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Abstract: Using auxiliary information, the calibration approach modifies the original design weights
to enhance the mean estimates. This paper initially proposes two families of estimators based on an
adaptation of the estimators presented by recent researchers, and then, it presents a new family of
calibration estimators with the set of some calibration constraints under stratified median ranked
set sampling (MRSS). The result has also been implemented to the situation of two-stage stratified
median ranked set sampling (MRSS). To best of our knowledge, we are presenting for the first time
calibration-based mean estimators under stratified MRSS, so the performance evaluation is made
between adapted and proposed estimators on behalf of the simulation study with real and artificial
datasets. For real-world data or applications, we use information on the body mass index (BMI) of
800 people in Turkey in 2014 as a research variable and age as an auxiliary variable.

Keywords: median ranked set sampling; two-stage median ranked set sampling; auxiliary information;
calibration-type estimators

MSC: 62D05

1. Introduction

In many real-life studies, specifically in ecological and environmental research, the
variable of interest, say Y, may not be effectively perceptible; the measurements might be
costly, tedious, intrusive or even destructive on the subjects being measured. Despite the
difficulties or complexities in data collection, ranking the sampled units may be relatively
straightforward at no extra cost or with almost no expense. Consider the following exam-
ple: calliphoridae flies detect and colonize on a food source, such as a decaying corpse,
as a natural means of survival within minutes of death. Thus, forensic entomologists
frequently use calliphoridae fly larvae to estimate a cadaver’s time since death during
their post-mortem investigations. As soon as the larvae reach their largest size, they cease
eating. Because their anterior intestine is always empty during the course of their future
development, forensic entomologists can accurately determine the post-mortem interval by
observing how full their intestines are. However, it is challenging to determine changes in
the intestinal contents of maggots using radiographic techniques [1].

Meanwhile, since the larvae appear to lengthen in a continuous manner during their
growth, it is relatively easy to measure and rank their length. As another example, in a
health-related study, suppose that the interest is in estimating the mean cholesterol level of
a population. Instead of performing an invasive blood test on all subjects in the sample,
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subjects can be ranked with respect to their weights, even just visually, and the blood
sample can be taken only on a small number of subjects.

For such circumstances, as described in examples, ranked set sampling (RSS) is a
method for handling data collecting and processing. In order to estimate mean pasture
yields, McIntyre originally proposed RSS in 1952. Takahasi and Wakimoto [2] later devel-
oped the RSS theory under the presumption of perfect ranking. The RSS is carried out
as follows: the population is divided into a simple random sample of size ϑ, each unit is
rated according to subjective criteria, the smallest unit in the sample is measured, and the
remaining units are eliminated. After ranking each unit according to the same criteria, a
second simple random sample of size ϑ is chosen from the population. The second smallest
unit is then measured, and the remaining units are discarded. Until the ordered units
are measured, this process is repeated. A cycle is defined as the ordered observations
Yi[1], Yi[2], . . . , Yi[ϑ], where i = 1, ..., m denotes the cycle number. A total sample size of ϑ is
produced once the cycles are repeated m times.

Since its inception, RSS has attracted a great deal of attention from scholars, and it
continues to be a very active research area. Beyond its initial horticultural-based origins in
the foundational work by McIntyre [3], it has now begun to find its way into commercial
applications. For more details regarding RSS, intrigued readers may refer to Chen et al. [4],
Samawi and Muttlak [5], Bouza [6], Jeelani and Bouza [7], Eftekharian and Razmkhah [8]
and Koyuncu [9]. In order to estimate the population mean, Muttlak [10] suggested median
ranked set sampling (MRSS) and demonstrated that it produces estimates that are more
accurate than RSS. MRSS can be thought of as a modified form of RSS, where the median of
each sample in a cycle is measured rather than the kth (k = 1, 2, ..., ϑ) smallest unit in each
ranked sample.

The most popular estimator of the population mean in sampling theory is the classic
ratio estimator when there is a high positive correlation between the study variable (Y)
and the auxiliary variable (X) [11]. Al-Omari [12] took the MRSS scheme into consideration
when proposing new ratio-type estimators that are based on the first and third quartiles
of the auxiliary variable. The original structure of the MRSS proposed by Al-Omari [12]
requires the use of ϑ independent samples of each size ϑ bivariate units from a finite
population. The variable of interest Y is ranked by individual judgment, such as by a visual
examination, or by means of the utilization of an accompanying variable associated with Y.
Al-Omari [12] considered ranking on the auxiliary variable X as follows: When ϑ is odd

in a cycle, the
(

ϑ+1
2

)th
smallest X and the corresponding Y are chosen from each sample.

