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Abstract: The moth search algorithm (MS) is a relatively new metaheuristic optimization algorithm
which mimics the phototaxis and Lévy flights of moths. Being an NP-hard problem, the 0–1 mul-
tidimensional knapsack problem (MKP) is a classical multi-constraint complicated combinatorial
optimization problem with numerous applications. In this paper, we present a hybrid learning MS
(HLMS) by incorporating two learning mechanisms, global-best harmony search (GHS) learning
and Baldwinian learning for solving MKP. (1) GHS learning guides moth individuals to search for
more valuable space and the potential dimensional learning uses the difference between two random
dimensions to generate a large jump. (2) Baldwinian learning guides moth individuals to change
the search space by making full use of the beneficial information of other individuals. Hence, GHS
learning mainly provides global exploration and Baldwinian learning works for local exploitation.
We demonstrate the competitiveness and effectiveness of the proposed HLMS by conducting ex-
tensive experiments on 87 benchmark instances. The experimental results show that the proposed
HLMS has better or at least competitive performance against the original MS and some other state-
of-the-art metaheuristic algorithms. In addition, the parameter sensitivity of Baldwinian learning is
analyzed and two important components of HLMS are investigated to understand their impacts on
the performance of the proposed algorithm.

Keywords: combinatorial optimization; multidimensional knapsack problem; metaheuristic;
moth search algorithm; Baldwinian learning; global-best harmony search

MSC: 90C27

1. Introduction

The multidimensional knapsack problem (MKP) [1,2] is a generalization of the
0–1 knapsack problem (0–1 KP) [3]. As a classical combinatorial optimization problem,
numerous real-world applications can be modeled as MKP, such as capital budgeting [4,5],
cutting stock [6], and loading problem [7,8].

Then the MKP is: given a set of n items and a set of m knapsacks (m < n), with
cj = profit of item j, bi = capacity constraint of knapsack i,aij = resource consumption of item
j in the ith knapsack. The goal of MKP is to select a subset of items so that the total profit of
the selected items is a maximum while the total weights in each dimension i (i = 1, 2, . . . , m)
do not exceed the corresponding capacity bi. Formally,

max z =
n
∑

j=1
cjxj (1)
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s.t.
n
∑

j=1
aijxj ≤ bi, ∀i ∈ {1, 2, . . . , m} (2)

xj ∈ {0, 1}, ∀j ∈ {1, 2, . . . , n} (3)

where xj (j = 1, 2, . . . , n) is a 0–1 decision variable, such that xj = 1 if item j is assigned to a
knapsack, xj = 0 otherwise. When m = 1, MKP reduces to the 0–1 KP.

Known as the NP-hard combinatorial optimization problem of MKP, the conventional
exact algorithms usually are unable to obtain a satisfactory solution in a reasonable time,
especially for large-scale instances. It is because that combinatorial optimization problems
often feature a combination of the explosion and then the search space grows exponen-
tially with the expansion of the scale. In this case, metaheuristic algorithms are effective
methods for MKP, which can obtain near-optimal solutions in a reasonable acceptable
time. Representative metaheuristic algorithms for solving MKP include the two-phase
tabu evolutionary algorithm (TPTEA) [9], binary particle swarm optimization (PSO) [10],
quantum particle swarm optimization (QPSO) [11], diversity-preserving quantum particle
swarm optimization (DQPSO*) [12], hybrid estimation of distribution algorithm (EDA) [13],
memetic algorithm (MA) [14], binary grey wolf optimizer (GWO) [15], hybrid harmony
search algorithm (HS) [16], binary multi-verse optimizer (MMVO) [17], cuckoo search
(CS) [18], pigeon-inspired optimization algorithm (PIO) [19], binary moth search algorithm
(MS) [20], sine cosine algorithm (SCA) [21], and binary slime mould algorithm (BSMA) [22].
For more information on evolutionary algorithms (EAs) [23] and exact methods for solving
MKP problem, please refer to [24].

Recently, some novel metaheuristic algorithms have been proposed and used to solve
various optimization problems, including continuous optimization problems and discrete
optimization problems, such as differential evolution algorithm (DE) [25,26], cuckoo search
algorithm (CS) [27], bat algorithm (BA) [28], krill herd (KH) [29,30], elephant herding opti-
mization (EHO) [31], monarch butterfly optimization algorithm (MBO) [32,33], brain storm
optimization algorithm (BSO) [34], fruit fly optimizer (FFO) [35], whale optimization algo-
rithm (WOA) [36], wind driven optimization (WDO) [37], salp swarm algorithm (SSA) [38],
Harris hawks optimization (HHO) [39], artificial Jellyfish Search (JS) optimizer [40], artifi-
cial rabbits optimization (ARO) [41], mountain gazelle optimizer (MGO) [42], moth-flame
optimizer (MFO) [43], and many more.

The moth search (MS) [44,45] algorithm was recently developed by Wang and inspired
by the phototaxis and Lévy flights of moths. Owing to its simplicity and high search
efficiency, MS has been successfully applied to solve various optimization problems, such
as the cloud task scheduling problem [46], drone placement problem [47], constrained opti-
mization problems [48], discounted {0–1} knapsack problem [49], and set-union knapsack
problem [50]. Previous studies have shown that MS is effective for solving various combi-
natorial optimization problems, especially for various variants of KP problems [49,51]. To
the best of our knowledge, there are few literatures on applying MS to solve MKP. Hence,
we concentrated on the MS algorithm for solving MKP.

In recent years, the learning-based metaheuristic algorithms have been extensively
reported in literature because of their effectiveness and efficiency in solving various op-
timization problems. The core idea is that the metaheuristic algorithm combines specific
learning operators or learning mechanisms to enhance itself some learning ability, and then
owning better optimization behavior. There are many learning methods, for example, deep
learning [52,53], reinforcement learning [54–56], transfer learning [57], Q-learning [58], in-
formation feedback [59], orthogonal learning [34], comprehensive learning [60], Baldwinian
learning, and so on.

Inspired by Darwinian evolution, evolutionary computation mainly includes the ran-
dom variation of individuals and fitness selection mechanism [61]. It seems time-consuming
to search randomly for good genotypes without using phenotypes. One of the possible
ways to surmount this deficiency is to integrate the learning mechanism into the evolution-
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ary search. The learning mechanism can provide a more effective search path [62]. Hence,
learning-based mechanisms have been extensive researched and applied in enhancing the
search performances of evolution algorithms [14,31]. The Baldwin effect, sometimes called
Baldwinian learning, was widely incorporated into a variety of evolutionary computing
models to enhance their performance [61,63,64]. The above works motivate us to propose a
Baldwinian learning MS to solve MKP.

Harmony search (HS) [65] is metaheuristic and imitates the musical improvization
process to search for a perfect state of harmony. Since proposed, HS has always attracted
much attention from researchers and has been successfully applied to deal with various
optimization problems. An effective variant of HS, called global-best HS (GHS), was pro-
posed by Omran [66]. Compared with HS and other variants, GHS alleviates the problem
of tuning the parameter bw and can work efficiently on both continuous and discrete
problems. The GHS algorithm, due to its easy implementation and quick convergence, has
been applied to many fields. Xiang et al. [67] proposed a discrete GHS (DGHS) for solving
0–1 KP. Keshtegar et al. [68] proposed a Gaussian GHS (GGHS) algorithm for solving
numerical optimization problems. EI-Abd et al. [69] proposed an improved GHS (IGHS)
algorithm to solve continuous optimization. In essence, musical performances seek to
find pleasing harmony, just like the process of finding the global optimal solution through
continuous learning. Based on this, GHS, as another learning scheme, is integrated into the
MS for a global search.

Aiming at resolving the above issues, we propose a hybrid learning MS (HLMS), by
introducing the Baldwinian learning and GHS learning mechanism. In HLMS, a novel
Baldwin learning strategy based on Cauchy distribution is proposed instead of Gaussian
distribution in [70]. During the evolutionary process, each individual in the whole population
performs GHS learning and Baldwinian learning successively with a certain probability to
reduce the time-consumption. The beneficial combination and complementarity of these two
mechanisms lead HLMS to evolve towards the global optimum. Intuitively, HLMS has better
search performance than the original MS because of the good balance between the exploration
capacity of GHS learning and the exploitation ability of the Baldwinian learning.

The novelty and main contributions of this work include.

• A novel Baldwinian learning strategy based on Cauchy distribution is proposed, the
analysis and experiment of which show this strategy is more effective than the Baldwin
learning strategy based on Gaussian distribution.

• Combined with Baldwin learning, GHS is an effective global search operator to en-
hance the exploration ability of HLMS. Meanwhile, the pitch adjustment process based
on dimensional learning can generate a large jump in the search process.

• To reduce computation costs, the proposed HLMS triggers Baldwin learning and GHS
learning with a certain probability in each iteration.

