

	
24,274

	
23,986

	
24,109

	
23,944




	

	

	
Mean

	
23,934

	
24,231

	
24,274

	
23,536

	
23,657

	
23,688




	

	

	
Worst

	
23,366

	
24,116

	
24,274

	
23,177

	
22,953

	
23,375




	
cb1-3

	
100 × 5

	
23,551

	
Best

	
23,538

	
23,551

	
23,538

	
23,386

	
23,435

	
23,418




	

	

	
Mean

	
23,272

	
23,521

	
23,520

	
23,041

	
23,072

	
23,073




	

	

	
Worst

	
22,953

	
23,468

	
23,494

	
22,543

	
22,678

	
22,621




	
cb1-4

	
100 × 5

	
23,534

	
Best

	
23,256

	
23,503

	
23,288

	
23,172

	
23,253

	
23,192




	

	

	
Mean

	
23,024

	
23,420

	
23,120

	
22,863

	
22,928

	
22,923




	

	

	
Worst

	
22,542

	
23,288

	
23,042

	
22,468

	
22,507

	
22,234




	
cb1-5

	
100 × 5

	
23,991

	
Best

	
23,845

	
23,966

	
23,947

	
23,755

	
23,815

	
23,774




	

	

	
Mean

	
23,567

	
23,937

	
23,900

	
23,459

	
23,473

	
23,527




	

	

	
Worst

	
23,062

	
23,836

	
23,799

	
23,106

	
23,155

	
23,053




	
cb2-1

	
250 × 5

	
59,312

	
Best

	
58,084

	
59,063

	
58,473

	
57,565

	
57,814

	
57,800




	

	

	
Mean

	
57,369

	
58,862

	
58,240

	
56,554

	
56,874

	
56,685




	

	

	
Worst

	
55,984

	
58,653

	
58,112

	
55,191

	
54,935

	
55,255




	
cb2-2

	
250 × 5

	
61,472

	
Best

	
60,248

	
61,295

	
60,692

	
60,057

	
59,982

	
59,767




	

	

	
Mean

	
59,386

	
61,051

	
60,390

	
58,613

	
58,588

	
58,680




	

	

	
Worst

	
58,167

	
60,870

	
60,194

	
57,707

	
56,807

	
56,821




	
cb2-3

	
250 × 5

	
62,130

	
Best

	
61,212

	
61,767

	
61,702

	
59,936

	
60,630

	
60,524




	

	

	
Mean

	
59,922

	
61,552

	
61,330

	
58,975

	
59,234

	
59,186




	

	

	
Worst

	
57,885

	
61,303

	
61,158

	
57,723

	
57,435

	
57,278




	
cb2-4

	
250 × 5

	
59,463

	
Best

	
58,386

	
59,140

	
58,441

	
57,970

	
57,736

	
57,884




	

	

	
Mean

	
57,752

	
58,922

	
58,300

	
56,744

	
56,773

	
56,584




	

	

	
Worst

	
56,763

	
58,710

	
58,163

	
55,371

	
55,589

	
55,164




	
cb2-5

	
250 × 5

	
58,951

	
Best

	
57,755

	
58,605

	
58,082

	
56,959

	
57,378

	
57,550




	

	

	
Mean

	
56,929

	
58,390

	
58,300

	
55,961

	
56,129

	
56,361




	

	

	
Worst

	
56,326

	
58,088

	
58,163

	
54,637

	
54,364

	
53,929




	
cb3-1

	
500 × 5

	
120,148

	
Best

	
116,296

	
119,101

	
119,978

	
111,206

	
114,493

	
114,438




	

	

	
Mean

	
115,444

	
118,457

	
119,900

	
108,930

	
111,017

	
111,469




	

	

	
Worst

	
114,634

	
117,842

	
119,810

	
106,951

	
106,454

	
107,005




	
cb3-2

	
500 × 5

	
117,879

	
Best

	
113,732

	
116,227

	
115,634

	
108,522

	
112,821

	
112,147




	

	

	
Mean

	
112,257

	
115,704

	
115,400

	
106,631

	
109,276

	
109,247




	