When ϑ is even, the
(

ϑ
2

)th
smallest X and the associated Y are chosen from the first ϑ

2 set

and the
(

ϑ+2
2

)th
smallest X and associated Y are chosen from the remaining ϑ

2 set. For
more information, see Al-Omari [12]. The cycles can be repeated m > 1 times to obtain
a total sample size of mϑ. Later, Koyuncu [13] expanded on Al-Omari [12] concept and
introduced estimators of the regression, exponential, and difference types. However, all
this work is completed on traditional ratio and regression-type mean estimation under
MRSS. In this paper, taking motivation from these, we have made an attempt to develop
calibration-type mean estimators under stratified MRSS.

The remainder of this article is structured as follows: In Section 2, we present a
calibration technique and present adapted estimators under stratified MRSS. In Section 3,
we propose a new family of estimators with a set of calibration constraints. Section 4 is
dedicated to a two-stage MRSS scheme. In Section 5, where we compare the effectiveness of
our suggested estimators with modified estimators, we conducted a thorough simulation
analysis. Finally, in Section 6, we offer our concluding remarks.

2. Adapted Estimators under Stratified MRSS Design

The effectiveness of the mean estimator from a finite population can be increased at
various stages when auxiliary information is supplied. There are many instances in every-
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day life where the research variable Y and the auxiliary variable X have a linear relationship.
Think about your height and weight, as taller people tend to weigh more; think about your
GPA and SAT scores, as students with higher GPAs typically perform better on the SAT test;
think about the relationship between depression and suicide: severe depression increases
the chance of suicide compared to those who do not have depression [14]; take body mass
index (BMI) and total cholesterol as an example. It has been demonstrated that these two
variables have a direct and positive association [15].

A basic method of adjusting the initial weights with the goal of minimizing a specified
distance measure while taking into account auxiliary data is known as calibration estima-
tion. By creating new calibration weights in stratified sampling, researchers have attempted
to boost estimates of the population parameter in the literature. A distance metric and a set
of calibration constraints are the two fundamental building blocks in the creation of new
calibration weights.

The development of calibration estimation in survey sampling dates back to Deville
and Sarndal [16]. In the presence of auxiliary information, they created the calibration
restrictions. They claim that when the sample sum of the weighted auxiliary variable equals
the known population total for that auxiliary variable, the calibrated weights may provide
accurate estimations. Because there is a significant correlation between the study variable
and the auxiliary variables, weights that are effective for the auxiliary variable should also
be effective for the research variable. Numerous authors have investigated calibration
estimates utilizing various calibration constraints in survey sampling in the wake of Deville
and Sarndal [16]. The first extended calibration method for a stratified sampling design
was introduced by Singh, Horn, and Yu [17]. Koyuncu and Kadilar [13] provided corrected
expressions of Tracy et al. [18] calibrated weights, and also new improved calibration
weights are introduced. Furthermore, Sinha et al. [19] and Garg and Pachori [20] have
extended the work in the two-stage stratified sampling scheme. Taking motivation from
these important studies, we are adapting Sinha et al. [19] and Garg and Pachori [20]
estimators under MRSS.

2.1. Sinha et al. (2017) Estimator [19]

In a stratified sampling design, a random sample of size nδ, is drawn without replace-
ment from a population of size Nδ in stratum δ, (δ = 1, 2, ...γ). Let (Xi(1), Yi[1]), (Xi(2), Yi[2]),
. . . , (Xi(nδ)

, Yi[nδ ]
) be the order statistics of Xi1, Xi2, . . . , Xinδ

and the judgment order of
Yi1, Yi2, . . . , Yinδ

, in δth stratum, for (i = 1, 2, ...nδ). Furthermore, () and [] indicate that the
ranking of X is perfect and the ranking of Y has errors. For odd and even sample sizes, the
units measured using MRSS are denoted by M(O) and M(E), respectively.

