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Abstract: Since third-party logistics (3PL) offers discounted prices for booking containers in advance,
the container booking decisions are preferably made prior to the realization of customer demand by
the companies with international trade business. When facing uncertain customer demand influenced
by various factors, it is significant for companies to make proper container booking decisions and
order fulfillment plans to minimize the total cost, including the container booking cost and the
penalty cost of an unfulfilled order. In this paper, a two-stage robust liner container booking problem
(2-RLCBP) was investigated, and an exact algorithm with high efficiency was designed to solve the
problem based on the column-and-constraint generation (C&CG) framework. Compared to other
methods with gaps of more than 70% existing after 3600 s, the proposed algorithm can get the optimal
solution of the real case instance in 700 s. Furthermore, compared to the deterministic model, the
two-stage robust optimization model can reduce more than 10% of the worst-case total cost when
the budget level and demand deviation level are greater than 0.6, which verifies the effectiveness
of the proposed robust approach. Furthermore, our work is the first to adopt a two-stage robust
optimization approach for the problem of booking a liner container.

Keywords: container booking; cargo containerization; uncertain demand; two-stage robust optimiza-
tion; column-and-constraint generation

MSC: 90B06

1. Introduction

Among all long-distance transportation approaches, liner container shipping plays an
essential role in overseas trades due to its relatively huge capacity and low price, which
also makes it the main source of global transportation [1]. Because of its benefits such as
reducing costs and improving service performance, logistics out-sourcing grows rapidly,
thanks to which the 3PL has been widely promoted [2]. Companies rely on 3PL more than
ever in today’s globalized market to reduce the logistics operation cost and focus more on
their own core business.

Companies usually ask for maritime services offered by third-party logistics providers,
while container booking is the beginning of the whole service [3] and a core activity in
the liner shipping chain [4]. Generally speaking, liner container shipping providers can
offer regular transportation services. However, due to the complex market factors, the
transportation requirements for each period are volatile, which can easily incur additional
costs. Thus, it is common that 3PL providers offer lower rates for early bird container
booking. As such, 3PL can encourage companies with transportation needs to book
containers earlier.

As a result, standing on the side of companies with transportation needs, in order to
reduce logistics costs, it is necessary for companies with high transportation needs to book
containers in advance. However, booking in advance means that companies do not have
the actual demand information. Therefore, pre-booking actions would be performed based
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on the estimated customer demand. Due to the uncertain demand information, the number
of booked containers could quite possibly not match the volume of goods that need to be
shipped, which as a result, causes additional costs such as higher prices for making urgent
bookings or customer dissatisfaction over unfulfilled orders. Thus, making the pre-booking
decision is quite important for manufacturing enterprises, especially in recent years when
the supply of containers is rather unbalanced due to the COVID epidemic. Therefore, the
research question is how to determine the quantity of different types of containers that
need to be booked for customers in advance from various shipping routes, facing uncertain
customer demands, in order to minimize the total cost of container booking and the penalty
of unfulfilled orders.

This paper aimed to provide a robust perspective for the companies on how to book
containers in advance. A two-stage robust optimization model is proposed, where the first
stage determines the quantity of different types of containers to book in advance without
the actual demand information, and the second stage plans the detailed transportation
for customers and cargo loading with revealed customer order information. The objective
function serves to minimize the total cost of container booking cost and customer unfulfilled
order penalty. Furthermore, we define the customer order uncertainty as a budgeted
uncertainty set. The column-and-constraint generation (C&CG) method is applied to solve
the model, which is enhanced by several improvement strategies based on the structure
of the problem. The Benders-dual method is also applied as a comparison for algorithm
performance tests. A set of numerical tests are also conducted to compare the robust model
and its deterministic counterpart.

Furthermore, the contribution of this paper is summarized below:

• To the best of our current knowledge, our work is the first in the literature talking
about the container booking problem faced by the manufacturing companies, together
with freight consolidation and containerization from the point of view of robust
optimization. Furthermore, it is the first study to adopt two-stage robust modeling for
this problem.

• An improved C&CG algorithm based on the problem structure is proposed, which
can exactly solve the problem with high efficiency.

• The real case of a tire manufacturing company was taken as an example to prove the
validity of the two-stage robust optimization model. The results under a different
budget level show that it is not economically worthwhile to consider the solution
under a high budget level for companies. The worst-case results of the deterministic
model and two-stage robust optimization model are also compared, which shows
that the two-stage robust optimization model can effectively reduce the worst-case
total cost.

The rest of the paper is organized as follows. Section 2 provides an overview of
previous relevant research. In Section 3, we present the two-stage robust optimization
model and describes the proposed C&CG method in detail. Section 4 presents the results of
the numerical experiments. Section 5 discusses and analyzes the results of the experiments.
Furthermore, we conclude the work and propose future research directions in Section 6.

2. Literature Review

Freight consolidation is a systematic attempt for supply chains to make the best use of
their transportation capacity and reduce the total operation cost [5]. By applying various
consolidation policies, 3PL can maximize the utilization of transportation tools [6] and
minimize the total cost. The freight consolidation and containerization problem (FCCP) is
an essential part of 3PL and has been studied by many researchers.

Given a limited number of containers, Li et al. [7] studied a cargo-loading problem
faced by air freight forwarders, where the cargoes were assigned to containers. The
authors present an integer programming model, and a new large-scale neighborhood search
heuristic was proposed to solve the problem. Qin et al. [8] introduced a freight consolidation
and containerization problem which aimed to minimize the total transportation cost by



Mathematics 2023, 11, 1819 3 of 24

assigning shipments to different shipping routes and loading items into containers with
varying sizes. In their problem, there is only one origin hub, and the items with the same
destination are made into one shipment at the hub. For the convenience of the receivers,
all the items of one shipment have to be transported by the same route, but they are
not necessarily in the same container. The authors formulated the FCCP into an integer
programming model with a memetic algorithm approach that was proposed to practically
solve it. Melo and Ribeiro [9] further investigated compact formulations for a simplified
version of the FCCP and proposed a heuristic approach together with improved solver
setting, which can help obtain much better solutions. Hanbazazah et al. [10] studied a
two-echelon FCCP considering divisible shipments, delivery time windows, and piece-
wise transportation costs, where products from multiple suppliers were firstly sent to the
intermediary facilities, where they were consolidated and loaded into containers. Secondly,
the shipments were forwarded to the final receivers. A mixed integer programming model
was developed and a decomposition-based three-phase algorithm was proposed to speed
up obtaining solutions. Hanbazazah et al. [11] studied multi-period freight consolidation
problem where the shipments are indivisible. They needed to transport the shipments
to appropriate consolidation terminals, where the shipments were consolidated and then
sent to the final customer. In this problem, they had to consider the pre-specified pickup
dates and delivery deadlines of each shipment. A mixed-integer linear programming
model was proposed in the paper while an efficient heuristic was designed to solve the
problem. Motivated by a real case in Indonesia, Tiwari et al. [12] proposed a new FCCP
incorporating environmental factors. The proposed mixed-integer programming model
was solved by Lingo. Based on the results of different numerical experiments, the authors
found that carbon tax regulation can help reduce the total transportation cost and total
carbon emissions compared to usual policy.

Many previous studies have adopted the perspective of liner shipping companies,
concentrating on how to allocate the transportation capacity to the customers. The liner
shipping companies are always in face of problems such as uncertain shipping demands
and booking cancellations [13]. To deal with the problems, a lot of methods have been
attempted, such as forecasting [14], overbooking and delivery-postponed strategies [15],
and a new e-commerce environment [16]. Furthermore, in real life, on the side of 3PL
providers, because of the uncontrollable markets and other unreliable factors, a deviation
has always existed between the forecast container requirement and the actual one, which
would lead to the waste of shipping capacity and the penalty of unfulfillment. In order to
improve the quality of service and reduce the cost, the 3PL providers would offer a lower
price for containers for early booking than later booking [15].