	

	
Worst

	
111,381

	
115,053

	
115,222

	
104,519

	
100,118

	
104,696




	
cb3-3

	
500 × 5

	
121,131

	
Best

	
117,666

	
119,990

	
119,156

	
111,271

	
114,774

	
116,099




	

	

	
Mean

	
116,367

	
119,468

	
118,900

	
109,430

	
112,035

	
112,001




	

	

	
Worst

	
115,160

	
119,054

	
118,651

	
107,683

	
106,406

	
104,627




	
cb3-4

	
500 × 5

	
120,804

	
Best

	
116,454

	
119,015

	
119,124

	
111,283

	
115,828

	
114,327




	

	

	
Mean

	
115,396

	
118,386

	
118,900

	
109,062

	
112,200

	
111,671




	

	

	
Worst

	
114,100

	
117,572

	
118,623

	
107,061

	
106,222

	
107,578




	
cb3-5

	
500 × 5

	
122,319

	
Best

	
117,900

	
120,918

	
121,141

	
112,391

	
115,889

	
117,242




	

	

	
Mean

	
116,767

	
120,278

	
120,800

	
110,564

	
112,253

	
113,364




	

	

	
Worst

	
115,062

	
119,519

	
120,401

	
108,670

	
102,820

	
103,910




	
#Best

	

	
0

	
12

	
4

	
0

	
0

	
0




	
#Mean

	

	
0

	
11

	
4

	
0

	
0

	
0




	
#Worst

	

	
0

	
8

	
7

	
0

	
0

	
0




	
AE of Best

	

	
1.91%

	
0.57%

	
0.98%

	
3.97%

	
2.70%

	
2.72%




	
AE of Mean

	

	
3.08%

	
0.92%

	
1.23%

	
5.63%

	
4.81%

	
4.75%




	
AE of Worst

	

	
4.81%

	
1.36%

	
1.48%

	
7.49%

	
8.29%

	
8.09%




	
Rank of AE of Best

	

	
3

	
1

	
2

	
6

	
4

	
5




	
p-value (Mean)

	

	
0.000

	

	
0.201

	
0.000

	
0.000

	
0.000
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Table 5. The results of HLMS with 5 comparative algorithms for Test set III (cb4–cb5).
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Prob.

	
n × m

	
Opt.

	
Profit

	
MS

	
HLMS

	
BGSA

	
BHTPSO

	
BHTPSO-QI






	
cb4-1

	
100 × 10

	
23,064

	
Best

	
22,753

	
23,055

	
22,836

	
22,905

	
22,876




	

	

	
Mean

	
22,459

	
22,914

	
22,334

	
22,425

	
22,449




	

	

	
Worst

	
22,080

	
22,753

	
21,975

	
21,980

	
21,999




	
cb4-2

	
100 × 10

	
22,801

	
Best

	
22,611

	
22,743

	
22,441

	
22,573

	
22,408




	

	

	
Mean

	
22,255

	
22,629

	
21,991

	
22,047

	
22,017




	

	

	
Worst

	
21,622

	
22,407

	
21,435

	
21,322

	
21,454




	
cb4-3

	
100 × 10

	
22,131

	
Best

	
21,886

	
22,131

	
21,849

	
21,797

	
21,949




	

	

	
Mean

	
21,466

	
21,908

	
21,313

	
21,342

	
21,461




	

	

	
Worst

	
20,841

	
21,855

	
20,957

	
20,958

	
20,886




	
cb4-4

	
100 × 10

	
22,772

	
Best

	
22,319

	
22,717

	
22,325

	
22,418

	
22,376




	

	

	
Mean

	
21,992

	
22,528

	
21,961

	
22,037

	
22,029




	

	

	
Worst

	
21,465

	
22,016

	
21,488

	
21,228

	
21,533




	
cb4-5

	
100 × 10

	
22,751

	
Best

	
22,440

	
22,751

	
22,168

	
22,215

	
22,254




	

	

	
Mean

	
22,132

	
22,603

	
21,840

	
21,822

	
21,903




	

	