As per each reviewer suggestion, let us provide small examples for sample selection
in case of even and odd sample sizes so that readers catch the true spirit of this article as
given below:

• In case of an even sample size in the δth stratum, the
( nδ

2
)th smallest X and the

associated Y are chosen from the first nδ
2 set and the

(
nδ+2

2

)th
smallest X and associated

Y are chosen from the remaining nδ
2 set. Let us take a small example of MRSS for the

even sample size in Table 1 for (i = 1,2,...,4). Clearly, for nδ = 4, X
(

nδ
2 )

= X( 4
2 )

= X(2)

with an associated Y is selected for the first and second cycles, i.e., (X1(2), Y1[2]) and
(X2(2), Y2[2]). Furthermore, X

(
nδ+2

2 )
= X( 4+2

2 ) = X( 6
2 )

= X(3) with associated Y is

selected for the remaining two cycles, i.e., (X3(3), Y3[3]) and (X4(3), Y4[3]).

• In case of odd sample size in the δth stratum, the
( nδ+

2
)th smallest X and the associated

Y are chosen from each set. Let us take a small example of MRSS for the odd sample
size in Table 2 for (i = 1, 2 , 3). Clearly, for nδ = 3, X

(
nδ+1

2 )
= X( 3+1

2 ) = X( 4
2 )

= X(2)

with associated Y is selected from each cycle, i.e., (X1(2), Y1[2]), (X2(2), Y2[2]) and
(X3(2), Y3[2]).
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Table 1. MRSS for even sample size, i.e., nδ = 4.

(X1(1), Y1[1]) (X1(2), Y1[2]) (X1(3), Y1[3]) (X1(4), Y1[4])

(X2(1), Y2[1]) (X2(2), Y2[2]) (X2(3), Y2[3]) (X2(4), Y2[4])

(X3(1), Y3[1]) (X3(2), Y3[2]) (X3(3), Y3[3]) (X3(4), Y3[4])

(X4(1), Y4[1]) (X4(2), Y4[2]) (X4(3), Y4[3]) (X4(4), Y4[4])

Table 2. MRSS for odd sample size i.e., nδ = 3.

(X1(1), Y1[1]) (X1(2), Y1[2]) (X1(3), Y1[3])

(X2(1), Y2[1]) (X2(2), Y2[2]) (X2(3), Y2[3])

(X3(1), Y3[1]) (X3(2), Y3[2]) (X3(3), Y3[3])

For odd sample size, let (X
1( nδ+1

2 )
, Y

1[ nδ+1
2 ]

), (X
2( nδ+1

2 )
, Y

2[ nδ+1
2 ]

), . . . , (X
nδ(

nδ+1
2 )

, Y
nδ[

nδ+1
2 ]

)

denote the observed units by M(O) in δth stratum. Let x̄st(M(O)) =
γ

∑
δ=1

Wδ x̄δ(M(O)) and

ȳst(M(O)) =
γ

∑
δ=1

Wδ ȳδ(M(O)) be the overall sample means of δth strata for X and Y, respectively. Fur-

thermore, ȳδ(M(O)) =
1

nδ

nδ
∑

i=1
Y

δi[
nδ+1

2 ]
and x̄δ(M(O)) =

1
nδ

nδ
∑

i=1
X

δi(
nδ+1

2 )
, be the sample means in δth stratum. In

addition, Var(x̄st(M(O))) =
γ

∑
δ=1

W2
δ

2nδ
σ2

x(
nδ+1

2 )
and Var(ȳst(M(O))) =

γ

∑
δ=1

W2
δ

2nδ
σ2

x[
nδ+1

2 ]
, where

σ2

x(
nδ+1

2 )
=

1
n2

δ

γ

∑
δ=1

Var
(

X
δi(

nδ+1
2 )

)
and σ2

y[
nδ+1

2 ]
=

1
n2

δ

γ

∑
δ=1

Var
(

Y
δi[

nδ+1
2 ]

)
. Note that Var(ȳst(M(O))) and

Var(x̄st(M(O))) are the overall sample variances of δth strata for Y and X, respectively.
The notations Y

δi[ nδ+1
2 ]

and X
δi( nδ+1

2 )
are representing the selected MRSS sample values of

study and auxiliary variables for odd sample size.
For even sample size, let (X1( nδ

2 ), Y1[ nδ
2 ]), (X2( nδ

2 ), Y2[ nδ
2 ]), . . . , (X n

2 (
nδ
2 ), Ynδ

2 [
nδ
2 ]), (X nδ+2

2 (
nδ+2

2 )
,

Ynδ+2
2 [

nδ+2
2 ]

), (X nδ+4
2 (

nδ+2
2 )

, Ynδ+4
2 [

nδ+2
2 ]

), . . . , (Xnδ(
nδ
2 )