Thus, to obtain the lower prices for containers and reduce the logistics costs, when
standing on the side of companies who need logistics services, one important thing for them
is to book the appropriate capacity, i.e., appropriate quantities of containers of different
types, to obtain the lower shipping prices from the 3PL providers. However, due to
uncontrollable markets, it is also difficult for these companies to estimate in advance how
much capacity they will actually need. Therefore, taking uncertain customer demand
into consideration and making the container booking decision warrants further research.
Few studies have adopted the perspective of logistics customers and provided advice
on how to book containers for their shipments under the same uncontrollable markets.
We only found a few papers talking about the container booking problem considering
the uncertain customer demand together with cargo loading through our search. Xue
and Lai [17] simultaneously considered container renting and cargo loading aiming to
minimize the total cost of containers. Furthermore, the total cost consisted of the fixed
cost part and the piece-wise linear variable cost part, which is influenced by the amount of
weight inside the containers. Wu [18] talked about the container renting and cargo loading
problem with uncertain shipment information, and proposed a two-stage recourse model.
As an extension of the previous work, Zhu et al. [19] considered demand uncertainties and
economic conditions when making air cargo forwarding plans. A two-stage stochastic
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programming model was proposed. In the first stage, the booking decision of different
types of containers was made. In the second stage, the cargo consolidation and loading plan
was made, which would either lead to unused containers being returned with a penalty
or extra containers being ordered at a higher price. CPLEX solver was applied to solve
the problem. Considering the fact that cargoes can be transported in multiple periods, the
model was extended into a multi-stage model with a genetic algorithm developed to solve
the large-sized problems.

What sets our work apart from previous literature mainly lies in two aspects.

• Our problem stands on the point of a manufacturing company instead of 3PL, talking
about the container booking problem faced by the manufacturing companies, together
with freight consolidation and containerization. Thus, we decided which orders to
satisfy and assess whether the inventory of each product is sufficient at the same time
when making the decisions.

• Our work is the first to adopt a two-stage robust optimization approach on this
problem. The customer demand uncertainty is defined by a budgeted uncertainty set.
Furthermore, the uncertain customer demand will influence not only the booking and
loading decisions, but also the order fulfillment decisions.

Closely related papers are summarized in Table 1.

Table 1. Literature review on the closely related topics.

Reference Booking Ahead
Cargo Type

Modeling * Uncertainty Solution Approach
Divisible Indivisible

Xue and Lai (1997) [17] CIE
√

MILP - Not clearly mentioned
Li et al. (2009) [7] EJOR

√
MILP - LNS heuristic

Wu (2011) [18] JORS
√ √

2-S Cargo quantities CPLEX
Qin et al. (2014) [8] EJOR

√
MILP - Memetic algorithm

Melo and Ribeiro (2015) [9] CIE
√

MILP - FICO Xpress with heuristic
Hanbazazah et al. (2019) [10] EJOR

√
MILP - Heuristic approach

Hanbazazah et al. (2020) [11] JORS
√

MILP - Heuristic approach
Tiwari et al. (2021) [12] JCP

√
MILP - Lingo

Zhu et al. (2022) [19] JORS
√ √

2-S Cargo quantities CPLEX and GA
This work † † 2-RO Customer demand C&CG

* MILP: mixed-integer linear programming; LNS: large-scale neighborhood search; 2-S: 2-stage stochastic pro-
gramming; 2-RO: 2-stage robust optimization. †: Elements considered in our work.

3. Materials and Methods
3.1. Problem Description

This section describes our two-stage robust liner container booking problem with
uncertain customer demands.

For manufacturing companies, the logistics cost is quite an essential part of the total
operation cost, while order fulfillment also greatly influences their image in the eyes of
customers. As a result, it is quite a problem to balance these two important parts. Generally
speaking, companies have to book containers in advance in order to obtain a discount and
avoid expensive urgent booking price of containers. However, at the time when a company
books containers, the exact order quantity of different products from each customers is
actually uncertain. Especially under the influence of complex social factors, for example,
during the epidemic, the uncertainty grows rapidly. On one hand, if the number of booked
containers is too low, then the level of customer service would decrease. On the other
hand, if the number of booked containers is too large, then unnecessary costs would arise.
As a result, the customer demand uncertainty makes it a really difficult problem for the
companies to make the best container booking decisions and minimize the total cost.

Under the situation described above, this paper aimed to find the best way of dealing
with customer demand uncertainty and help companies make the best container booking
decisions in order to minimize the total cost, which includes the container booking cost
and the of an unfulfilled order. To handle this problem, we apply the two-stage robust
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optimization approach. Furthermore, a two-stage robust optimization model is built.
In the first stage, we make the container booking decision without any information on
customer orders, and we just consider the available ships and containers that can be booked
in advance. Furthermore, here, we consider the container booking cost. In the second
stage, however, the actual customer order information is revealed, and we have to make
the second stage decision where products required by the orders are consolidated and
containerized. Furthermore, in this stage, we consider the unfulfilled order penalty. The
objective function is to minimize the total cost of the container booking cost and unfulfilled
order penalty in the worst-case scenario.

For simplicity in modeling, we made the following assumptions:

• The products of the same customer can be transported by different ships, because
some ports might appear in the different routes of different ships.

• The price of booking a container is related to the shipping distances as well as the type
of container.

• We assume that all the products are divisible. The products that we consider in this
paper are the tires that can be compressed. Furthermore, one forty-foot equivalent
unit container may carry up to 1906 ∼ 2640 compressed tires according to different
tire types.

• The capacity of a forty-foot equivalent unit (FEU) container is regarded as the standard
shipping unit and then converts the customer order volumes.

• Each product has its inventory volume due to the company’s production situation.
Thus, the volume of products sent to all customers cannot exceed the amount in stock.

• The company would not serve the customers more than their demands. However, at
the same time, the level of customer service is important to the company. To balance
this, we allow for unfulfilled orders, but the unfulfillment part would lead to relatively
high penalties.

3.2. Mathematical Model
3.2.1. Original Model

Based on the problem description and the notations in Table A1 in Appendix C, a
two-stage robust optimization model is proposed below, which we call the original model.

min
Z

∑
d∈D

∑
s∈S

∑
j∈J

cdsjZdsj + max
O∈O

Q(Z, Y, O) (1)

s.t. Zdsj = ∑
n∈Nsj

Ydsjn, ∀s ∈ S, j ∈ J (2)

∑
d∈D

Ydsjn ≤ 1, ∀s ∈ S, j ∈ J, n ∈ Nsj (3)

Ydsjn ∈ {0, 1}, ∀d ∈ D, s ∈ Sd, j ∈ J, n ∈ Nsj (4)

Zdsj ∈ Z+, ∀d ∈ D, s ∈ Sd, j ∈ J (5)

where Z, Y are the first-stage decision variables, and Q(Z, Y, O) is the optimal value of the
second-stage problem.

The objective (1) is to minimize the total container booking cost and the second-
stage worst-case cost. Constraint (2) indicates the relation of decision variables z and y.
Constraint (3) ensures that one container can only be assigned to one customer.