	
Worst

	
21,738

	
22,272

	
21,271

	
21,362

	
21,339




	
cb5-1

	
250 × 10

	
59,187

	
Best

	
57,757

	
58,903

	
56,928

	
57,530

	
57,036




	

	

	
Mean

	
56,708

	
58,477

	
55,759

	
55,854

	
55,960




	

	

	
Worst

	
55,510

	
58,182

	
54,217

	
53,570

	
53,381




	
cb5-2

	
250 × 10

	
58,781

	
Best

	
57,363

	
58,346

	
56,337

	
56,568

	
56,490




	

	

	
Mean

	
56,793

	
58,098

	
55,455

	
55,443

	
55,708




	

	

	
Worst

	
56,126

	
57,792

	
53,739

	
53,274

	
52,907




	
cb5-3

	
250 × 10

	
58,097

	
Best

	
56,690

	
57,674

	
55,573

	
56,426

	
55,982




	

	

	
Mean

	
56,024

	
57,417

	
54,638

	
54,793

	
54,727




	

	

	
Worst

	
55,281

	
57,044

	
53,516

	
52,871

	
52,714




	
cb5-4

	
250 × 10

	
61,000

	
Best

	
59,930

	
60,505

	
58,595

	
59,030

	
59,077




	

	

	
Mean

	
58,934

	
60,282

	
57,766

	
58,057

	
57,721




	

	

	
Worst

	
57,765

	
59,870

	
56,701

	
56,254

	
53,774




	
cb5-5

	
250 × 10

	
58,092

	
Best

	
56,863

	
57,468

	
56,186

	
56,217

	
56,204




	

	

	
Mean

	
56,066

	
57,220

	
54,850

	
54,941

	
54,872




	

	

	
Worst

	
55,182

	
56,869

	
53,612

	
51,850

	
50,832




	
cb6-1

	
500 × 10

	
117,821

	
Best

	
113,362

	
116,015

	
108,487

	
110,996

	
111,669




	

	

	
Mean

	
112,541

	
115,379

	
105,760

	
107,698

	
108,367




	

	

	
Worst

	
111,397

	
114,509

	
102,725

	
104,239

	
103,802




	
cb6-2

	
500 × 10

	
119,249

	
Best

	
115,022

	
117,778

	
109,569

	
114,262

	
113,001




	

	

	
Mean

	
114,250

	
117,102

	
106,775

	
108,648

	
109,197




	

	

	
Worst

	
112,596

	
116,418

	
103,478

	
100,740

	
100,764




	
cb6-3

	
500 × 10

	
119,215

	
Best

	
115,419

	
117,345

	
109,705

	
113,987

	
112,419




	

	

	
Mean

	
114,372

	
116,842

	
106,853

	
108,576

	
109,004




	

	

	
Worst

	
113,495

	
116,115

	
104,565

	
102,439

	
103,703




	
cb6-4

	
500 × 10

	
118,829

	
Best

	
115,038

	
117,281

	
108,628

	
112,476

	
112,198




	

	

	
Mean

	
113,444

	
116,446

	
105,679

	
107,692

	
107,796




	

	

	
Worst

	
112,405

	
115,872

	
102,679

	
101,860

	
99,470




	
cb6-5

	
500 × 10

	
116,530

	
Best

	
112,971

	
114,909

	
106,972

	
109,567

	
109,287




	

	

	
Mean

	
111,707

	
114,183

	
104,509

	
106,217

	
106,212




	

	

	
Worst

	
110,156

	
113,533

	
102,665

	
100,836

	
100,509




	
#Best

	

	

	
0

	
15

	
0

	
0

	
0




	
#Mean

	

	

	
0

	
15

	
0

	
0

	
0




	
#Worst

	

	

	
0

	
14

	
0

	
0

	
0




	
AE of Best

	

	
2.30%

	
0.76%

	
4.58%

	
3.25%

	
3.52%




	
AE of Mean

	

	
3.57%

	
1.33%

	
6.58%

	
5.92%

	
5.78%




	
AE of Worst

	

	
5.20%

	
2.12%

	
8.77%

	
9.64%

	
10.11%




	
Rank of AE of Best

	
2

	
1

	
5

	
3

	
4




	
p-value (Mean)

	
0.000

	

	
0.000

	
0.000

	
0.000
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Table 6. The results of HLMS with 6 comparative algorithms for Test set IV.
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Prob.

	
n × m

	
Opt.