, Ynδ [
nδ
2 ]
) denote the observed units by

M(E) in the δth stratum. Let x̄st(M(E)) =
γ

∑
δ=1

Wδ x̄δ(M(E)) and ȳst(M(E)) =
γ

∑
δ=1

Wδ ȳδ(M(E)) be the overall sample

means of δth strata for X and Y, respectively. Here, x̄δ(M(E)) = 1
nδ

 nδ
2
∑

i=1
X

δi(
nδ
2 )

+
nδ
∑

i=
nδ+2

2

X
δi(

nδ+2
2 )


and ȳδ(M(E)) = 1

nδ

 nδ
2
∑

i=1
Y

δi[
nδ
2 ]

+
nδ
∑

i=
nδ+2

2

Y
δi[

nδ+2
2 ]

 are the sample means in δth stratum. In addition,

Var(x̄st(M(E))) =
γ

∑
δ=1

W2
δ

2nδ

(
σ2

x(
nδ
2 )

+ σ2

x(
nδ+2

2 )

)
and Var(ȳst(M(E))) =

γ

∑
δ=1

W2
δ

2nδ

(
σ2

y[
nδ
2 ]

+ σ2

y[
nδ+2

2 ]

)
, where

σ2
x(

nδ
2 )

=
1
n2

δ

γ

∑
δ=1

Var
(

X
δi(

nδ
2 )

)
, σ2

x(
nδ+2

2 )
=

1
n2

δ

γ

∑
δ=1

Var
(

X
δi(

nδ+2
2 )

)
, σ2

y[
nδ
2 ]

=
1
n2

δ

γ

∑
δ=1

Var
(

Y
δi[

nδ
2 ]

)
and

σ2

y[
nδ+2

2 ]
=

1
n2

δ

γ

∑
δ=1

Var
(

Y
δi[

nδ+2
2 ]

)
. Note that Var(ȳst(M(E))) and Var(x̄st(M(E))) are the overall

sample variances of δth strata for Y and X, respectively. The notations Y
δi[ nδ

2 ]
, Y

δi[ nδ+2
2 ]

,

X
δi( nδ

2 )
, X

δi( nδ+2
2 )

are representing the selected MRSS sample values of study and auxiliary

variables for even sample size. For more details about MRSS notations, interested readers
may refer to Koyuncu [13].

Let j = (E, O) denote the sample size even or odd; we are adapting Sinha et al.’s [19]
calibration estimator under MRSS design as given by

ȳSM =
γ

∑
δ=1

Φδȳδ(M(j)), (1)

subject to the constraints

γ

∑
δ=1

Φδ =
γ

∑
δ=1

Wδ, (2)
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γ

∑
δ=1

Φδ x̄δ(M(j)) =
γ

∑
δ=1

WδX̄δ(M) (3)

where X̄δ(M) is the population mean of auxiliary variable in the δth stratum. By defining
λ1(M(j)) and λ2(M(j)) as Lagrange multipliers, the Lagrange function is given by

∆(M(j)) =
γ

∑
δ=1

(Φδ − Wδ)
2

QδWδ
− 2λ1(M(j))

[
γ

∑
δ=1

Φδ −
γ

∑
δ=1

Wδ

]
− 2λ2(M(j))

[
γ

∑
δ=1

Φδ x̄δ(M(j)) −
γ

∑
δ=1

WδX̄δ(M)

]
. (4)

Differentiating ∆(M(j)) according to calibration weight and obtaining the optimum
value of Φδ

Φδ = Wδ + QδWδ

[
λ2(M(j)) x̄δ(M(j)) + λ1(M(j))

]
, (5)

putting (5) in (2) and (3), we obtain

λ1(M(j)) = −

γ

∑
δ=1

Wδ

[
X̄δ(M) − x̄δ(M(j))

][ γ

∑
δ=1

QδWδ x̄δ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

]2 , (6)

λ2(M(j)) =

γ

∑
δ=1

Wδ

[
X̄δ(M) − x̄δ(M(j))

][ γ

∑
δ=1

QδWδ

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

]2 . (7)

By substituting these weights in (5), we obtain calibration weights as

Φδ = Wδ + QδWδ

[
γ

∑
δ=1

QδWδ

]
x̄δ(M(j)) −

[
γ

∑
δ=1

QδWδ x̄δ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

]2

γ

∑
δ=1

Wδ

[
X̄δ(M) − x̄δ(M(j))

]
, (8)

Finally, by putting Φδ in ȳSM and obtaining the calibrated mean estimator of study
variable