• Exploration and exploitation are two common and fundamental features of any op-
timization method. In the evolution of HLMS, Lévy flight and GHS learning are
mainly responsible for exploration, whilst flight straightly and Baldwinian mainly
implement exploitation.

The rest of this paper is organized as follows. Section 2 reviews the MS algorithm, the
Baldwinian learning scheme, and the GHS algorithm. In Section 3, the proposed HLMS for
the MKP is introduced in detail. Extensive experiments and comparisons are conducted in
Section 4. Finally, conclusions and suggestions are provided in Section 5.

2. Preliminaries

In this section, we summarize the core idea of MS, Baldwinian learning, and Global-
best HS algorithm, which form the basis of the proposed HLMS framework.

2.1. Moth Search Algorithm

The moth search algorithm (MS) [44] is a new metaheuristic algorithm developed
by Wang and inspired by the phototaxis and Lévy flights of moths. Based on these two



Mathematics 2023, 11, 1811 4 of 28

behaviors, the flight straightly operator and Lévy flight operator of MS are derived, which
can achieve good balance between the exploration capability and exploitation ability. Mean-
while, the whole population is subdivided into two subpopulations (named subpopulation1
and subpopulation2) based on the fitness of moth individuals. To this end, the position
of offspring in subpopulation1 and subpopulation2 is updated by Lévy flight and flight
straightly, respectively.

In the Lévy flight stage, the core mathematical formulation is:

Xt+1
i = Xt

i + αL(s) (4)

α = Smax/t2 (5)

L(s) =
(β− 1)Γ(β− 1) sin

(
π(β−1)

2

)
πsβ

(6)

where Xi
t and Xi

t+1 denote the position vector of the ith moth at generation t and t + 1,
respectively. α is the scale factor and Smax is the max walk step. L(s) represents the step
drawn from Lévy distribition with β = 1.5 and Γ(x) is the gamma function.

In the flight straightly stage, the ith individual in subpopulation2 is considered to fly
in a straight line towards the light source. The mathematical model of the flight straightly
operator is formulated as follows:

Xt+1
i =

 λ× (Xt
i + ϕ× (Xt

best − Xt
i )) i f rand > 0.5

λ× (Xt
i +

1
ϕ × (Xt

best − Xt
i )) else

(7)

where λ is the scale factor, which is used to control the convergence speed of the algorithm
and improve population diversity. λ is set to a random number drawn by the standard
uniform distribution. The acceleration factor ϕ is set to golden ratio (0.618). Xt

best is the
best moth individual at generation t. rand returns a random number that is uniformly
distributed in (0, 1).

The pseudo code of MS is shown in Algorithm 1.

Algorithm 1. Moth search algorithm

Begin
Step 1: Initialization.
Set the maximum iteration number MaxGen and iteration counter G = 1; Initialize the parameters
max walk step Smax, the index β, and acceleration factor ϕ.
According to uniform distribution, the population with NP individuals is randomly initialized.
Step 2: Fitness calculation.
Compute the initial objective function values of each individual according to their position.
Memory the best individual (denotes as Xbest).
Step 3: While (G < MaxGen) do
Divide the whole population into two subpopulations with equal size: subpopulation1 and
subpopulation2, based on their fitness.
Update subpopulation1 by using Lévy flight operator (Equation (4)).
Update subpopulation2 by using flight straightly operator (Equation (7)).
Evaluate the objective function values of each individual and update Xbest.
G = G + 1.
Sort the population by fitness.
Step 4: End while
Step 5: Output: the best results.
End.
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2.2. Baldwin Effect and Baldwinian Learning

The interactive way of learning and evolution was first proposed by Baldwin, known
as the Baldwin effect. Hence, different Baldwinian learning models have been proposed
based on the Baldwin effect. Hinton and Nowlan [62] found that it was difficult to find the
optimal solution of more complex problems only by an evolutionary algorithm. However,
when combined with Baldwinian learning, the performance of the hybrid algorithm can be
effectively improved.

Generally speaking, Baldwinian learning is a type of local search strategy in an evolu-
tionary algorithm. The Baldwinian learning mechanism was first combined with the clonal
selection algorithm (CSA) by Gong et al. [61] to improve the performance of BCSA. Based
on this, Peng et al. [70] proposed four Baldwinian learning strategies inspired by the trial
vector generating strategy of differential evolution (DE).

In evolutionary computation, Cauchy mutation and Gaussian mutation are two pop-
ular and effective mutation techniques [71]. The characteristic of Gaussian mutation is
to speed up the local convergence, and Cauchy mutation is better at escaping from local
optimum. However, compared with Gaussian mutation, Cauchy mutation is insensitive to
mutation step size and can achieve the acceptable performance.

According to the above analysis, the newly designed Baldwinian learning operator based
on Cauchy distribution is proposed in HLMS. The mathematical expression is as follows:

Yi = Xr1 + c · (Xr2 − Xr3) (8)

where Yi is the donor vector for each moth individual Xi from the current population
after applying Baldwinian learning. Xr1, Xr2, and Xr3 are sampled randomly from the
current population and r1, r2, and r3 are mutually exclusive integers randomly chosen
from the range [1, NP], which are also different from the selected individual index i. The
parameter c is the strength of Baldwinian learning and is a random number based on
Cauchy distribution.

2.3. Global-Best HS Algorithm

GHS is a novel variant of HS and inspired by the concept of swarm intelligence of
PSO [66]. The difference from the original HS is that the new harmony can mimic the best
harmony in the harmony memory HM. Meanwhile, the parameter bw in HS is replaced
and a social dimension is added to the GHS. In addition, the GHS dynamically updates the
pitch adjusting rate PAR according to the following equation [72]:

PAR(t) = PARmin +
PARmax − PARmin

NI
× t (9)

where PAR(t) is the pitch adjusting rate for generation t, PARmin is the minimum adjusting
rate, and PARmax is the maximum adjusting rate. NI is the number of improvisations and t
is the generation number.

The procedure of GHS is given in Algorithm 2.

Algorithm 2. The Global-best HS algorithm (GHS)

Begin
For each i ∈ [1, n] do /*n is the dimension of the problem*/
If U(0, 1) ≤ HMCR then /* memory consideration*/
xh

i = xj
i , where j ∼ U(1, . . . , HMS)

If U(0,1) ≤ PAR (t) then /*pitch adjustment*/
xh

i = xbest
k , where best is the best harmony in the HM and k ∼ U(1, n)

Else /*random selection*/
xh

i = LBi + rand∗(UBi − LBi)
End.
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Furthermore, it should be emphasized that, the concept of dimensional learning [73]
is embodied in Algorithm 2, as shown below:

Xh
i = Xbest

k (10)

In Equation (7) of MS, the same dimension j is selected in Xt
best − Xt

i for conducting
the new solution. Under this dimension, if the component value of the ith individual is
similar to the best individual, the difference Xt

best − Xt
i will be very small, especially in the

later stage of evolution. This means that such a step size is not conductive to Xi jumping to
a far position. If the best moth individual is local optimum, the solution hardly escapes
from the local extremum. In Equation (10), the dimension index i of Xh is not equal to the
dimension index k of Xbest. Generally, the difference between two different dimensions is
large. Different dimensions can carry different information.

Based on the above analysis, dimension learning is embedding into Algorithm 2 and
it should be an effective global search operator.

3. The Proposed HLMS for the MKP

The proposed HLMS algorithm for MKP is inspired from the studies [66,70] and
distinguishes itself with two new features. First, GHS as a powerful global search operator
is introduced to enhance the exploration ability of the algorithm. Second, a new Baldwinian
learning strategy by replacing Gaussian distribution with Cauchy distribution is introduced
on HLMS. The proposed algorithm framework and the main components of the MKP
problem are described in the following subsection.

3.1. Population Initialization

In this stage, NP moth individuals are randomly generated in the search space. The
swarm X = {X(1), X(2), . . . , X(NP)} is maintained and evolves, where each moth individual
X(i) is a n-dimensional real-valued vector X(i) = (xi

1, xi
2, . . . , xi

n) with xi
j ∈ {−a, a} ∧

j ∈ {1, 2, . . . , n} and n is the number of objects or items. Here, a takes the value 3 or 5 in
this paper. Then, each moth individual X(i) is transformed into an n-dimensional binary
vector by a mapping method, which is called discrete moth Y(i) = (yi

1, yi
2, . . . , yi

n) with
yi

j ∈ {0, 1} ∧ j ∈ {1, 2, . . . , n}.

3.2. Solution Representation

In HLMS, an n-bit binary string consisting of 0 and 1 is used to represent a candidate
solution. If the item is selected, the bit is 1, otherwise it is 0. It should be noted that the
MKP is a constrained optimization problem, so the solution generated in the evolution
process may be infeasible.