Constraints (4) and (5) define the first-stage decision variables.
Furthermore, the second-stage problem is defined as
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Q(Z, Y, O) = min
X

p ∑
d∈D

∑
i∈Id

(Odi − ∑
s∈Sd

∑
j∈J

∑
n∈Nsj

Xdsjni) (6)

s.t. ∑
d∈D

∑
s∈Sd

∑
j∈J

∑
n∈Nsj

Xdsjni ≤ wi, ∀i ∈ I (7)

∑
s∈Sd

∑
j∈J

∑
n∈Nsj

Xdsjni ≤ Odi, ∀d ∈ D, i ∈ Id, j ∈ J, n ∈ Nsj (8)

∑
i∈Id

Xdsjni ≤ Ydsjnvj, ∀d ∈ D, s ∈ Sd (9)

Xdsjni ≥ 0, ∀d ∈ D, s ∈ Sd, j ∈ J, n ∈ Nsj, i ∈ I (10)

The second stage objective (6) is to minimize the total unfulfilled order penalty cost.
Constraint (7) ensures that the total volume of each product sent to all customers does not
exceed the inventory volume. Constraint (8) means that the total volume of each product
sent to each customer does not exceed their requirements. Constraint (9) shows that the
total volume of products loading into a container cannot exceed its capacity. Constraint
(10) defines the second-stage decision variables.

We define the uncertainty of customer orders as a budgeted uncertainty set. odi means
the average ordered volume of product i by customer d, whose maximum volatility is
presented by õdi. Γ is a predefined integer value to control the conservative level.

O = {O : Odi = odi + Gdi õdi, Gdi ∈ [−1, 1], ∑
d

∑
i
|Gdi| ≤ Γ, ∀d ∈ D, i ∈ Id} (11)

To linearize it, we set

Gdi = G+
di − G−di , G+

di = max{0, Gdi}, G−di = max{0,−Gdi}, G+
di + G−di ≤ 1

and have the following

O = {O : Odi = odi + (G+
di − G−di)õdi, 0 ≤ G+

di , G−di ≤ 1,

G+
di + G−di ≤ 1, ∀d ∈ D, i ∈ Id, ∑

d
∑

i
(G+

di + G−di) ≤ Γ} (12)

3.2.2. Modified Model

Notice the fact that we only have to ensure that the total volume of all containers
booked for a customer exceeds the total volume of the freights that needs to be transported
to this customer. In our problem, we only consider the volume constraint, and at the same
time, we consider that the goods are divisible. In this case, if the total volume of all the
containers booked for a customer exceeds the total volume of the freights that needs to be
transported to this customer, in the optimal solution, to make the best use of all containers
for each customer, and there would not be more than two containers where extra space
remains. Additionally, there definitely exists a way to divide all the freights into every
single container.

Let Xdsi be continuous variables, which means that the volume of product i was sent
to customer d on ship s. Other variables and the parameters are the same as in Table A1.
As a result, we can have the following modified model, which can obtain the same optimal
objective value and container booking decision as the original model with the same input
parameters.
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min
Z

∑
d∈D

∑
s∈S

∑
j∈J

cdsjZdsj + max
o∈O

min
X

p ∑
d∈D

∑
i∈Id

(Odi − ∑
s∈Sd

Xdsi) (13)

s.t. ∑
d∈D

Xdsj ≤ qsj, ∀s ∈ S, j ∈ J (14)

∑
d∈D

∑
s∈Sd

Xdsi ≤ wi, ∀i ∈ I (15)

∑
s∈Sd

Xdsi ≤ Odi, ∀d ∈ D, i ∈ Id (16)

∑
i∈Id

Xdsi ≤ ∑
j∈J

Zdsjvj, ∀d ∈ D, s ∈ Sd (17)

Xdsi ≥ 0, ∀d ∈ D, s ∈ Sd, j ∈ J, n ∈ Nsj, i ∈ I (18)

Zdsj ∈ Z+, ∀d ∈ D, s ∈ Sd, j ∈ J (19)

where

O = {O : Odi = odi + (G+
di − G−di)õdi, 0 ≤ G+

di , G−di ≤ 1,

G+
di + G−di ≤ 1, ∀d ∈ D, i ∈ Id, ∑

d
∑

i
(G+

di + G−di) ≤ Γ (20)

In this model, the objective (13) is to minimize the total container booking cost and the
worst-case unfulfilled order penalty cost. Constraint (14) ensures that the total number of
containers of each type used on each ship cannot exceed the available quantity. Constraint
(15) ensures that the total volume of each product sent to all customers does not exceed
the inventory volume. Constraint (16) means that the total volume of each product sent
to each customer does not exceed their requirements. Constraint (17) shows that the total
volume of products sent to a customer by each ship cannot exceed the total capacity of
the ship assigned to this customer. Constraints (18) and (19) define the decision variables.
Furthermore, the set (20) characterizes the customer demand uncertainty.

The following solution method is designed based on the modified model.

3.3. Solution Method

The column-and-constraint generation (C&CG) algorithm was first introduced by
Zeng and Zhao [20] to solve the two-stage robust optimization problem in a more efficient
way. The basic idea to solve two-stage robust optimization problems is to identify all
the scenarios so that the worst-case scenario can be found and obtain the robust solution.
However, the uncertainty set could be a very large discrete set or a polyhedron, in which
case the problem could be of large scale and enumeration is definitely not a wise or
applicable choice. The algorithm C&CG offers a clever approach to partially enumerate
the significant scenarios in a master problem–sub-problem framework. Furthermore, the
second-stage recourse problem can carefully identify the critical scenarios as well as give
an upper bound to the problem in our problem. Then, the corresponding column and
constraints are added into the master problem. By solving the master problem, we can
obtain a lower bound. Alternately, solving the master problem and the sub-problem, we
can obtain increasingly tighter upper and lower bounds. If the upper bound is equal to the
lower bound, then we find the optimal solution.

3.3.1. Implementation of C&CG Algorithm

As mentioned above, the C&CG algorithm is implemented in a master problem–sub-
problem framework. The master problem aims to find the optimal container booking
decision with the information on the worst-case scenarios identified by the sub-problem.
Assume that ol∗ is the significant uncertainty scenario obtained in the lth iteration, and xl

is the corresponding decision variable. We define the master problem as
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[MP]: min
Z,η

∑
d∈D

∑
s∈S

∑
j∈J

cdsjzdsj + η (21)

s.t. η ≥ p ∑
d∈D

∑
i∈Id

(Ol∗
di − ∑

s∈Sd

Xl
dsi), 1 ≤ l ≤ k (22)

∑
d∈D

Zdsj ≤ qsj, ∀s ∈ S, j ∈ J (23)

∑
d∈D

∑
s∈Sd

Xl
dsi ≤ wi, ∀i ∈ I, 1 ≤ l ≤ k (24)

∑
s∈Sd

Xl
dsi ≤ Ol∗

di , ∀d ∈ D, i ∈ Id, 1 ≤ l ≤ k (25)

∑
i∈Id

Xl
dsi ≤ ∑

j∈J
Zdsjvj, ∀d ∈ D, s ∈ Sd, 1 ≤ l ≤ k (26)

Xl
dsi ≥ 0, ∀d ∈ D, s ∈ Sd, i ∈ I, 1 ≤ l ≤ k (27)

Zdsj ∈ Z+, ∀d ∈ D, s ∈ S, j ∈ J (28)

The master problem is actually a relaxation of the original problem, so it can provide a
lower bound. By adding more significant uncertainty scenarios, the master problem can
provide stronger lower bounds.

Furthermore, on the other hand, it is needed to identify the significant uncertainty
scenarios, which is implemented by the sub-problem. By solving the master problem, we
can obtain the first-stage decision ẑ. Furthermore, the sub-problem is shown below.