	

	
MS

	
HLMS

	
BIWOA

	
BMMVO

	
BSCA

	
BHHA

	
BSSA






	
GK01

	
100 × 15

	
3766

	
Best

	
3732

	
3752

	
3743

	
3698

	
3725

	
3746

	
3744




	
Worst

	
3714

	
3722

	
3731

	
3666

	
3690

	
3728

	
3738




	
Mean

	
3721

	
3742

	
3736

	
3678

	
3705

	
3734

	
3742




	
GK02

	
100 × 25

	
3958

	
Best

	
3920

	
3948

	
3949

	
3885

	
3913

	
3929

	
3939




	
Worst

	
3900

	
3928

	
3924

	
3859

	
3883

	
3915

	
3924




	
Mean

	
3908

	
3938

	
3931

	
3871

	
3897

	
3919

	
3934




	
GK03

	
150 × 25

	
5656

	
Best

	
5585

	
5610

	
5613

	
5561

	
5563

	
5580

	
5606




	
Worst

	
5545

	
5575

	
5584

	
5507

	
5533

	
5554

	
5594




	
Mean

	
5564

	
5596

	
5596

	
5519

	
5543

	
5568

	
5598




	
GK04

	
150 × 50

	
5767

	
Best

	
5702

	
5733

	
5712

	
5651

	
5678

	
5695

	
5712




	
Worst

	
5677

	
5658

	
5690

	
5628

	
5652

	
5672

	
5696




	
Mean

	
5688

	
5710

	
5701

	
5638

	
5664

	
5683

	
5704




	
GK05

	
200 × 25

	
7561

	
Best

	
7479

	
7502

	
7499

	
7365

	
7411

	
7463

	
7495




	
Worst

	
7422

	
7413

	
7476

	
7344

	
7375

	
7426

	
7477




	
Mean

	
7452

	
7474

	
7485

	
7353

	
7391

	
7443

	
7488




	
GK06

	
200 × 50

	
7680

	
Best

	
7617

	
7611

	
7607

	
7522

	
7551

	
7578

	
7617




	
Worst

	
7561

	
7568

	
7584

	
7492

	
7520

	
7562

	
7598




	
Mean

	
7591

	
7592

	
7597

	
7505

	
7532

	
7569

	
7611




	
GK07

	
500 × 25

	
19,220

	
Best

	
19,066

	
19,151

	
19,110

	
18,738

	
18,783

	
19,005

	
19,100




	
Worst

	
19,005

	
18,890

	
19,093

	
18,635

	
18,689

	
18,961

	
19,048




	
Mean

	
19,033

	
19,067

	
19,102

	
18,668

	
18,734

	
18,983

	
19,087




	
GK08

	
500 × 50

	
18,806

	
Best

	
18,612

	
18,642

	
18,641

	
18,385

	
18,462

	
18,601

	
18,646




	
Worst

	
18,557

	
18,498

	
18,607

	
18,335

	
18,395

	
18,597

	
18,637




	
Mean

	
18,582

	
18,594

	
18,627

	
18,361

	
18,428

	
18,598

	
18,640




	
GK09

	
1500 × 25

	
58,087

	
Best

	
57,753

	
57,886

	
57,868

	
56,746

	
56,932

	
57,547

	
57,346




	
Worst

	
57,636

	
56,725

	
57,830

	
56,519

	
56,624

	
56,699

	
56,615




	
Mean

	
57,676

	
57,547

	
57,843

	
56,619

	
56,719

	
57,719

	
56,959




	
#Best

	

	
1

	
5

	
2

	
0

	
0

	
0

	
2




	
#Worst

	

	
0

	
1

	
2

	
0

	
0

	
0

	
6




	
#Mean

	

	
0

	
3

	
2

	
0

	
0

	
0

	
5




	
AE of Best

	