In this paper, a simple and effective transfer function [50] is adopted and the function
expression is as follows:

T(x) = x (11)

The transfer method from a real-valued variable xi to a binary variable yi is calcu-
lated by:

yi =

{
1, i f T(xi) > 0
0, else

(12)

3.3. Quick Repair Operator

Learning from previous research work [10,74], the HLMS algorithm also adopts a
popular quick repair operator based on pseudo-utility which was proposed by Luo et al. [15].
In order to effectively apply the repair operator, the given MKP instance needs to be
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preprocessed. Specifically, all the items are renumbered in an ascending order based on
their scaled pseudo-utility ratios σj [75] defined as follows:

σj =
cj

m
∑

i=1

aij
bi

, ∀j ∈ {1, 2, . . . , n} (13)

More exactly, the index values of all sorted items are stored in array J [1 . . . n], such that
σJ[1] ≥ σJ[2] ≥ . . . ≥ σJ[n]. The vectors (c1, c2, . . . , cn) and ai,j (i = 1, 2, . . . , m, j = 1, 2, . . . , n)
should be adjusted as well. The main framework of the quick repair procedure can be
summarized in Algorithm 3.

Algorithm 3. The quick repair operator base on the scaled pseudo-utility

Begin
Step 1: Input. X = {x1, x2, . . . , xn} ∈ {0, 1}n.
Step 2: Calculation. Calculate the current total consumption of each resource.

ri =
n
∑

j=1
aij
∗ xj, ∀i = 1, 2, . . . , m.

Step 3: Repair process.
For j = n to 1 do
If ri ≤ bi, ∀i = 1, 2, . . . , m then
Break.
else if xJ[j] = 1 then
Set xJ[j]= 0, and ri ← ri − ai J[j], ∀i = 1, 2, . . . , m.
End
End
Step 4: Optimization process.
For j = 1 to n do
If xJ[j] = 0 and ri + ai J[j] ≤ bi, ∀i = 1, 2, . . . , m then
Set xJ[j] = 1 and ri ← ri + ai J[j], ∀i = 1, 2, . . . , m.
End
End
Step 5: Output: X = {x1, x2, . . . , xn} ∈ {0, 1}n.
End.

Obviously, the quick repair operator of Algorithm 3 mainly consists of two phases.
In the first phase, called the repair process, according to the ascending order of the scaled
pseudo-utility ratios, the items are removed from the knapsack one by one until the solution
is feasible. In the second phase, called the optimization process, for all the feasible solutions,
greedily packed the items to be loaded into the knapsack based on the descending order of
the scaled pseudo-utility ratios one by one. In this process, the feasibility of the solution
needs to be maintained all the time. In brief, the first phase makes all the infeasible solutions
become feasible, and the second phase enables the quality of feasible solutions better.

3.4. Procedure of HLMS for MKP

Based on the analysis above, the proposed HLMS algorithm for MKP is outlined
in Algorithm 4. The algorithm framework includes the following main steps. (1) After
initialization, the repaired population is divided into two subpopulations based on the
fitness. (2) Subpopulation1 and subpopulation2 apply the Lévy flight operator and flight
straightly operator, respectively. (3) GHS learning and Baldwinian learning are imple-
mented in sequence to the whole population with a probability of 0.5. (4) The mapping
from the real-valued vector to the binary vector is realized with a transfer function and then
the repair of infeasible solutions and the optimization of feasible solutions are performed.
(5) Evaluating the solution is based on the objective function and then the whole popula-
tion is divided into two subpopulations. Steps (2)–(5) are repeated until the termination
condition is reached.
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Algorithm 4. Procedure of HLMS for MKP

Begin
Step 1: Initialization.
Set the maximum iteration number MaxGen and iteration counter G = 1; Initialize the
parameters max walk step Smax, the index βϕ, strength of Baldwinian learning c.
According to uniform distribution, the population with NP individuals is randomly
initialized.
The transform function is used to discretize the real number vector to obtain the initial
solution X = {x1, x2, . . . , xn} ∈ {0, 1}n.
Repair the initial solution by Algorithm 3.
Step 2: Fitness evaluation.
Evaluate the initial solution using the objective function of MKP.
Step 3: While g < MaxGen do

3.1 Divide the whole population into two subpopulations with equal size: subpopulation1 and
subpopulation2, based on their fitness.

3.2 Update subpopulation1 by Lévy flight operator.
3.3 Update subpopulation2 by flight straightly operator.
3.4 GHS search

If U(0, 1) ≤ 0.5
Apply GHS algorithm on each individual X and generate the trial individual Y.

Choose the best one of X and Y to enter the next generation.
3.5 Baldwinian Learning

If U(0, 1) ≤ 0.5
Apply Baldwinin learning strategy on each individual X and generate the trial individual Y.

Choose the best one of X and Y to enter the next generation.
3.6 Apply transform function to obtain the potential solution of MKP.
3.7 Repair the potential solution by Algorithm 3.
3.8 Evaluate the fitness of the population and record the global best fitness.
G = G + 1.
3.9 Sort the population by fitness.

Step 4: End while
Step 5: Output: the best results.

End.

The algorithm framework is shown in Figure 1.
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3.5. Computational Complexity of One Iteration of HLMS

The computational complexity of one iteration of HLMS based on Algorithm 4 is
described as follows.

(1) The initialization of HLMS requires O(NP× n) time, where NP denotes the population
size, and n is the dimension of MKP (the number of the items).

(2) The discretization process of NP moth individual costs O(NP × n) time.
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(3) The quick repair operator takes O(n × m) time, where m is the constraints of the
MKP instance.

(4) Fitness evaluation has O(NP) time.
(5) Lévy flight operator has O(NP1 × n) time, where NP1 is the number of individuals

of subpopulation1.
(6) Flight straightly operator has O(NP2 × n) time, where NP2 is the number of individu-

als of subpopulation2.
(7) GHS learning requires O(NP × n) time.
(8) Baldwinian learning requires O(NP × n) time.
(9) Sort the population based on Quick sort algorithm and it takes time O(NPlogNP).

In summary, the total computational complexity is O(NP × n) per generation for
fixed m.

4. Experimental Studies

To comprehensively evaluate the performance of the proposed HLMS, large numbers
of experiments are implemented on the benchmark instances commonly used in the litera-
ture and a comparative study is conducted between HLMS and several populations based
on optimization algorithms.

4.1. Benchmark Test Functions

In this paper, four sets of well-known benchmark data for MKP are used to test the
performance of HLMS. These instances are described in [74] and available at OR-Library
(http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html, accessed on 1 July 2021).

Test set I contains 18 small-scale instances with m = 2 to 30 and n = 20 to 105, which
are denoted as Sento [76], HP [77], PB [77], and Weing [4].

Test set II contains 30 medium-scale instances with m = 5 and n = 30 to 90, which are
marked as Weish [7].

Test set III contains 30 large-scale instances. These instances are divided into two
subsets. Subset I includes 15 instances with m = 15 and n ∈ {100, 250, 500}, which are
labeled as cb1, cb2, and cb3, respectively. Subset II also includes 15 instances with m = 15
and n ∈ {100, 250, 500}, which are called as cb4, cb5, and cb6, respectively.

Test set IV contains 9 instances with m {15, 25, 50} and n ∈ {100, 200, 500, 1000, 1500},
which were created by Glover and Kochenberger and then are marked as GK.

4.2. Experimental Environment and Parameters Setting

The proposed HLMS algorithm includes several important parameters, whose values
are empirically set based on the preliminary experiments and the details are recorded in
Table 1.

Table 1. Settings of parameters of HLMS.

Parameters Section Description Values

Smax 2.1 The max step used in Equation (5) 1.0
ϕ 2.1 The acceleration factor used in Equation (7) 0.618

λ 2.1 The scale factor used in Equation (7) a random number of
uniform distribution in [0, 1]

β 2.1 Parameter used in Equation (6) 1.5

c 2.2 The strength of Baldwinian learning A random number based
on Cauchy distribution

PARmax 2.3 Parameter used in Equation (9) 0.99
PARmin 2.3 Parameter used in Equation (9) 0.01
HMCR 2.3 Parameter used in Algorithm 2 0.9

NP 3.4 The population size 50

NFE 3.4 The maximal number of function
evaluation 100,000

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/mknapinfo.html
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The HLMS algorithm was implemented in C language and compiled using the GNU
GCC compiler. All the experiments were carried out on a computer with Intel (R) Core
(TM) i7-7500 CPU (2.90 GHz and 8.00 GB RAM), running the Windows 10 operating system.
HLMS was independently run 30 times for each instance to eliminate the unfairness brought
by the stochastic characteristic.

To comprehensively evaluate the performance of the HLMS algorithm, fourteen MKP
algorithms in the literature are selected as our comparative algorithms, which are listed
as follows.