ȳSM =
γ

∑
δ=1

Wδ ȳδ(M(j)) +

[
γ

∑
δ=1

QδWδ

][
γ

∑
δ=1

QδWδ ȳδ(M(j)) x̄δ(M(j))

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

][
γ

∑
δ=1

QδWδ ȳδ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

]2

γ

∑
δ=1

Wδ

[
X̄δ(M) − x̄δ(M(j))

]
. (9)

This estimator can be rewritten as

ȳSM = ȳst(M(j)) + b̂(j)

[
γ

∑
δ=1

Wδ(X̄δ(M) − x̄δ(M(j)))

]
, (10)

where

b̂(j) =

[
γ

∑
δ=1

QδWδ

][
γ

∑
δ=1

QδWδȳδ(M(j)) x̄δ(M(j))

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

][
γ

∑
δ=1

QδWδȳδ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

]2 . (11)
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ȳSM =



ȳst(M(O)) + b̂(O)

[
γ

∑
δ=1

Wδ(X̄δ(M) − x̄δ(M(O)))

]
when n is odd

ȳst(M(E)) + b̂(E)

[
γ

∑
δ=1

Wδ(X̄δ(M) − x̄δ(M(E)))

]
when n is even.

(12)

2.2. Garg and Pachori (2019) Estimator [20]

Let j = (E, O) denote the sample size even or odd; we are adapting Garg and Pachori’s
(2019) calibration estimator under MRSS design as given by

ȳGM =
γ

∑
δ=1

Φδȳδ(M(j)), (13)

subject to the constraints

γ

∑
δ=1

Φδ =
γ

∑
δ=1

Wδ, (14)

γ

∑
δ=1

ΦδĈxδ(M(j)) =
γ

∑
δ=1

WδCxδ(M) (15)

where (Ĉxδ(M(j)), Cxδ(M)) represent the sample and population coefficient of variation (CV)
of the auxiliary variable in the δth stratum. By defining λ1(M(j)) and λ2(M(j)) as Lagrange
multipliers, the Lagrange function is given by

∆(M(j)) =
γ

∑
δ=1

(Φδ − Wδ)
2

QδWδ
− 2λ1(M(j))

[
γ

∑
δ=1

Φδ −
γ

∑
δ=1

Wδ

]
− 2λ2(M(j))

[
γ

∑
δ=1

ΦδĈxδ(M(j)) −
γ

∑
δ=1

WδCxδ(M)

]
. (16)

Differentiating ∆(M(j)) according to calibration weight and obtaining the optimum
value of Φδ

Φδ = Wδ + QδWδ

[
λ2(M(j))Ĉxδ(M(j)) + λ1(M(j))

]
, (17)

putting (17) in (14) and (15), we obtain

λ1(M(j)) = −

γ

∑
δ=1

Wδ

[
Cxδ(M) − Ĉxδ(M(j))

][ γ

∑
δ=1

QδWδĈxδ(M(j))

]
[

γ

∑
δ=1

QδWδĈx2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

]2 , (18)

λ2(M(j)) =

γ

∑
δ=1

Wδ

[
Cxδ(M) − Ĉxδ(M(j))

][ γ

∑
δ=1

QδWδ

]
[

γ

∑
δ=1

QδWδĈx2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

]2 . (19)

By substituting these weights in (17), we obtain calibration weights as

Φδ = Wδ + QδWδ

[
γ

∑
δ=1

QδWδ

]
Ĉxδ(M(j)) −

[
γ

∑
δ=1

QδWδĈxδ(M(j))

]
[

γ

∑
δ=1

QδWδĈx2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

]2

γ

∑
δ=1

Wδ

[
Cxδ(M) − Ĉxδ(M(j))

]
, (20)

By putting Φδ in ȳGM and obtaining the calibrated mean estimator of study variable
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ȳGM =
γ

∑
δ=1

Wδ ȳδ(M(j)) +

[
γ

∑
δ=1

QδWδ

][
γ

∑
δ=1

QδWδ ȳδ(M(j))Ĉxδ(M(j))

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

][
γ

∑
δ=1

QδWδ ȳδ(M(j))

]
[

γ

∑
δ=1

QδWδĈx2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

]2

γ

∑
δ=1

Wδ

[
Cxδ(M) − Ĉxδ(M(j))

]
. (21)

This estimator can be rewritten as

ȳGM = ȳst(M(j)) + b̂j

[
γ

∑
δ=1

Wδ(Cxδ(M) − Ĉxδ(M(j)))

]
, (22)

where

b̂j =

[
γ

∑
δ=1

QδWδ

][
γ

∑
δ=1

QδWδȳδ(M(j))Ĉxδ(M(j))

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

][
γ

∑
δ=1

QδWδȳδ(M(j))

]
[

γ

∑
δ=1

QδWδĈx2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

]2 . (23)

ȳGM =



ȳst(M(O)) + b̂(O)

[
γ

∑
δ=1

Wδ(Cxδ(M) − Ĉxδ(M(O)))

]
when n is odd

ȳst(M(E)) + b̂(E)

[
γ

∑
δ=1

Wδ(Cxδ(M) − Ĉxδ(M(E)))

]
when n is even.