	
0.11%

	
0.07%

	
0.08%

	
0.24%

	
0.19%

	
0.12%

	
0.09%




	
AE of Mean

	

	
0.16%

	
0.18%

	
0.11%

	
0.29%

	
0.27%

	
0.17%

	
0.13%




	
AE of Worst

	

	
0.13%

	
0.10%

	
0.10%

	
0.27%

	
0.22%

	
0.13%

	
0.11%




	
Rank on AE of Best

	

	
4

	
1

	
2

	
7

	
6

	
5

	
3




	
p-value (Mean)

	

	
0.327

	

	
0.172

	
0.001

	
0.001

	
0.069

	
0.327
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Table 7. The results of HLMS using different parameters of two distributions for Test set I.
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Prob.

	

	
    μ = 0.5 , δ = 0.3   

	
x = 0, y = 1

	
x = 0, y = 0.5

	
x = 0, y = 2

	
x = −2, y = 1






	
Sento1

	
Mean

	
7729

	
7740

	
7749

	
7753

	
7749




	
SR

	
0.43

	
0.67

	
0.63

	
0.67

	
0.60




	
Sento2

	
Mean

	
8701

	
8713

	
8708

	
8712

	
8713




	
SR

	
0.13

	
0.33

	
0.10

	
0.07

	
0.27




	
HP1

	
Mean

	
3391

	
3376

	
3371

	
3385

	
3367




	
SR

	
0.43

	
0.20

	
0.03

	
0.07

	
0.10




	
HP2

	
Mean

	
3115

	
3125

	
3124

	
3135

	
3119




	
SR

	
0.10

	
0.03

	
0.07

	
0.00

	
0.00




	
PB1

	
Mean

	
3045

	
3058

	
3060

	
3057

	
3055




	
SR

	
0.13

	
0.13

	
0.33

	
0.17

	
0.20




	
PB2

	
Mean

	
3145

	
3145

	
3142

	
3148

	
3145




	
SR

	
0.07

	
0.13

	
0.10

	
0.10

	
0.10




	
PB4

	
Mean

	
92,093

	
92,664

	
92,808

	
93,229

	
92,457




	
SR

	
0.00

	
0.10

	
0.07

	
0.03

	
0.03




	
PB5

	
Mean

	
2098

	
2118

	
2112

	
2115

	
2106




	
SR

	
0.17

	
0.50

	
0.47

	
0.57

	
0.37




	
PB6

	
Mean

	
753

	
757

	
757

	
756

	
758




	
SR

	
0.43

	
0.53

	
0.53

	
0.53

	
0.53




	
PB7

	
Mean

	
1024

	
1026

	
1025

	
1025

	
1026




	
SR

	
0.10

	
0.13

	
0.13

	
0.07

	
0.13




	
Weing1

	
Mean

	
139,551

	
139,615

	
139,397

	
140,199

	
138,803




	
SR

	
0.33

	
0.07

	
0.23

	
0.20

	
0.13




	
Weing2

	
Mean

	
130,307

	
130,370

	
126,292

	
129,613

	
129,989




	
SR

	
0.27

	
0.40

	
0.23

	
0.20

	
0.60




	
Weing3

	
Mean

	
92,362

	
94,546

	
93,373

	
93,033

	
94,489




	
SR

	
0.27

	
0.50

	
0.50

	
0.30

	
0.60




	
Weing4

	
Mean

	
118,384

	
117,864

	
117,199

	
117,489

	
117,544




	

	
SR

	
0.23

	
0.20

	
0.13

	
0.03

	
0.13




	
Weing5

	
Mean

	
96,465

	
95,421

	
97,209

	
95,372

	
94,898




	

	
SR

	
0.43

	
0.33

	
0.67

	
0.40

	
0.37




	
Weing6

	
Mean

	
129,533

	
128,954

	
129,753

	
129,983

	
129,732




	

	
SR

	
0.37

	
0.17

	
0.40

	
0.37

	
0.47




	
Weing7

	
Mean

	
1,048,378

	
1,038,366

	
1,043,595

	
1,035,059

	
1,035,752




	