• Modified binary particle swarm optimization (MBPSO) [78];
• Chaotic binary particle swarm optimization with time-varying acceleration coefficients

(CBPSOTVAC) [79];
• Binary PSO with time-varying acceleration coefficients (BPSOTVAC) [79];
• Modified multi-verse optimization (MMVO) algorithm [17];
• New binary particle swarm optimization with immunity-clonal algorithm (NPSO-

CLA) [80];
• Binary gravitational search algorithm (BGSA) [81];
• Binary hybrid topology particle swarm optimization (BHTPSO) [81];
• Binary hybrid topology particle swarm optimization quadratic interpolation (BHTPSO-

QI) [81];
• New binary particle swarm optimization (NBPSO) [81];
• Binary version of PSO (BPSO) [82];
• Binary version of the Harris hawks algorithm (BHHA) [22,83];
• Binary version of the salp swarm algorithm (BSSA) [84];
• Binary version of the modified whale optimization algorithm (BIWOA) [85];
• Binary version of the sin-cosine algorithm (BSCA) [86].

It should be noted that the results of the comparative algorithms are compiled from the
related papers. If the result of an algorithm for a MKP instance is not available, the result of
the instance is ignored. In addition, considering that different comparative algorithms are
written in different programming languages, or run on different computing platforms based
on different termination conditions and algorithm parameters, we focus on comparing
solution quality.

For this purpose, in this paper, eight typical statistical evaluation criteria are selected
to evaluate the performance of all the comparative algorithms.

• Best value (Best):

Best = max( fi), for ∀i ∈ [1, t] (14)

where fi is the fitness value for ith time. t is the total number of independent experiments.

• Worst value (Worst):

Worst = min( fi), for ∀i ∈ [1, t] (15)

• Mean value (Mean):

Mean =
1
t ∑t

i=1 fi (16)

The mean value characterizes the centralized trend of the values of random variables.
The larger the mean value, the more concentrated the results of multiple runs of the
algorithm will be.

• Standard deviation (Std):

Std =

√
1
t ∑t

i=1 ( fi −mean) (17)

Standard deviation describes the degree of dispersion of random variable values
relative to the mean value. Meanwhile, standard deviation reflects the fluctuation in the
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value of a random variable. In other words, stability is an important evaluation criterion
of a stochastic algorithm. If the Std value is high, the stability of the algorithm is poor,
otherwise, its performance is good.

• Success rate (SR):

SR =
st
t

(18)

where st denotes the success times, that is, the number of the known theoretical optimal
solution is obtained. The high success rate indicates that the algorithm has good stability
and optimization performance.

• Percent deviation (PDev):

PDev =
Opt−Mean

Opt
∗ 100 (19)

where Opt represents the optimal or the best-known solution. PDev reflects the degree
to which the mean value deviates from the known theoretical optimal solution when the
algorithm solves a single instance.

• Average error (AE):

AE =
1
N
∗∑N

i=1
(Opt− pro f it)

Opt
∗ 100 (20)

Average error is an indicator that reflects the general level of error between random
variables and Opt. Here, profit can be Best, Worst, or Mean. N is the number of benchmark
instances. Clearly, the smaller AE value indicates that the algorithm has better performance.
AE indicates the overall performance of the algorithm for solving a set of MKP instances.

• Percentage gap (Gap):

Gap =
Opt− Best

Opt
∗ 100 (21)

Similar to AE, for the maximization problem, the smaller the Gap is, the better the
performance of the algorithm is. Gap investigates the performance of the algorithm to solve
a single MKP instance.

Moreover, to determine whether there are significance differences between HLMS and
other algorithms, the p-value based on the nonparametric Wilcoxon signed ranks test at the
95% confidence level is reported as well. Note that a p-value less than 0.05 represents that
there exists a significant difference between the paired compared results. All the statistical
results have been performed by the statistical software R language.

4.3. Comparisons on the Small-Scale Test Set

The proposed HLMS is first substantiated based on the 18 small-scale instances of
Test set I and the experimental result is listed in Table 2, along with the available results
of the comparative algorithms. In Table 2, the first three columns record the names of
instances, the dimension information (n is the number of items, and m is the number of
knapsacks), and the known optimum results (Opt), respectively. In addition, aggregate
data are recorded at the bottom of the table. #Opt shows the number of the best-known
solution obtained by the corresponding algorithm. #SR and #Std represent the number of
instances for which the corresponding algorithm obtained a better result in terms of SR
and Std among the comparative algorithms. MSR is the mean value of success rate and the
ranks in descending order on the MSR are provided. Besides, the best findings among the
comparison results are indicated in bold.
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Table 2. The results of HLMS with 3 comparative algorithms for Test set I.

Prob. n × m Opt.
MS HLMS MBPSO CBPSOTVAC

SR Std SR Std SR Std SR Std

Sento1 60 × 30 7772 0.17 54.46 0.90 33.73 0.16 43.23 0.39 357.78
Sento2 60 × 30 8722 0.00 27.79 0.47 4.72 0.03 18.80 0.20 101.03

HP1 28 × 4 3418 0.13 23.11 0.40 19.96 0.10 25.52 0.38 10.69
HP2 35 × 4 3186 0.00 26.47 0.40 32.70 0.11 39.15 0.59 21.35
PB1 27 × 4 3090 0.03 30.89 0.43 17.16 0.11 24.32 0.40 10.52
PB2 34 × 4 3186 0.00 19.95 0.70 13.83 0.16 39.31 0.51 18.73
PB4 29 × 2 95,168 0.00 894.68 0.30 1521.73 0.27 1803 0.84 875.1
PB5 20 × 10 2139 0.17 23.88 0.70 21.26 0.08 24.36 0.80 6.83
PB6 40 × 30 776 0.43 24.27 0.80 17.28 0.28 29.12 0.54 40.17
PB7 37 × 30 1035 0.03 3.86 0.50 5.83 0.05 16.29 0.40 24.25

Weing1 28 × 2 14,1278 0.90 214.94 0.93 89.77 0.82 250.43 0.92 281.98
Weing2 28 × 2 130,883 0.30 5731.34 0.97 29.21 0.65 314.08 0.88 545.50
Weing3 28 × 2 95,677 0.13 3767.42 0.80 1996.82 0.11 876.78 0.75 672.42
Weing4 28 × 2 119,337 0.73 1329.64 0.37 711.43 0.76 1270.80 0.97 378.58
Weing5 28 × 2 98,796 0.23 2671.33 1.00 0.00 0.52 1923.5 0.94 572.82
Weing6 28 × 2 130,623 0.23 164.95 0.97 71.20 0.36 322.40 0.97 343.45
Weing7 105 × 2 1,095,445 0.00 482.74 0.00 2872.29 0.02 1130.60 0.00 30,020.00
Weing8 105 × 2 624,319 0.33 1966.37 0.03 1135.87 0.03 4704.30 0.20 75,169.00

#Opt 13 17 18 17
#SR 0 12 1 5
#Std 1 10 0 7
MSR 0.21 0.54 0.26 0.59

Rank of MSR 4 2 3 1
p-value 0.001 0.029 0.001 0.663 0.641 0.896

From Table 2, the proposed HLMS is able to obtain the known optimum solution for
almost all the 18 instances except for Weing7. However, MS can only reach the known
optimum solution for 13 instances. Considering the #SR, HLMS performs much better than
the competing algorithms. In terms of MSR, HLMS is slightly worse than CBPSOTVAC
and ranks two. Moreover, the clear superiority of HLMS is established in comparison with
MS in terms of all evaluation criteria. Therefore, we can conclude that it is beneficial to
use the GHS global search algorithm combined with the Baldwinian learning strategy. In
terms of the p-value of SR, the difference between HLMS and MS, HLMS and MBPSO is
statistically significant (p-value < 0.05). However, there are no significant differences in Std
among the latter two groups (p-value > 0.05).

The related box plots are given in Figure 2 in terms of SR. As can be seen from Figure 2,
the difference of SR among four algorithms is very obvious. Although the distributions of
the SR value of MS and MBPSO are more uniform than that of HLMS and CBPSOTVAC,
the interquartile ranges of the former are worse than that of the latter. Moreover, outliers
exist in MS and MBPSO on the SR value. In addition, we also observe the maximum, upper
quartile, the mean value of HLMS is equal to or close to 1.0, 0.8, and 0.6, respectively.

Based on the above analysis, we can draw a conclusion that HLMS can obtain the
best-known solution of 18 small-scale instances with a high success rate.

4.4. Comparisons on the Medium-Scale Test Set

In the second experiment, HLMS is used to solve medium-scale test instance (Test set II)
to verify the performance of algorithms. The results are reported in Table 3, together with
the results of other six state-of-the-art MKP algorithms, including MS, BIWOA, BMMVO,
BSCA, BHHA, and BSSA. Note that these six algorithms are all novel swarm intelligence
algorithms proposed in recent years and it is meaningful to select them for comparative
study of MKP.
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Table 3. The results of HLMS with 6 comparative algorithms for Test set II.