[SP]: max
O

min
X

p ∑
d∈D

∑
i∈Id

(Odi − ∑
s∈Sd

Xdsi) (29)

s.t. ∑
d∈D

∑
s∈Sd

Xdsi ≤ wi, ∀i ∈ I (30)

∑
s∈Sd

Xdsi ≤ Odi, ∀d ∈ D, i ∈ Id (31)

∑
i∈Id

Xdsi ≤ ∑
j∈J

Ẑdsjvj, ∀d ∈ D, s ∈ Sd (32)

Odi = odi + (G+
di − G−di)õdi, ∀d ∈ D, i ∈ Id (33)

G+
di + G−di ≤ 1, ∀d ∈ D, i ∈ Id (34)

∑
d

∑
i
(G+

di + G−di) ≤ Γ, ∀d ∈ D, i ∈ Id (35)

0 ≤ G+
di ≤ 1, ∀d ∈ D, i ∈ Id (36)

0 ≤ G−di ≤ 1, ∀d ∈ D, i ∈ Id (37)

Xdsi ≥ 0, ∀d ∈ D, s ∈ Sd, i ∈ I (38)

Odi ≥ 0, ∀d ∈ D, i ∈ Id (39)

The sub-problem is a max–min problem and cannot be solved directly. For any first-
stage decision ẑ, the sub-problem always has a finite optimal solution. We can therefore
adapt the duality theory to deal with the inner max–min problem. Furthermore, the
problem can be transferred into a one-level maximizing problem. Let πi, µdi, αds be the
corresponding dual variables of constraints (30), (31), and (32). Then, we have the following
dual sub-problem.
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F(Ẑ) = max−∑
i∈I

wiπi − ∑
d∈D

∑
i∈Id

Odiµdi

− ∑
d∈D

∑
s∈Sd

(∑
j∈J

Ẑdsjvj)αds + p ∑
d∈D

∑
i∈Id

odi (40)

s.t. − πi − µdi − αds ≤ −p, ∀d ∈ D, s ∈ Sd, i ∈ Id (41)

Odi = odi + (G+
di − G−di)õdi, ∀d ∈ D, i ∈ Id (42)

∑
d

∑
i
(G+

di + G−di) ≤ Γ (43)

G+
di + G−di ≤ 1, ∀d ∈ D, i ∈ Id (44)

0 ≤ G+
di ≤ 1, ∀d ∈ D, i ∈ Id (45)

0 ≤ G−di ≤ 1, ∀d ∈ D, i ∈ Id (46)

Odi ≥ 0, ∀d ∈ D, i ∈ Id (47)

πi ≥ 0, ∀i ∈ I (48)

µdi ≥ 0, ∀d ∈ D, i ∈ Id (49)

αds ≥ 0, ∀d ∈ D, s ∈ Sd (50)

Proposition 1. If Γ ∈ Z+, then there exists an optimal solution such that G+∗, G−∗ ∈ {0, 1}∑d∈D |Id |.

Proof. The above reformulated problem is a bi-linear problem. If a bi-linear problem has a
finite optimal value, then there exists an optimal solution where each variable lies on the
extreme point of their domain polyhedra [21]. Thus, when Γ is an integer, then G+∗, G−∗

are binaries.

As a result, we can linearize the bi-linear term odiµdi in (40) with the big-M method.
Let ξdi = G+

di µdi, ζdi = G−di µdi, ∀d ∈ D, i ∈ I. Then, we have

ξdi ≤ µdi, ∀d ∈ D, i ∈ I (51)

ξdi ≤ MG+
di , ∀d ∈ D, i ∈ I (52)

ξdi ≥ µdi −M(1− G+
di), ∀d ∈ D, i ∈ I (53)

ζdi ≤ µdi, ∀d ∈ D, i ∈ I (54)

ζdi ≤ MG−di , ∀d ∈ D, i ∈ I (55)

ζdi ≥ µdi −M(1− G−di), ∀d ∈ D, i ∈ I (56)

ξdi, ζdi ≥ 0, ∀d ∈ D, i ∈ I (57)

M is the upper bound of ξdi and ζdi.

Proposition 2. The value p is a tight upper bound of the dual variables π, µ, α.

Proof. Without losing generality, assume that wi ≥ 0, Odi ≥ 0, ∑j∈J Ẑdsjvj ≥ 0, ∀d ∈ D, s ∈
Sd, i ∈ Id. Because it is a maximization problem, considering constraint (41), when reaching
optimality, it is easy to know that the dual variable corresponding to the biggest coefficient
of the three obtains a value of p, while the others obtain a value of 0. In other words, a tight
upper bound of the three dual variables is p.

The detailed C&CG algorithm is as shown in Algorithm 1. We firstly apply the
Initialization Algorithm 2 to obtain the initial UB and LB. In the following steps, the MP
(21) and SP (40) are alternately solved to update the UB and LB, and at the same time,
narrow the gap until the algorithm termination condition is satisfied. The total algorithmic
description is shown as the follows.
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Algorithm 1 C&CG

Input: Nominal and maximum deviation volume of customer orders, inventory volume
w, container parameters, and Γ

1: Initialization: Set LB = −∞, UB = +∞, k = 0, ε = 0.01.
2: while UB− LB ≥ ε do
3: Solve the MP (21) and derive an optimal solution (Zk∗, ηk∗) and update
4: LB = ∑d∈D ∑s∈S ∑j∈J cdsjZk∗

dsj + ηk∗

5: Fix Z = Zk∗, then solve SP (40) and update UB =
min{UB, ∑d∈D ∑s∈S ∑j∈J cdsjZk∗

dsj+

6: F(Zk∗)}
7: Get Ok∗, which is the identified scenario solving F(Zk∗). Create variables (Xk+1)

and add the corresponding constraints (22) and (24)–(26) to MP.
8: end while

Output: Container booking decision Z

3.3.2. Heuristic Initial Solution

To start the algorithm and accelerate the total algorithm, we need a good initial
solution. Here, we present the heuristic initial solution-generating procedure.

With the Proposition 1, the worst-case scenario also shows which customer orders
deviate from nominal demands. The motivation of this heuristic method comes from the
fact that even a small percentage fluctuation in the orders whose demands are large would
have a significant influence on the transportation capacity plan. Meanwhile, with the same
percentage fluctuation, small orders would cause slightly more impact. Therefore, in the
initial solution, we rank all orders from largest to smallest in order of their demands and
assume that the first Γ orders deviate from their nominal demands. More specifically, we
rank the G+

di , ∀d ∈ D, i ∈ Id from largest to smallest and set the first Γ of them as the value
1, and set the rest to a value of 0. At the same time, we set all G−di , ∀d ∈ D, i ∈ Id to a value
of 0.

Algorithm 2 Initialization

Input: Nominal and maximum deviation volume of customer orders, inventory volume
w, container parameters, and Γ

1: Set UB = −∞, LB = +∞. Rank the odi, ∀d ∈ D, i ∈ Id from largest to smallest and
save the first Γ of (d, i) into a set A. Set G+

di = 1, ∀(d, i) ∈ A. Set other G+
di = 0. Set all

G−di = 0, ∀d ∈ D, i ∈ Id.
2: Solve the MP (21) Derive an optimal solution (Zk∗, ηk∗) and update LB = csj ∑s∈S Zk∗

dsj + ηk∗

3: Fix Z := Zk∗, then solve SP (40) and update UB = min{UB, csj ∑s∈S Zk∗
dsj + F(Zk∗)}

Output: UB, LB, Z

3.4. Overview of the Methodology

To make a better description of our methodology, here we explain the methodology
in steps.

First of all, input the two-stage robust optimization problem (13). Then, follow the
methodology steps shown below to obtain the optimal solution of the problem.

Step 1: Decompose the problem into the master problem (13) and the sub-problem (29).
Step 2: Apply the duality theory for the sub-problem (29) to obtain an equivalent

mixed–integer linear programming reformulation (40), which can be solved by off-the-shelf
solvers. Then, the big-M method is adopted to linearize the bi-linear term in the (40) and
the tight upper bound of the dual variables is added to accelerate the solving process of
the solver.

Step 3: Apply the Algorithm 2 to obtain the heuristic initial solution.
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Step 4: Adopt the initial solution in step 3 and apply the Algorithm 1 to obtain the
optimal solution of the two-stage robust optimization problem (13).

Finally, we can obtain the optimal container booking decision Z.