	
SR

	
0.00

	
0.00

	
0.00

	
0.00

	
0.00




	
Weing8

	
Mean

	
622,201

	
621,720

	
622,515

	
621,778

	
622,127




	

	
SR

	
0.00

	
0.00

	
0.03

	
0.03

	
0.00




	
#Mean

	

	
2

	
5

	
3

	
6

	
3




	
#SR

	

	
5

	
7

	
6

	
5

	
6




	
MSR

	

	
0.22

	
0.25

	
0.26

	
0.21

	
0.26




	
p-value (Mean)

	

	

	
1.000

	
0.556

	
0.727

	
0.635
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Table 8. Comparisons of MS, HLMS-B, HLMS-H, and HLMS on Test set I.
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Prob.

	

	
MS

	
HLMS-B

	
HLMS-H

	
HLMS






	
Sento1

	
Mean

	
7677

	
7749

	
7763

	
7762




	
SR

	
0.17

	
0.63

	
0.87

	
0.90




	
Sento2

	
Mean

	
8695

	
8708

	
8717

	
8719




	
SR

	
0.00

	
0.10

	
0.53

	
0.47




	
HP1

	
Mean

	
3370

	
3371

	
3392

	
3399




	
SR

	
0.13

	
0.03

	
0.37

	
0.40




	
HP2

	
Mean

	
3098

	
3124

	
3135

	
3158




	
SR

	
0.00

	
0.07

	
0.30

	
0.40




	
PB1

	
Mean

	
3036

	
3060

	
3075

	
3074




	
SR

	
0.03

	
0.33

	
0.50

	
0.43




	
PB2

	
Mean

	
3139

	
3142

	
3172

	
3178




	
SR

	
0.00

	
0.10

	
0.60

	
0.70




	
PB4

	
Mean

	
92,312

	
92,808

	
93,111

	
93,063




	
SR

	
0.00

	
0.07

	
0.17

	
0.30




	
PB5

	
Mean

	
2091

	
2112

	
2117

	
2125




	
SR

	
0.17

	
0.47

	
0.57

	
0.70




	
PB6

	
Mean

	
751

	
757

	
767

	
768




	
SR

	
0.43

	
0.53

	
0.83

	
0.80




	
PB7

	
Mean

	
1023

	
1025

	
1028

	
1030




	
SR

	
0.03

	
0.13

	
0.20

	
0.50




	
Weing1

	
Mean

	
141,207

	
139,397

	
141,227

	
141,260




	
SR

	
0.90

	
0.23

	
0.83

	
0.93




	
Weing2

	
Mean

	
130,760

	
126,292

	
130,877

	
130,877




	
SR

	
0.30

	
0.23

	
0.97

	
0.97




	
Weing3

	
Mean

	
90,866

	
93,373

	
95,355

	
94,801




	
SR

	
0.13

	
0.50

	
0.83

	
0.80




	
Weing4

	
Mean

	
116,487

	
117,199

	
118,883

	
118,956




	

	
SR

	
0.73

	
0.13

	
0.50

	
0.37




	
Weing5

	
Mean

	
95,802

	
97,209

	
98,384

	
98,796




	

	
SR

	
0.23

	
0.67

	
0.87

	
1.00




	
Weing6

	
Mean

	
129,176

	
129,753

	
130,429

	
130,610




	

	
SR

	
0.23

	
0.40

	
0.63

	
0.97




	
Weing7

	
Mean

	
1,069,121

	
1,043,595

	
1,073,467

	
1,073,783




	

	
SR

	
0.00

	
0.00

	
0.00

	
0.00




	
Weing8

	
Mean

	
620,483

	
622,515

	
622,905

	
622,775




	

	
SR

	
0.33

	
0.03

	
0.00

	
0.03




	
#Mean

	

	
0

	
0

	
6

	
13




	
#SR

	

	
1

	
2

	
7

	
13




	
MSR

	

	
0.21

	
0.26

	
0.53

	
0.54




	
p-value

	

	
0.0003

	
0.0003

	
0.155
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