Prob. n × m Opt. MS HLMS BIWOA BMMVO BSCA BHHA BSSA

Weish01 30 × 5 4554
Best 4554 4554 4554 4554 4554 4554 4554

Worst 4477 4534 4554 4554 4534 4554 4554
PDev 0.38 0.18 0.00 0.00 0.09 0.00 0.00

Weish02 30 × 5 4536
Best 4536 4536 4536 4536 4536 4536 4536

Worst 4440 4504 4536 4536 4536 4536 4536
PDev 0.38 0.02 0.00 0.00 0.00 0.00 0.00

Weish03 30 × 5 4115
Best 4106 4115 4106 4106 4106 4106 4106

Worst 4106 4106 4106 4106 4106 4106 4106
PDev 0.22 0.19 3.97 3.05 0.00 2.24 3.97

Weish04 30 × 5 4561
Best 4561 4561 4561 4561 4561 4561 4561

Worst 4505 4531 4561 4561 4561 4561 4561
PDev 0.37 0.09 0.00 0.00 0.00 0.00 0.00

Weish05 30 × 5 4514
Best 4514 4514 4514 4514 4514 4514 4514

Worst 4514 4514 4514 4514 4514 4514 4514
PDev 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Weish06 40 × 5 5557
Best 5557 5557 5557 5557 5557 5557 5557

Worst 5502 5542 5542 5542 5542 5544 5557
PDev 0.40 0.09 0.12 0.14 0.14 0.02 0.00

Weish07 40 × 5 5567
Best 5567 5567 5567 5567 5567 5567 5567

Worst 5360 5542 5567 5567 5567 5567 5567
PDev 0.53 0.03 0.00 0.00 0.00 0.00 0.00

Weish08 40 × 5 5605
Best 5605 5605 5605 5605 5605 5605 5605

Worst 5478 5603 5605 5603 5603 5605 5605
PDev 0.30 0.01 0.00 0.03 0.01 0.00 0.00

Weish09 40 × 5 5246
Best 5246 5246 5246 5246 5246 5246 5246

Worst 5185 5246 5246 5246 5246 5246 5246
PDev 0.08 0.00 0.00 0.00 0.00 0.00 0.00

Weish10 50 × 5 6339
Best 6339 6339 6323 6303 6303 6303 6303

Worst 6255 6280 6303 6303 6303 6303 6303
PDev 0.55 0.04 0.31 0.56 0.56 0.56 0.56

Weish11 50 × 5 5643
Best 5643 5643 5643 5643 5643 5643 5643

Worst 5592 5643 5643 5643 5643 5643 5643
PDev 0.03 0.00 0.00 0.00 0.00 0.00 0.00

Weish12 50 × 5 6339
Best 6339 6339 6302 6301 6302 6302 6302

Worst 6090 6304 6302 6301 6301 6301 6301
PDev 0.94 0.07 0.58 0.59 0.59 0.59 0.59

Weish13 50 × 5 6159
Best 6159 6159 6159 6159 6159 6159 6159

Worst 6025 6025 6159 6159 6159 6159 6159
PDev 0.98 0.23 0.00 0.00 0.00 0.00 0.00
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Table 3. Cont.

Prob. n × m Opt. MS HLMS BIWOA BMMVO BSCA BHHA BSSA

Weish14 60 × 5 6954 Best 6954 6954 6923 6923 6923 6923 6923
Worst 6769 6902 6900 6900 6900 6923 6923
PDev 0.80 0.28 0.71 0.57 0.66 0.44 0.44

Weish15 60 × 5 7486 Best 7486 7486 7486 7486 7486 7486 7486
Worst 7199 7442 7453 7449 7486 7486 7486
PDev 0.84 0.08 0.08 0.11 0.00 0.00 0.00

Weish16 60 × 5 7289 Best 7289 7289 7289 7289 7289 7289 7289
Worst 6942 7221 7288 7281 7281 7281 7281
PDev 0.96 0.14 0.01 0.10 0.09 0.10 0.10

Weish17 60 × 5 8633 Best 8633 8633 8633 8624 8633 8633 8633
Worst 8141 8633 8575 8497 8506 8633 8633
PDev 0.31 0.00 0.39 0.96 0.42 0.00 0.00

Weish18 70 × 5 9580 Best 9540 9580 9560 9456 9573 9580 9573
Worst 8857 9525 9461 9318 9451 9521 9527
PDev 1.42 0.11 0.65 1.92 0.62 0.27 0.17

Weish19 70 × 5 7698 Best 7698 7698 7698 7698 7698 7698 7698
Worst 7448 7674 7632 7629 7698 7698 7698
PDev 0.85 0.01 0.38 0.35 0.00 0.00 0.00

Weish20 70 × 5 9450 Best 9450 9450 9450 9445 9450 9450 9450
Worst 9306 9408 9400 9365 9433 9445 9450
PDev 0.49 0.03 0.23 0.57 0.02 0.01 0.00

Weish21 70 × 5 9074 Best 9074 9074 9074 9074 9074 9074 9074
Worst 8922 9008 9016 8969 9033 9074 9074
PDev 0.44 0.05 0.19 0.64 0.03 0.00 0.00

Weish22 80 × 5 8947 Best 8790 8929 8909 8886 8909 8912 8912
Worst 7904 8708 8908 8886 8886 8909 8912
PDev 5.51 0.58 0.43 0.68 0.63 0.39 0.39

Weish23 80 × 5 8344 Best 8170 8344 8303 8250 8344 8344 8344
Worst 7246 8154 8245 8233 8245 8250 8303
PDev 5.74 0.85 0.66 1.16 0.89 0.71 0.26

Weish24 80 × 5 10,220 Best 10,189 10,220 10,189 10,058 10,215 10,202 10,220
Worst 9807 10,091 10,053 9787 10,042 10,134 10,132
PDev 1.70 0.16 1.23 3.14 0.86 0.57 0.48

Weish25 80 × 5 9939 Best 9922 9939 9885 9844 9939 9939 9939
Worst 9703 9885 9808 9710 9885 9915 9915
PDev 1.02 0.03 0.94 1.63 0.20 0.21 0.11

Weish26 90 × 5 9584 Best 9581 9584 9575 9575 9575 9575 9575
Worst 8904 9514 9477 9439 9476 9488 9575
PDev 1.66 0.19 0.69 1.17 0.92 0.24 0.09

Weish27 90 × 5 9819 Best 9764 9819 9778 9589 9764 9764 9764
Worst 9319 9764 9773 9487 9631 9678 9764
PDev 2.09 0.50 0.45 2.53 0.88 0.61 0.56

Weish28 90 × 5 9492 Best 9492 9492 9454 9400 9454 9454 9454
Worst 9034 9438 9411 9183 9400 9400 9400
PDev 1.54 0.19 0.49 1.70 0.78 0.62 0.45

Weish29 90 × 5 9410 Best 9369 9410 9369 9369 9369 9369 9369
Worst 8927 9369 9369 9135 9369 9369 9369
PDev 1.45 0.40 0.43 1.75 0.43 0.43 0.43

Weish30 90 × 5 11,191 Best 11,148 11,187 11,121 11,025 11,169 11,169 11,169
Worst 10,808 11,155 10,979 10,790 10,948 11,135 11,154
PDev 1.44 0.08 1.23 2.49 0.61 0.27 0.20

#Opt 20 27 16 14 18 19 19
#Worst 2 9 12 10 12 18 23

The mean of PDev 1.11 0.15 0.47 0.86 0.31 0.28 0.29
p-value (PDev) 0.000 0.011 0.000 0.033 0.328 0.848

From Table 3, the results demonstrate that HLMS reaches the optimum solutions on
27 out of 30 instances, while the six comparative algorithms obtain the optimum solutions
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only on 20, 16, 14, 18, 19, and 19, respectively. In terms of #Worst, BSSA outperforms the
other six algorithms on 23 instances. PDev measures the deviation between the mean and
the best-known solution. The small mean value of PDev also confirms the superiority of
HLMS. Comprehensively speaking, MS has the worst performance among all the compara-
tive algorithms. Moreover, there are significant differences (p-value < 0.05) between the
comparisons of the first four groups concerning PDev.

Figure 3 presents the box plots of the PDev values for all the comparative algorithms.
The span of each box implicitly reflects the stability of the algorithm. The smaller the span
is, the better the stability of the algorithm is. As can be seen from Figure 3, HLMS has a
significant advantage over the other six algorithms since the span of the box for HLMS is
obviously smaller than that of the other comparative algorithms. It should be noted that
the dot in Figure 3. represent outliers.
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In summary, the results in Table 3 and Figure 3 indicate that our HLMS algorithm is
very competitive compared to the other six MKP algorithms. The findings are based on
the fact that the GHS learning scheme enhances the global search ability of HLMS. On this
basis, Baldwinian learning can effectively adjust the shape of search space and thereby
provides good search paths towards the best solutions.