4. Results

In this section, a set of numerical experiments are conducted to verify the effectiveness
of the proposed model and the efficiency of the proposed algorithm. All of the algorithm
is implemented in Python. Furthermore, the master problem and sub-problem are solved
by the solver Gurobi (v9.5.2). All the experiments are conducted on a computer equipped
with 3.70 GHz Intel Core i7-8700K CPU, 64 GB RAM.

To better describe the experimental instances, we introduce the form |D|–|I|–|S|–|Nsj|.
The |D|, |I|, |S| represent the number of customers, number of products, number of ships,
respectively. Furthermore, |Nsj| represents the number of containers of each type on each
ship, which is randomly generated. We consider two types of containers—forty-foot and
twenty-foot—in the problem, with the values of basic usage prices being 4.6 and 2.7,
respectively. To simplify the calculation, we set the total cost of allocating a container to
a customer as the multiplication of the transportation distance and basic usage price of
the container, where the value of the distance is randomly generated between (1,10). The
capacity of forty-foot equivalent unit (FEU) container is regarded as the standard shipping
unit. Furthermore, we set the value of the unit penalty cost as 100. For the set of the ships
that covers the port of customer d (i.e., Sd), the size is also randomly generated between
(1,|S|), while the ships are randomly chosen. Similarly, for the set of the products that
ordered by customer d (i.e., Id), the size is randomly generated between (1,|I|), while the
products are randomly chosen. Meanwhile, the inventory volume of product i is randomly
generated between (1,50). The nominal required volume of product i by customer d (i.e.,
odi) is randomly generated between (1,5). The values and units of the key parameters used
to generate random instances are shown in Table 2. The instances in the computational
performance are randomly generated, except for the one with the largest scale (marked
with * in Table 3), which is obtained based on the real dataset of a tire manufacturing
company. Furthermore, the instances used in the sensitivity and robustness experiments
are built upon real cases.

Table 2. Key parameters used to generate random instances.

Parameters Meaning Value

p The unit penalty cost for unfulfilled order 100 (100 USD/FEU)
rd The transportation distance of customer d random (1,10) (thousand kilometers)
cds1 The price of shipping a container of

forty-foot equivalent unit in ship s to customer d 4.5 ∗ rd (100 USD/FEU)
cds2 The price of shipping a container of

twenty-foot equivalent unit in ship s to customer d 2.7 ∗ rd (100 USD/FEU)
wi The inventory volume of product i random(1,50) (FEU)
odi The nominal required volume of product i by customer d random(1,5) (FEU)
v1 The capacity of forty-foot equivalent unit container of type j 1 (FEU)
v2 The capacity of twenty-foot equivalent unit container of type j 0.5 (FEU)

As defined in Table A1, the parameter õdi means the maximum deviation volume of
required product i by customer d. In order to study the influence of different levels of
deviation volume on the problem, we define the maximum demand deviation coefficient ϕ
which varies in [0,1]. Furthermore, we have

õdi = ϕodi, ∀d ∈ D, i ∈ Id (58)

Odi = odi + Gdi õdi, ∀d ∈ D, i ∈ Id (59)
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When ϕ = 0, it means that the maximum deviation volume is 0. In other words,
customer demands would not deviate from the nominal demand, and the actual customer
demand Odi = odi. Furthermore, the robust optimization model degenerates into a deter-
ministic model. When ϕ > 0, it means that the maximum deviation volume is õdi = ϕodi.
Thus, the actual customer demand Odi ∈ [(1− ϕ)odi, (1 + ϕ)odi].

4.1. Computational Performance Experiments

In order to observe the efficiency of the algorithm, we show the more detailed com-
putational performance for instances of randomly generated different scales, by applying
the proposed C&CG algorithm. As a comparison, the Benders-dual method is also intro-
duced to solve the randomly generated instances in our numerical experiments. Similarly,
the Benders-dual method is also implemented taking the master problem–sub-problem
framework. The master problem plays the role of relaxation of the original problem. While
the sub-problem identifies the important scenarios and helps generating cuts into the
master problem. More details of the Benders-dual method for our problem is shown in
Appendix A.

For each scale, there are 10 randomly generated instances. The average experimen-
tal results are shown in Table 3. Furthermore, we take Γ = round(0.6 ∑d∈D |Id|), and
õdi = 0.6odi, ∀d ∈ D, i ∈ Id. It should be noticed that Benders-dual, C&CG-B, and improved
C&CG-B terms are the results of solving the modified model above. More clearly, the im-
proved C&CG-B applies the C&CG algorithm with the tight upper bound of the three dual
variables as well as the heuristic initial solution. Furthermore, the C&CG-A part applies
the C&CG algorithm to solve the original model above. The more detailed reformulation is
shown in Appendix B.

Table 3. Computational performance comparison. *: Real case.

|D|–|I|–|S|–|Nsj|
Benders-Dual C&CG-A C&CG-B Improved C&CG-B

Time Iter Gap Time Iter Gap Time Iter Gap Time Iter Gap

3–5–5–(10,30) 3.03 5.7 0.0% 2.13 3.1 0.0% 0.49 3.1 0.0% 0.16 3.1 0.0%
3–10–5–(10,30) 662 5.9 2.1% 486 3.3 1.0% 448 3.1 0.7% 0.30 2.5 0.0%

5–10–10–(10,30) 2987 5.7 107% 3383 3.0 11.3% 2934 2.7 4.7% 2.52 4.9 0.0%
10–20–10–(20,60) 3600 2.0 223% 3600 2.6 11.3% 3600 1.8 9.9% 1059 9.9 0.1%
20–40–20–(20,60) 3600 2.0 52.6% 3600 1.2 90.3% 3600 1.4 73.7% 317 18.5 0.5%
40–80–40–(50,100) 3600 2.2 60.4% 3600 1.0 87.6% 3600 1.0 87.6% 536 9.5 0.1%

81–563–36–(4,200) * 3600 2.0 143% 3600 1.0 78.4% 3600 1.0 78.4% 700 18.0 0.0%

Figure 1 presents the convergence graphs of the four methods solving an instance of
3–10–5–(10,30).

Based on the experimental results above, we can easily have the observations that all
of four methods can solve the smallest instances optimally. However, when the problem
scale grows, none of them except for the improved C&CG method can optimally solve all
instances with a much shorter time. Furthermore, less iterations are taken by the improved
C&CG method, which confirms the effectiveness of the heuristic initial solution.

As the scale of the problem continues to grow, it takes more than 1 h for the first three
methods to solve the problems. Additionally, there remains big gaps, while the improved
C&CG method can solve the instances in a much shorter time. Although the problems
might not be optimally solved, only very small average gaps remain.

We notice that, for large instances, the improved C&CG method takes more iterations.
This is because the sub-problems of the other three methods are really difficult to solve,
most of which take more than 1 h to optimally solve the solver. This proves that the
Proposition 2 is extremely effective for our problem.
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Figure 1. Convergence graphs of different methods: (a) Convergence graph of Benders-dual method.
(b) Convergence graph of C&CG-A method. (c) Convergence graph of C&CG-B method. (d) Conver-
gence graph of improved C&CG-B method.

4.2. Sensitivity Experiments

It should be noticed that the parameter Γ actually plays as a role indicating the maxi-
mum number of orders that might deviate from the nominal demands with Proposition 1.
When Γ = ∑d∈D |Id|, this means that all of the orders are allowed to deviate from the
nominal demands. Furthermore, when Γ = 0, none of the orders can change, and as a
result, the 2-RLCBP degenerates into the deterministic one.

In order to figure out the impact of Γ on the total cost, a concept budget level is
introduced here, whose value equals to Γ

∑d∈D |Id |
. As can be seen in Figure 2, under the same

value of ϕ, when the budget level is less than 0.2, it has a strong impact on the worst-case
total cost. However, as the budget level continues to grow, the impact becomes very slight.