4.5. Comparisons on the Large-Scale Test Set

In the third experiment, the performance of HLMS is verified by solving large-scale
problems, and the comparative results on Test set III and Test set IV are reported in
Tables 4 and 5. In order to make a fair comparison with different classical algorithms using
appropriate evaluation criteria, the experiment is divided into three groups on different
scale instances.

4.5.1. Performance Comparison on Test Set III (cb1–cb3)

Table 4 summarizes the experimental results of the first group large-scale benchmarks.
From Table 4, it can be seen clearly that the proposed HLMS still keeps the best performance
in terms of all six evaluation criteria. Specifically speaking, HLMS outperforms the other
comparative algorithms. In addition, the p-value indicates that there is significant difference
between HLMS and MS, BGSA, BHTPSO, and BHTPSO-QI in terms of mean. However,
the p-value is 0.201 for MMVO (p-value > 0.05) and then reject the null hypothesis. Hence,
insignificant difference can be detected between HLMS and MMVO.
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Table 4. The results of HLMS with 5 comparative algorithms for Test set III (cb1-cb3).

Prob. n × m Opt. Profit MS HLMS MMVO BGSA BHTPSO BHTPSO-QI

cb1-1
100 × 5 24,381 Best 24,253 24,381 24,192 24,152 24,169 24,301

Mean 24,004 24,301 24,050 23,835 23,822 23,821
Worst 23,311 24,238 23,920 23,175 23,415 23,287

cb1-2
100 × 5 24,274 Best 24,258 24,274 24,274 23,986 24,109 23,944

Mean 23,934 24,231 24,274 23,536 23,657 23,688
Worst 23,366 24,116 24,274 23,177 22,953 23,375

cb1-3
100 × 5 23,551 Best 23,538 23,551 23,538 23,386 23,435 23,418

Mean 23,272 23,521 23,520 23,041 23,072 23,073
Worst 22,953 23,468 23,494 22,543 22,678 22,621

cb1-4
100 × 5 23,534 Best 23,256 23,503 23,288 23,172 23,253 23,192

Mean 23,024 23,420 23,120 22,863 22,928 22,923
Worst 22,542 23,288 23,042 22,468 22,507 22,234

cb1-5
100 × 5 23,991 Best 23,845 23,966 23,947 23,755 23,815 23,774

Mean 23,567 23,937 23,900 23,459 23,473 23,527
Worst 23,062 23,836 23,799 23,106 23,155 23,053

cb2-1
250 × 5 59,312 Best 58,084 59,063 58,473 57,565 57,814 57,800

Mean 57,369 58,862 58,240 56,554 56,874 56,685
Worst 55,984 58,653 58,112 55,191 54,935 55,255

cb2-2
250 × 5 61,472 Best 60,248 61,295 60,692 60,057 59,982 59,767

Mean 59,386 61,051 60,390 58,613 58,588 58,680
Worst 58,167 60,870 60,194 57,707 56,807 56,821

cb2-3
250 × 5 62,130 Best 61,212 61,767 61,702 59,936 60,630 60,524

Mean 59,922 61,552 61,330 58,975 59,234 59,186
Worst 57,885 61,303 61,158 57,723 57,435 57,278

cb2-4
250 × 5 59,463 Best 58,386 59,140 58,441 57,970 57,736 57,884

Mean 57,752 58,922 58,300 56,744 56,773 56,584
Worst 56,763 58,710 58,163 55,371 55,589 55,164

cb2-5
250 × 5 58,951 Best 57,755 58,605 58,082 56,959 57,378 57,550

Mean 56,929 58,390 58,300 55,961 56,129 56,361
Worst 56,326 58,088 58,163 54,637 54,364 53,929

cb3-1
500 × 5 120,148 Best 116,296 119,101 119,978 111,206 114,493 114,438

Mean 115,444 118,457 119,900 108,930 111,017 111,469
Worst 114,634 117,842 119,810 106,951 106,454 107,005

cb3-2
500 × 5 117,879 Best 113,732 116,227 115,634 108,522 112,821 112,147

Mean 112,257 115,704 115,400 106,631 109,276 109,247
Worst 111,381 115,053 115,222 104,519 100,118 104,696

cb3-3
500 × 5 121,131 Best 117,666 119,990 119,156 111,271 114,774 116,099

Mean 116,367 119,468 118,900 109,430 112,035 112,001
Worst 115,160 119,054 118,651 107,683 106,406 104,627

cb3-4
500 × 5 120,804 Best 116,454 119,015 119,124 111,283 115,828 114,327

Mean 115,396 118,386 118,900 109,062 112,200 111,671
Worst 114,100 117,572 118,623 107,061 106,222 107,578

cb3-5
500 × 5 122,319 Best 117,900 120,918 121,141 112,391 115,889 117,242

Mean 116,767 120,278 120,800 110,564 112,253 113,364
Worst 115,062 119,519 120,401 108,670 102,820 103,910

#Best 0 12 4 0 0 0
#Mean 0 11 4 0 0 0
#Worst 0 8 7 0 0 0

AE of Best 1.91% 0.57% 0.98% 3.97% 2.70% 2.72%
AE of Mean 3.08% 0.92% 1.23% 5.63% 4.81% 4.75%
AE of Worst 4.81% 1.36% 1.48% 7.49% 8.29% 8.09%

Rank of AE of Best 3 1 2 6 4 5
p-value (Mean) 0.000 0.201 0.000 0.000 0.000
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Table 5. The results of HLMS with 5 comparative algorithms for Test set III (cb4–cb5).

Prob. n × m Opt. Profit MS HLMS BGSA BHTPSO BHTPSO-QI

cb4-1
100 × 10 23,064 Best 22,753 23,055 22,836 22,905 22,876

Mean 22,459 22,914 22,334 22,425 22,449
Worst 22,080 22,753 21,975 21,980 21,999

cb4-2
100 × 10 22,801 Best 22,611 22,743 22,441 22,573 22,408

Mean 22,255 22,629 21,991 22,047 22,017
Worst 21,622 22,407 21,435 21,322 21,454

cb4-3
100 × 10 22,131 Best 21,886 22,131 21,849 21,797 21,949

Mean 21,466 21,908 21,313 21,342 21,461
Worst 20,841 21,855 20,957 20,958 20,886

cb4-4
100 × 10 22,772 Best 22,319 22,717 22,325 22,418 22,376

Mean 21,992 22,528 21,961 22,037 22,029
Worst 21,465 22,016 21,488 21,228 21,533

cb4-5
100 × 10 22,751 Best 22,440 22,751 22,168 22,215 22,254

Mean 22,132 22,603 21,840 21,822 21,903
Worst 21,738 22,272 21,271 21,362 21,339

cb5-1
250 × 10 59,187 Best 57,757 58,903 56,928 57,530 57,036

Mean 56,708 58,477 55,759 55,854 55,960
Worst 55,510 58,182 54,217 53,570 53,381

cb5-2
250 × 10 58,781 Best 57,363 58,346 56,337 56,568 56,490

Mean 56,793 58,098 55,455 55,443 55,708
Worst 56,126 57,792 53,739 53,274 52,907

cb5-3
250 × 10 58,097 Best 56,690 57,674 55,573 56,426 55,982

Mean 56,024 57,417 54,638 54,793 54,727
Worst 55,281 57,044 53,516 52,871 52,714

cb5-4
250 × 10 61,000 Best 59,930 60,505 58,595 59,030 59,077

Mean 58,934 60,282 57,766 58,057 57,721
Worst 57,765 59,870 56,701 56,254 53,774

cb5-5
250 × 10 58,092 Best 56,863 57,468 56,186 56,217 56,204

Mean 56,066 57,220 54,850 54,941 54,872
Worst 55,182 56,869 53,612 51,850 50,832

cb6-1
500 × 10 117,821 Best 113,362 116,015 108,487 110,996 111,669

Mean 112,541 115,379 105,760 107,698 108,367
Worst 111,397 114,509 102,725 104,239 103,802

cb6-2
500 × 10 119,249 Best 115,022 117,778 109,569 114,262 113,001

Mean 114,250 117,102 106,775 108,648 109,197
Worst 112,596 116,418 103,478 100,740 100,764

cb6-3
500 × 10 119,215 Best 115,419 117,345 109,705 113,987 112,419

Mean 114,372 116,842 106,853 108,576 109,004
Worst 113,495 116,115 104,565 102,439 103,703

cb6-4
500 × 10 118,829 Best 115,038 117,281 108,628 112,476 112,198

Mean 113,444 116,446 105,679 107,692 107,796
Worst 112,405 115,872 102,679 101,860 99,470

cb6-5
500 × 10 116,530 Best 112,971 114,909 106,972 109,567 109,287

Mean 111,707 114,183 104,509 106,217 106,212
Worst 110,156 113,533 102,665 100,836 100,509

#Best 0 15 0 0 0
#Mean 0 15 0 0 0
#Worst 0 14 0 0 0

AE of Best 2.30% 0.76% 4.58% 3.25% 3.52%
AE of Mean 3.57% 1.33% 6.58% 5.92% 5.78%
AE of Worst 5.20% 2.12% 8.77% 9.64% 10.11%

Rank of AE of Best 2 1 5 3 4
p-value (Mean) 0.000 0.000 0.000 0.000
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The performance comparison of six methods based on AE is plotted in Figure 4. It is
evident that the axis of HLMS on radar charts has a point nearer to the center in comparison
with the other five algorithms when considering AE of Best, AE of Mean, and AE of Worst,
which indicates that it is more effective with respect to quality of solutions. It can be
considered that HLMS obtained optimal or near-optimal for most of the instances in terms
of Best, Mean, and Worst, and could beat all the other competing algorithms.
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Figure 4. The performance comparison of 6 methods based on AE for Test set III (cb1–cb3).