Additionally, under the same budget level, the total cost is also positively correlated
with ϕ.

We further explore the impact of the budget level on the proportion of the container
booking cost on the total cost. In Figure 3, as the budget level grows, the proportion of
the container booking cost on the total cost drops firstly and reaches its lowest when the
budget level meets 0.2. When the budget level is greater than 0.2, the proportion of the
container booking cost begins to rise with the increase in budget level.

Overall, the ratio of container booking cost is lower when the corresponding ϕ is larger.
However, the intervals between adjacent curves are not uniform. When the adjacent curves
are of greater ϕs, the interval becomes smaller.

We made a more detailed comparison of the costs under a different budget level
and demand deviation level and the results are shown in Table 4. Set the first row of
each demand deviation level as a benchmark, divide the cost of each subsequent rows by
the benchmark to obtain the ratio of each cost. It can be seen that for the same demand
deviation level, when the budget level increases, the total cost ratio increases, as well as the
first-stage costs ratio. Furthermore, the total cost ratio reaches the maximum value faster
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than the first-stage costs ratio. However, the trend of the second-stage cost ratio is different
from the previous two, which increases the first and then decreases.
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Table 4. Cont.

Demand Deviation Level Budget Level Total Cost Ratio First-Stage Cost Ratio Second-Stage Cost Ratio

0.4 0 1.00 1.00 1.00
0.2 1.35 1.25 1.40
0.4 1.39 1.33 1.42
0.6 1.40 1.36 1.42
0.8 1.40 1.39 1.40
1 1.40 1.41 1.39

0.6 0 1.00 1.00 1.00
0.2 1.53 1.35 1.62
0.4 1.58 1.49 1.63
0.6 1.60 1.54 1.63
0.8 1.60 1.59 1.60
1 1.60 1.61 1.59

0.8 0 1.00 1.00 1.00
0.2 1.71 1.47 1.83
0.4 1.78 1.64 1.85
0.6 1.79 1.73 1.83
0.8 1.79 1.77 1.81
1 1.79 1.80 1.79

1 0 1.00 1.00 1.00
0.2 1.88 1.60 2.03
0.4 1.98 1.82 2.05
0.6 1.99 1.92 2.03
0.8 1.99 1.96 2.01
1 1.99 1.98 2.00

4.3. Reliability Experiments

In this section, we made a more detailed analysis of the demand deviation level and
budget level parameters on both the deterministic model and the 2-RLCBP. Furthermore,
we aimed to reveal the reliability of the 2-RLCBP by comparing its solution to that of
the deterministic model. We firstly solve the deterministic model on orders of nominal
demands and obtain the first-stage container booking cost. Then, by fixing the first-stage
decision variables, we can further solve the recourse problem of the C&CG model to obtain
the second-stage worst-case cost. The total cost of the deterministic model is obtained
by adding the above first-stage container booking cost and second-stage worst-case cost,
which provides us with a reference for the cost for not considering the demand uncertainty
in advance. As for the two-stage robust model, we just solve it and obtain the worst-case
total cost, as well as the first-stage cost and second-stage cost.

We fix the budget level as 0.6, and obtained the costs of different demand deviation
levels, which are shown in Table 5. The lower total costs obtained by the two models at
different demand deviation levels are marked in bold. As can be seen from the table, the
total cost of 2-RLCBP is significantly lower than that of the deterministic model. More
specifically, when ϕ > 0, compared to the deterministic model, the 2-RLCBP has higher-
first-stage container booking cost, whose second-stage unfulfilled order penalty cost, on
the other hand, is much lower. Furthermore, an increasing gap between the costs of the
two models shows as the demand deviation level becomes higher.

Table 6 shows the results of the two models with a demand deviation level fixed to 0.6
and the budget level varying in [0,1]. The lower total costs obtained by the two models at
different budget levels are marked in bold. Similar observations can be obtained in this
table.
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Table 5. Results of the different demand deviation levels.

Demand Deviation
Level (ϕ)

Deterministic Model 2-RLCBP
Total Cost
ReductionTotal

Cost
First-Stage
Cost

Second-Stage
Cost

Total
Cost

First-Stage
Cost

Second-Stage
Cost

0 35,490.94 11,415.75 24,075.18 35,490.94 11,415.75 24,075.18 0.00%
0.2 44,416.97 11,415.75 33,001.22 42,574.87 13,473.70 29,108.06 4.15%
0.4 53,712.64 11,415.75 42,296.89 49,589.10 15,567.54 34,109.79 7.68%
0.6 63,055.64 11,415.75 51,639.89 56,701.91 17,579.51 39,216.98 10.08%
0.8 72,401.18 11,415.75 60,985.43 63,698.11 19,722.12 44,106.76 12.02%
1.0 81,753.17 11,415.75 70,337.41 70,762.20 21,903.98 48,982.37 13.44%

Table 6. Results of different budget levels.

Budget Level
Deterministic Model 2-RLCBP

Total Cost
ReductionTotal

Cost
First-Stage
Cost

Second-Stage
Cost

Total
Cost

First-Stage
Cost

Second-Stage
Cost

0 35,490.94 11,415.75 24,075.18 35,490.94 11,415.75 24,075.18 0.00%
0.2 58,309.54 11,415.75 46,893.79 54,358.67 15,434.46 38,944.74 6.78%
0.4 61,738.50 11,415.75 50,322.74 56,248.73 17,020.47 39,328.68 8.89%
0.6 63,055.64 11,415.75 51,639.89 56,701.91 17,579.51 39,216.98 10.08%
0.8 63,639.09 11,415.75 52,223.34 56,633.53 18,125.9 38,552.08 11.01%
1.0 63,820.43 11,415.75 52,404.68 56,614.60 18,338.69 38,275.90 11.29%

To illustrate the impact of demand uncertainty on the solution structure, we randomly
select an instance of 10–20–10–(20,60). Figures 4 and 5 show the solutions of the transport
capacity booked for each customer, which is obtained by solving the deterministic model
and 2-RLCBP, respectively. Table 7 shows the transportation capacity booked for each
customer in the solution of 2-RLCBP and deterministic model. For a more visual illustration,
Figure 6 is presented.

Figure 4. Result of deterministic model.
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Figure 5. Result of 2-RLCBP.

Table 7. Results comparison of 2-RLCBP and deterministic model.

Customer Deterministic Model 2-RLCBP Increased Capacity Increased Ratio

AC 13 15 2 15.38%
AGU 19 28 9 47.37%

AS 2.5 3 0.5 20.00%
BA 35.5 47 11.5 32.39%
BB 35 47.5 12.5 35.71%
BC 15 21 6 40.00%
BI 20 28 8 40.00%
BL 26 36 10 38.46%
CP 25 29 4 16.00%

GSP 11 16 5 45.45%

Figure 6. Increase in transportation capacity booked for each customer in 2-RLCBP comparing to
deterministic model.

We can find that the transport capacity booked for each customer in the robust solution
is slightly greater than that in the deterministic solution. In addition, customers who need
more transport capacity in the deterministic solution would be more likely to obtain a
higher increase in transport capacity in the robust solution.

Furthermore, compared to the deterministic model, 2-RLCBP tends to present a situa-
tion in which the transportation capacity assigned to each customer is more decentralized.
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In other words, in the result of the deterministic model, most of the needed transportation
capacity of each customer is concentrated in one or two ships, while 2-RLCBP shows that
each customer tends to use more ships and the applied transportation capacity is more
evenly distributed across more ships.

In real-world application, our methodology can be integrated into the company’s
system. When the container booking decision is required, enter the relevant data such as
the nominal customer demand, the inventory volume, and the container information into
the system, and the optimal booking decision can be obtained for the logistics planning
department. Additionally, the logistics planning department can adjust the budget level to
take into account the actual situation faced by the company so as to obtain more practical
decisions.