To observe the stability of MS and HLMS more intuitively, the error bar based on
variance and the trends plot based on Std are shown in Figures 5 and 6, respectively. It can
be observed clearly from Figure 5 that the variances of HLMS are apparently smaller than
that of MS for all benchmarks. Moreover, the variances will increase with the growth of
the scale of instances. It is clear from Figure 6 that the trend lines of HLMS are located in
the relatively low area for ten instances of cb1 and cb2. However, the curve of cb3 has an
upward trend. In brief, the curve of MS is higher than that of HLMS, which indicates that
HLMS has more stable performance than MS.
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4.5.2. Performance Comparison on Test Set III (cb4–cb6)

Table 5 summarizes the experimental results of the second group large-scale bench-
marks. Table 5 shows that HLMS is also very efficient for 15 large instances with m = 10.
Moreover, HLMS is superior to other five algorithms in absolute advantage, which is
confirmed by the small p-values (0.000 ≤ 0.05).

Similarly, radar charts are plotted to visualize three evaluation criteria, AE of Best,
AE of Mean, and AE of Worst in Figure 7. From Figure 7, the phenomenon is almost
consistent with Figure 4. The point on the HLMS axis is very close to the center point. By
implication, HLMS has smaller AE value compared with other algorithms.
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The error bar based on variance for HLMS and MS is illustrated in Figure 8, which is
to assess the stability of algorithms. As can be seen from Figure 8, the variance of HLMS
is almost unaffected by the scale of MKP. However, with the expansion of the scale, the
variance of MS is increasing gradually.
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The trend plot of Std for HLMS and MS is given in Figure 9. It can be seen from
Figure 9 that the trend curve of MS is significantly higher than that of HLMS, which further
indicates that HLMS has better stability than MS.

4.5.3. Performance Comparison on Test Set IV

Table 6 summarizes the experimental results of the third group large-scale benchmarks.
Overall, HLMS still outperforms all other comparative algorithms. In terms of #Best, #Worst,
and #Mean, HLMS obtains a better result respectively on 5, 1, and 3 out of 9 instances.
The results of BIWOA are respectively on 2, 2, and 2 out of 9 instances. BSSA with better
performance obtains 2, 6, and 5 out of 9 instances, respectively. For the significance, the
p-values for BMMVO and BSCA are both smaller than 0.05 concerned with Mean, except
for MS, BIWOA, BHHA, and BSSA, which indicates that the difference between HLMS and
most comparative algorithms is not significant when facing Test set IV.
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Table 6. The results of HLMS with 6 comparative algorithms for Test set IV.

Prob. n × m Opt. MS HLMS BIWOA BMMVO BSCA BHHA BSSA

GK01 100 × 15 3766
Best 3732 3752 3743 3698 3725 3746 3744

Worst 3714 3722 3731 3666 3690 3728 3738
Mean 3721 3742 3736 3678 3705 3734 3742

GK02 100 × 25 3958
Best 3920 3948 3949 3885 3913 3929 3939

Worst 3900 3928 3924 3859 3883 3915 3924
Mean 3908 3938 3931 3871 3897 3919 3934

GK03 150 × 25 5656
Best 5585 5610 5613 5561 5563 5580 5606

Worst 5545 5575 5584 5507 5533 5554 5594
Mean 5564 5596 5596 5519 5543 5568 5598

GK04 150 × 50 5767
Best 5702 5733 5712 5651 5678 5695 5712

Worst 5677 5658 5690 5628 5652 5672 5696
Mean 5688 5710 5701 5638 5664 5683 5704

GK05 200 × 25 7561
Best 7479 7502 7499 7365 7411 7463 7495

Worst 7422 7413 7476 7344 7375 7426 7477
Mean 7452 7474 7485 7353 7391 7443 7488

GK06 200 × 50 7680
Best 7617 7611 7607 7522 7551 7578 7617

Worst 7561 7568 7584 7492 7520 7562 7598
Mean 7591 7592 7597 7505 7532 7569 7611

GK07 500 × 25 19,220
Best 19,066 19,151 19,110 18,738 18,783 19,005 19,100

Worst 19,005 18,890 19,093 18,635 18,689 18,961 19,048
Mean 19,033 19,067 19,102 18,668 18,734 18,983 19,087

GK08 500 × 50 18,806
Best 18,612 18,642 18,641 18,385 18,462 18,601 18,646

Worst 18,557 18,498 18,607 18,335 18,395 18,597 18,637
Mean 18,582 18,594 18,627 18,361 18,428 18,598 18,640

GK09 1500 ×
25

58,087
Best 57,753 57,886 57,868 56,746 56,932 57,547 57,346

Worst 57,636 56,725 57,830 56,519 56,624 56,699 56,615
Mean 57,676 57,547 57,843 56,619 56,719 57,719 56,959

#Best 1 5 2 0 0 0 2
#Worst 0 1 2 0 0 0 6
#Mean 0 3 2 0 0 0 5

AE of Best 0.11% 0.07% 0.08% 0.24% 0.19% 0.12% 0.09%
AE of Mean 0.16% 0.18% 0.11% 0.29% 0.27% 0.17% 0.13%
AE of Worst 0.13% 0.10% 0.10% 0.27% 0.22% 0.13% 0.11%

Rank on AE of Best 4 1 2 7 6 5 3
p-value (Mean) 0.327 0.172 0.001 0.001 0.069 0.327

Graphically, Figure 10 shows the AE of Best, AE of Mean, and AE of Worst obtained
by seven methods. In terms of Best, HLMS outperforms the other comparative algorithms
in absolute small AE value. However, HLMS is slightly worse than BIWOA in terms of
AE of Mean.
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In summary, the above experimental results and comparisons show that the proposed
HLMS also has excellent optimization performance in solving large-scale MKP instances,
in terms of solution quality, convergence, and stability of algorithms. This is mainly due
to GHS learning and Baldwinian learning being able to effectively balance exploration
and exploitation in the evolution process. Compared with the original MS, the hybrid
learning strategy focuses more on discovering and utilizing useful information from the
whole population and whole search experience, rather than the experience of some random
local individuals.

4.6. Sensitivity Analysis on the Positional Parameter and the Scale Parameter

As is known to all, Gaussian distribution and Cauchy distribution are two important
distributions, which have been integrated into many algorithms and proved an effective
strategy to enhance the ability of an elaborate search. The strength of Baldwinian learning
in [47] is random real number obeying Gaussian distribution. However, previous studies
have revealed that Cauchy mutation possesses more power in escaping local optima and
converging to the global optimum. Hence, the parameters used in [47] for Gaussian distri-
bution and the positional parameter x and the scale parameter y for Cauchy distribution
are investigated in this subsection. It is noted that, to eliminate the influence of GHS, HLMS
only adopted the Baldwinian learning strategy in this experiment. We tested HLMS for
Gaussian distribution and different combinations for (x, y) of Cauchy distribution: (0, 1),
(0, 0.5), (0, 2), and (−2, 1). Table 7 summaries the Mean and SR for 18 instances of Test set I.
In addition, boxplot for five parameter combinations on SR is plotted in Figure 11.

From Table 7, all HLMS with four different combinations of x and y find better results
than that of HLMS combined with Gaussian distribution. In terms of #Mean, #SR, and MSR,
HLMS with four groups (x, y) shows similar results. It can be observed from Figure 11 that
HLMS-C2 shows excellent comprehensive performance. HLMS-C2 has the best maximum
and three-quarter quantile. Hence, considering all of the parameter combinations, we
concluded that the setting x = 0 and y = 0.5 for the HLMS is an appropriate choice.

We can draw a conclusion from this experiment that it is better to use a random
real obeying Cauchy distribution than Gaussian distribution as the Baldwinian learning
strength. The reason may be that Cauchy mutation has stronger ability to jump from local
optimum than Gaussian mutation.