5. Discussion

In the present study, we propose a two-stage robust approach to deal with the liner
container booking problem with uncertain customer demand. We guarantee the results
through rigorous mathematical derivation in the proposed methodology. Furthermore, to
further verify the results, we conducted a series of experiments based on both random
instances and real-case instances.

The computational performance experiments shows that the proposed C&CG algo-
rithm is of high efficiency compared to other methods. There are two main reasons for
this. Firstly, the proposed heuristic initial solution-generating algorithm can offer a good
initial solution, which can reduce the iteration of the C&CG algorithm. Secondly, and
more importantly, the proposed upper bounds of the variables of the dual sub-problem can
significantly narrow the domain when solving the dual sub-problem.

In the sensitivity experiments, we found that there is a sharp increase in the total cost
when the budget level increases from 0 to 0.2. After that, the curve of the total cost becomes
very smooth. This is because, in the worst cases, the orders with greater demands are more
likely to deviate from the nominal demands, which can also be found in the final solutions.
Furthermore, it can be found in the data that a small percentage of orders account for a
large part of the total demand. Thus, when the budget level is low, the big orders tend to
deviate from nominal demands, have high influence, which leads to the sharp increase in
the total cost. As the budget level continues to grow, demands for smaller orders begin to
fluctuate, however, the influence of this is much smaller. Similarly to the above explanation,
the reason for the appearance of such a V-shaped curve in Figure 3 is that, when the budget
level is small, the orders with greater demands are more likely to deviate from the nominal
demands which lead to a higher penalty for unfulfilled orders. Thus, compared to the
increase in the penalty, the ratio of the container booking cost becomes lower. As the budget
level continues to grow, small orders begin to deviate from the nominal demands, which,
however, would not be highly penalized. However, on the other hand, more containers are
still needed to face future uncertainty, which leads to the rise in the ratio of the container
booking cost. Thus, paying attention to the demand fluctuation of the orders with relatively
large requirements is quite important for companies when making the container booking
decision, which also proved the effectiveness of our heuristic initial solution generation
method. Additionally, it is not economically worthwhile to consider the solution under a
high budget level for companies.

In the reliability experiments, it can clearly be seen that the total cost obtained by
the two-stage robust optimization model is much lower compared to that given by the
deterministic model. Furthermore, the gap between the total costs obtained by the two
models grows as the demand deviation level and budget level grow. This is because
the deterministic model completely ignores the customer demand uncertainty, which
leads to the rapid increase in the second-stage cost of the deterministic model when
the uncertainty intensifies. Therefore, the robustness of the proposed two-stage robust
optimization approach has been well verified.
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The experimental results verify the effectiveness of the proposed two-stage robust
optimization approach in dealing with the customer demand uncertainty, which also
provides a reference for the companies on how to make container booking decisions.

6. Conclusions

The present study investigates a liner container booking and freight consolidation
problem, which takes the customer demands uncertainty into account. A two-stage robust
optimization model is presented and the decisions are made in two stages. In the first stage,
containers of different types are booked for each customer without the actual information of
the customer demand. Furthermore, in the second stage, the order fulfillment plans, i.e., the
freight consolidation and containerization decisions, are made with the revealed customer
demand information. Furthermore, the uncertainty of customer demand is characterized
with a budgeted uncertainty set. Given the specific feature of the tire transportation
problem, by relaxing the container capacity constraints, a more streamlined model is
obtained. Then, we develop a C&CG algorithm to solve the problem. To enhance the
efficiency of the algorithm, a heuristic is developed to generate initial solutions, which can
help reduce the number of iterations of the algorithm.

In the methodological approach, we conducted rigorous mathematical derivation,
and the bi-level sub-problem is reformulated into an equivalent mixed-integer linear
programming model that can be solved by the off-the-shelf solver by applying the duality
theory. By analyzing the problem structure, a tight upper bound of the three dual variables
can be obtained, which can greatly reduce the computation time of the dual sub-problem.
We also adapt the Benders-dual method to solve the problem as a comparison. The
numerical experiment results show the high efficiency of the proposed C&CG algorithm.
Furthermore, the sensitivity analysis is conducted based on the real data to determine the
impact of the budget level on the total cost and the ratio of the container booking cost.
Furthermore, it is observed that a low budget level would have a greater impact on the
results. For companies, it is not economically worthwhile to consider the solution under a
high budget level. In the reliability analysis, we compare the results of 2-RLCBP to those
of the deterministic model. Furthermore, the results show that 2-RLCBP can secure a
lower total cost under different demand deviation levels and budget levels, which verifies
the outstanding worst-case performance of the proposed two-stage robust optimization
approach.

Our work adopts the perspective of a manufacturing company, talking about the
container booking problem faced by the manufacturing companies considering the un-
certain customer demand. Furthermore, we are the first to propose the two-stage robust
optimization approach for this problem. In this paper, we only consider the uncertainty
of the customer demand. However, in real life, uncertainty can appear in various aspects.
One interesting future research direction is to consider more uncertainty at the same time.
For example, the available transportation capacity provided by 3PL could also be uncertain
influenced by various factors such as uncontrollable markets or disasters. By considering
more uncertain factors, more practical decisions can be provided to the companies, which
is important to reduce the logistics costs.
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Appendix A. Benders-Dual Method

The detailed Benders-dual method is shown as follows.

Algorithm A1 Benders-dual

Input: Nominal and maximum deviation volume of customer orders, inventory volume
w, container parameters, and Γ

1: Initialization: LB = −∞, UB = +∞, k = 0
2: Solve the BD-MP (A1) Derive an optimal solution (Zk∗, θk∗) and update LB =

∑d∈D ∑s∈S ∑j∈J cdsjZk∗
dsj + θk∗

3: Fix Z = Zk∗, then solve BD-SP (A5) and update UB =
min{UB, ∑d∈D ∑s∈S ∑j∈J cdsjZk∗

dsj + F(Zk∗)}
4: if UB− LB ≤ ε then Return Zk∗ and terminate.
5: else Obtain Ok∗, which is the identified scenario solving F(Zk∗). add the constraints

(A2) to BD-MP. Go to step 2.
6: end if

Output: Container booking decision Z

The master problem and sub-problem of the Benders-dual method are shown below.

[BD-MP]: min
Z,θ

∑
d∈D

∑
s∈S

∑
j∈J

cdsjZdsj + θ (A1)

s.t. θ ≥ −∑
i∈I

wiπ
∗
i − ∑

d∈D
∑
i∈Id

O∗diµ
∗
di

− ∑
d∈D

∑
s∈Sd

(∑
j∈J

Zdsjvj)α
∗
ds + p ∑

d∈D
∑
i∈Id

O∗di (A2)

∑
d∈D

Zdsj ≤ qsj, ∀s ∈ S, j ∈ J (A3)

Zdsj ∈ Z+, ∀d ∈ D, s ∈ S, j ∈ J (A4)

[BD-SP]:F(Ẑ) = max−∑
i∈I

wiπi − ∑
d∈D

∑
i∈Id

Odiµdi

− ∑
d∈D

∑
s∈Sd

(∑
j∈J

Ẑdsjvj)αds + p ∑
d∈D

∑
i∈Id

Odi (A5)

s.t. − πi − µdi − αds ≤ −p, ∀d ∈ D, s ∈ Sd, i ∈ Id (A6)

Odi = odi + (G+
di − G−di)õdi, ∀d ∈ D, i ∈ Id (A7)

∑
d

∑
i
(G+

di + G−di) ≤ Γ (A8)

G+
di + G−di ≤ 1, ∀d ∈ D, i ∈ Id (A9)

0 ≤ G+
di ≤ 1, ∀d ∈ D, i ∈ Id (A10)

0 ≤ G−di ≤ 1, ∀d ∈ D, i ∈ Id (A11)

Odi ≥ 0, ∀d ∈ D, i ∈ Id (A12)

πi ≥ 0, ∀i ∈ I (A13)

µdi ≥ 0, ∀d ∈ D, i ∈ Id (A14)

αds ≥ 0, ∀d ∈ D, s ∈ Sd (A15)

Furthermore, the bi-linear term in the sub-problem can be linearized similarly to the
above big-M method.
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Appendix B. C&CG Method for Original Model

The algorithm progress is similar to the Algorithm 1. The master problem of this
method is shown below.

[MP-A]: min
Z,δ

∑
d∈D

∑
s∈S

∑
j∈J

cdsjZdsj + δ (A16)

s.t. δ ≥ p ∑
d∈D

∑
i∈Id

(Ol∗
di − ∑

s∈Sd

∑
j∈J

∑
n∈Nsj

∑
s∈Sd

Xl
dsjni), 1 ≤ l ≤ k (A17)

∑
d∈D

Zdsj = ∑
n∈Nsj

Ydsjn, ∀d ∈ D, s ∈ S, j ∈ J (A18)

∑
d∈D

Ydsjn ≤ 1, ∀s ∈ Sd, j ∈ J, n ∈ Nsj (A19)

∑
d∈D

∑
s∈Sd

∑
j∈J

∑
n∈Nsj

Xl
dsjni ≤ wi, ∀i ∈ I, 1 ≤ l ≤ k (A20)

∑
s∈Sd

∑
j∈J

∑
n∈Nsj

Xl
dsjni ≤ Ol∗

di , ∀d ∈ D, i ∈ Id, 1 ≤ l ≤ k (A21)

∑
i∈Id

Xl
dsjni ≤ Ydsjnvj, ∀d ∈ D, s ∈ Sd, j ∈ J, n ∈ Nsj, 1 ≤ l ≤ k (A22)

Xl
dsjni ≥ 0, ∀d ∈ D, s ∈ Sd, i ∈ I, 1 ≤ l ≤ k (A23)

Ydsjn ∈ {0, 1}, ∀d ∈ D, s ∈ Sd, j ∈ J, n ∈ Nsj (A24)

Zdsj ∈ Z+, ∀d ∈ D, s ∈ S, j ∈ J (A25)

The sub-problem of this method is shown below.

[SP-A]: max
O

min
X

p ∑
d∈D

∑
i∈Id

(Odi − ∑
s∈Sd

∑
j∈J

∑
n∈Nsj

Xdsjni) (A26)

s.t. ∑
d∈D

∑
s∈Sd

∑
j∈J

∑
n∈Nsj

Xdsjni ≤ wi, ∀i ∈ I (A27)

∑
s∈Sd

∑
j∈J

∑
n∈Nsj

Xdsjni ≤ Odi, ∀d ∈ D, i ∈ Id, j ∈ J, n ∈ Nsj (A28)

∑
i∈Id

Xdsjni ≤ Ŷdsjnvj, ∀d ∈ D, s ∈ Sd (A29)

Odi = odi + (G+
di − G−di)õdi, ∀d ∈ D, i ∈ Id (A30)

∑
d

∑
i
(G+

di + G−di) ≤ Γ (A31)

G+
di + G−di ≤ 1, ∀d ∈ D, i ∈ Id (A32)

0 ≤ G+
di ≤ 1, ∀d ∈ D, i ∈ Id (A33)

0 ≤ G−di ≤ 1, ∀d ∈ D, i ∈ Id (A34)

Odi ≥ 0, ∀d ∈ D, i ∈ Id (A35)

Xdsjni ≥ 0, ∀d ∈ D, s ∈ Sd, j ∈ J, n ∈ Nsj, i ∈ I (A36)

Apply the duality theory to deal with the max–min problem, and we can obtain the
following dual sub-problem.
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[D-SP-A]:F(Ŷ) = max−∑
i∈I

wiγi − ∑
d∈D

∑
i∈Id

Odiλdi

− ∑
d∈D

∑
s∈Sd

∑
j∈J

∑
n∈Nsj

Ŷdsjnvjβdsjn + p ∑
d∈D

∑
i∈Id

odi (A37)

s.t. − γi − λdi − βdsjn ≤ −p, ∀d ∈ D, s ∈ Sd, j ∈ J, n ∈ Nsj, i ∈ Id (A38)

Odi = odi + (G+
di − G−di)õdi, ∀d ∈ D, i ∈ Id (A39)

∑
d

∑
i
(G+

di + G−di) ≤ Γ (A40)

G+
di + G−di ≤ 1, ∀d ∈ D, i ∈ Id (A41)

0 ≤ G+
di ≤ 1, ∀d ∈ D, i ∈ Id (A42)

0 ≤ G−di ≤ 1, ∀d ∈ D, i ∈ Id (A43)

Odi ≥ 0, ∀d ∈ D, i ∈ Id (A44)

γi ≥ 0, ∀i ∈ I (A45)

λdi ≥ 0, ∀d ∈ D, i ∈ Id (A46)

βdsjn ≥ 0, ∀d ∈ D, s ∈ Sd (A47)

The bi-linear term in the dual sub-problem can be linearized similarly to the above
big-M method.

Appendix C. Notations

The notations of the paper are shown in Table A1.

Table A1. Notations of the paper.

Notations Meaning

Indices and Sets
d Index of customers
s Index of ships
j Index of container types
n Index of containers
l Index of iterations in the algorithm
k Index of the current iteration in the algorithm
D Set of all customers
S Set of all ships
I Set of all products
J Set of all container types
Sd Set of the ships covering the port of customer d, Sd ⊆ S
Id Set of the products that ordered by customer d, Id ⊆ I
Nsj Set of all the containers of type j on ship s
O Set of customer orders
Parameters
Γ A predefined integer value to control the conservative level
M A large number, 1020

ϕ The predefined maximum demand deviation coefficient varying in [0,1]
rd The transportation distance of customer d
cdsj The price of shipping a container of type j in ship s to customer d
wi The inventory volume of product i
odi The nominal required volume of product i by customer d
õdi The maximum deviation volume of required product i by customer d
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Table A1. Cont.

Notations Meaning

vj The volume capacity of container of type j
p The unit penalty cost for an unfulfilled order
qsj Quantity the containers of type j available on ship s
First stage decision variables
Zdsj Integer variables, the number of booked containers of type j in ship s

for customer d
Ydsjn Binary variables, 1, if the nth container of type j on ship s is assigned to

customer d, 0, otherwise
Second stage decision variables
Xdsjni Continuous variables, the volume of product i sent to customer d on

container n of type j on ship s
Xdsi Continuous variables, the volume of product i sent to customer d on ship s
Gdi Continuous variables, uncertain variables of customer d for product i
Odi Continuous variables, the actual volume of required product i by customer d
Dual variables
πi Continuous variables, the dual variables corresponding to constraint (30)
µdi Continuous variables, the dual variables corresponding to constraint (31)
αds Continuous variables, the dual variables corresponding to constraint (32)
γi Continuous variables, the dual variables corresponding to constraint (A27)
λdi Continuous variables, the dual variables corresponding to constraint (A28)
βdsjn Continuous variables, the dual variables corresponding to constraint (A29)
Auxiliary variables
G+

di Continuous variables, the auxiliary variables for linearizing the |Gdi| term
G−di Continuous variables, the auxiliary variables for linearizing the |Gdi| term
η Continuous variables, the auxiliary variables in MP
θ Continuous variables, the auxiliary variables in BD-MP
δ Continuous variables, the auxiliary variables in MP-A
ξdi Continuous variables, the auxiliary variables for linearizing the bi-linear term G+

di µdi
ζdi Continuous variables, the auxiliary variables for linearizing the bi-linear term G−di µdi
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