4.7. The Effectiveness of the Two Components in HLMS

As mentioned above, HLMS includes two learning strategies: Baldwinian learning
strategy and GHS learning strategy. The aim of this subsection is to investigate the effective-
ness of these two learning strategies. Therefore, one additional experiment is conducted
on Test set I and the results are summarized in Table 8. HLMS, which only adopted the
Baldwinian learning strategy, is denoted as HLMS-B. HLMS, which only adopted the GHS
learning strategy, is denoted as HLMS-H.
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Table 7. The results of HLMS using different parameters of two distributions for Test set I.

Prob. µ=0.5, δ=0.3 x = 0, y = 1 x = 0, y = 0.5 x = 0, y = 2 x = −2, y = 1

Sento1
Mean 7729 7740 7749 7753 7749

SR 0.43 0.67 0.63 0.67 0.60

Sento2
Mean 8701 8713 8708 8712 8713

SR 0.13 0.33 0.10 0.07 0.27

HP1
Mean 3391 3376 3371 3385 3367

SR 0.43 0.20 0.03 0.07 0.10

HP2
Mean 3115 3125 3124 3135 3119

SR 0.10 0.03 0.07 0.00 0.00

PB1
Mean 3045 3058 3060 3057 3055

SR 0.13 0.13 0.33 0.17 0.20

PB2
Mean 3145 3145 3142 3148 3145

SR 0.07 0.13 0.10 0.10 0.10

PB4
Mean 92,093 92,664 92,808 93,229 92,457

SR 0.00 0.10 0.07 0.03 0.03

PB5
Mean 2098 2118 2112 2115 2106

SR 0.17 0.50 0.47 0.57 0.37

PB6
Mean 753 757 757 756 758

SR 0.43 0.53 0.53 0.53 0.53

PB7
Mean 1024 1026 1025 1025 1026

SR 0.10 0.13 0.13 0.07 0.13

Weing1 Mean 139,551 139,615 139,397 140,199 138,803
SR 0.33 0.07 0.23 0.20 0.13

Weing2 Mean 130,307 130,370 126,292 129,613 129,989
SR 0.27 0.40 0.23 0.20 0.60

Weing3 Mean 92,362 94,546 93,373 93,033 94,489
SR 0.27 0.50 0.50 0.30 0.60

Weing4 Mean 118,384 117,864 117,199 117,489 117,544
SR 0.23 0.20 0.13 0.03 0.13

Weing5 Mean 96,465 95,421 97,209 95,372 94,898
SR 0.43 0.33 0.67 0.40 0.37

Weing6 Mean 129,533 128,954 129,753 129,983 129,732
SR 0.37 0.17 0.40 0.37 0.47

Weing7 Mean 1,048,378 1,038,366 1,043,595 1,035,059 1,035,752
SR 0.00 0.00 0.00 0.00 0.00

Weing8 Mean 622,201 621,720 622,515 621,778 622,127
SR 0.00 0.00 0.03 0.03 0.00

#Mean 2 5 3 6 3
#SR 5 7 6 5 6
MSR 0.22 0.25 0.26 0.21 0.26

p-value
(Mean) 1.000 0.556 0.727 0.635

As can be seen from Table 8, compared with HLMS-B, HLMS-H, and HLMS, MS
shows the worst performance in terms of #Mean, #SR, and MSR. The results further reveal
that two learning strategies are effective in the search process. Additionally, it is noted that
HLMS-B shows similar performance with MS while the performance difference between
HLMS-H and MS is significant. However, the performance of HLMS integrated with two
learning strategies is obviously better than that of any one.

Moreover, the convergence graphs of the average objective function values obtained
by four algorithms are plotted in Figures 12 and 13 for four representative instances: Sento1,
Sento2, Weing7, and Weing8. As seen from Figures 12 and 13, MS has the slowest conver-
gence speed, while HLMS-H and HLMS have similar convergence speed and converge
both faster than MS and HLMS-B.
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Table 8. Comparisons of MS, HLMS-B, HLMS-H, and HLMS on Test set I.

Prob. MS HLMS-B HLMS-H HLMS

Sento1
Mean 7677 7749 7763 7762

SR 0.17 0.63 0.87 0.90

Sento2
Mean 8695 8708 8717 8719

SR 0.00 0.10 0.53 0.47

HP1
Mean 3370 3371 3392 3399

SR 0.13 0.03 0.37 0.40

HP2
Mean 3098 3124 3135 3158

SR 0.00 0.07 0.30 0.40

PB1
Mean 3036 3060 3075 3074

SR 0.03 0.33 0.50 0.43

PB2
Mean 3139 3142 3172 3178

SR 0.00 0.10 0.60 0.70

PB4
Mean 92,312 92,808 93,111 93,063

SR 0.00 0.07 0.17 0.30

PB5
Mean 2091 2112 2117 2125

SR 0.17 0.47 0.57 0.70

PB6
Mean 751 757 767 768

SR 0.43 0.53 0.83 0.80

PB7
Mean 1023 1025 1028 1030

SR 0.03 0.13 0.20 0.50

Weing1 Mean 141,207 139,397 141,227 141,260
SR 0.90 0.23 0.83 0.93

Weing2 Mean 130,760 126,292 130,877 130,877
SR 0.30 0.23 0.97 0.97

Weing3 Mean 90,866 93,373 95,355 94,801
SR 0.13 0.50 0.83 0.80

Weing4 Mean 116,487 117,199 118,883 118,956
SR 0.73 0.13 0.50 0.37

Weing5 Mean 95,802 97,209 98,384 98,796
SR 0.23 0.67 0.87 1.00

Weing6 Mean 129,176 129,753 130,429 130,610
SR 0.23 0.40 0.63 0.97

Weing7 Mean 1,069,121 1,043,595 1,073,467 1,073,783
SR 0.00 0.00 0.00 0.00

Weing8 Mean 620,483 622,515 622,905 622,775
SR 0.33 0.03 0.00 0.03

#Mean 0 0 6 13
#SR 1 2 7 13
MSR 0.21 0.26 0.53 0.54

p-value 0.0003 0.0003 0.155
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In summary, we can draw a conclusion that the above two learning strategies can
realize complementary advantages to enhance the performance of MS. Indeed, only using
Baldwinian learning is not sufficient for exploitation. The conclusion is that the ben-
eficial combination of the two strategies is significant for improving the performance
of the algorithm.

4.8. Discussion

Comparison results demonstrate that the Baldwinian learning and GHS learning
strategies can really improve the performance of HLMS, thereby making it better than the
original MS and most other comparative algorithms on the majority of MKP instances, in
terms of solution accuracy, convergence speed, and algorithm stability. The advantage of
HLMS mainly lies in that GHS is used to guide the global search and dimensional learning
can achieve a large jump to help solutions escape local extremum. The other reason is
that Baldwinian learning as a local search strategy has the effect of changing the fitness
landscape. This interaction between learning and evolution is very beneficial. Accordingly,
both Baldwinian learning and GHS learning are more efficient and effective than MS alone.

In fact, based on the previous experimental results, we can find that considering
small-scale MKP instances, medium-sized MKP instances, and large-scale MKP instances,
the HLMS algorithm combining Baldwinian learning and GHS learning is an effective
algorithm for solving MKP problems. Besides that, balancing exploration and exploitation
is an important factor in metaheuristic algorithms by maintaining adequate diversity in
swarm individuals so that reducing the probability of trapping in local optimal locations.
In HLMS, GHS learning and Baldwinian learning respectively play the roles of exploration
and exploitation, making the optimization performance of the algorithm better.
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5. Conclusions and Future Work

This paper proposed a hybrid learning moth search algorithm (HLMS) inspired by
the idea that the learning strategy could direct the evolutionary process. The framework
proposed in this work includes two learning strategies: Baldwinian learning and GHS
learning. In the search process, the two learning strategies play the role of local exploitation
and global exploration, respectively.

HLMS is verified by solving the NP-hard 0–1 multidimensional knapsack problems.
The experimental results on the 87 instances commonly used in literature showed that
HLMS performs competitively in comparison with MS and other state-of-the-art meta-
heuristics algorithms. Sensitivity analysis of Gaussian distribution and Cauchy distribution
on Baldwinian learning is provided. The results proved that Cauchy mutation is more
effective than Gaussian mutation as learning length. The effectiveness of two important
learning strategies of HLMS is investigated. The results demonstrated that Baldwinian
learning and GHS learning both play a major role in improving the performance of HLMS.
MS with two learning strategies surpasses MS and MS with a single strategy. It confirms
the effectiveness of our proposed learning strategies.

Future research on MS can be divided into two main directions: research on more
real-world applications and research on improvements of the algorithms. Concerning the
application of MS, it has the potential to solve more combinatorial optimization problems,
such as maximum diversity problems (MDP), multi-objective knapsack problems (MOKP),
and multi-demand multidimensional knapsack problems (MDMKP). In terms of the im-
provements of algorithms, more effective learning based on strategies can be adopted to
enhance the search ability of the algorithm, such as orthogonal learning, reinforcement
learning, and adaptive learning.
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