(24)

3. Proposed Family of Estimators in MRSS

Taking motivation from Sinha et al. [19] and Garg and Pachori [20], we propose the
following estimator under stratified MRSS

ȳPM =
γ

∑
δ=1

Φδȳδ(M(j)), (25)

subject to the constraints

γ

∑
δ=1

Φδ x̄δ(M(j)) =
γ

∑
δ=1

WδX̄δ(M) (26)

γ

∑
δ=1

ΦδĈxδ(M(j)) =
γ

∑
δ=1

WδCxδ(M) (27)

γ

∑
δ=1

Φδ =
γ

∑
δ=1

Wδ, (28)

Defining λ1(M(j)), λ2(M(j)) and λ3(M(j)) as Lagrange multipliers, the Lagrange function
is given by

∆(M(j)) =
γ

∑
δ=1

(Φδ − Wδ)
2

QδWδ
− 2λ1(M(j))

[
γ

∑
δ=1

Φδ x̄δ(M(j)) −
γ

∑
δ=1

WδX̄δ(M)

]

− 2λ2(M(j))

[
γ

∑
δ=1

ΦδĈxδ(M(j)) −
γ

∑
δ=1

WδCxδ(M)

]
− 2λ3(M(j))

[
γ

∑
δ=1

Φδ −
γ

∑
δ=1

Wδ

]
.

(29)

Differentiating ∆(M(j)) w.r.t Φδ and equating to zero, we obtain the calibration weight

Φδ = Wδ + QδWδ

[
λ1(M(j)) x̄δ(M(j)) + λ2(M(j))Ĉxδ(M(j)) + λ3(M(j))

]
, (30)
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Substituting (30) in (26), (27), and (28), respectively, we obtain a system of equations
containing three equations. The system of equations in matrix form

G(3×3)λ(3×1) = F(3×1), (31)

where

λ(3×1) =

 λ1(M(j))
λ2(M(j))
λ3(M(j))

,

F(3×1) =


γ

∑
δ=1

Wδ

(
X̄δ(M) − x̄δ(M(j))

)
γ

∑
δ=1

Wδ

(
Cxδ(M) − Ĉxδ(M(j))

)
0

,

G(3×3) =



(
γ

∑
δ=1

QδWδ x̄2
δ(M(j))

) (
γ

∑
δ=1

QδWδ x̄δ(M(j))Ĉxδ(M(j))

) (
γ

∑
δ=1

QδWδ x̄δ(M(j))

)
(

γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

) (
γ

∑
δ=1

QδWδĈ2xδ(M(j))

) (
γ

∑
δ=1

QδWδĈxδ(M(j))

)
(

γ

∑
δ=1

QδWδ x̄δ(M(j))

) (
γ

∑
δ=1

QδWδĈxδ(M(j))

) (
γ

∑
δ=1

QδWδ

)


.

Solving the system of equations for lambdas, we obtain

λ1(M(j)) =
D1

H
, λ2(M(j)) =

D2

H
, λ3(M(j)) =

D3

H
,

where

D1(M(j)) =
γ

∑
δ=1

Wδ

(
X̄δ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδĈ2xδ(M(j))

)

−
γ

∑
δ=1

Wδ

(
X̄δ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδĈxδ(M(j))

)2

+
γ

∑
δ=1

Wδ

(
Cxδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)

−
γ

∑
δ=1

Wδ

(
Cxδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

)
,

D2(M(j)) =
γ

∑
δ=1

Wδ

(
Cxδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)

−
γ

∑
δ=1

Wδ

(
Cxδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ x̄δ(M(j))

)2

−
γ

∑
δ=1

Wδ

(
X̄δ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

)(
γ

∑
δ=1

QδWδ

)

+
γ

∑
δ=1

Wδ

(
X̄δ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)
,
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D3(M(j)) =
γ

∑
δ=1

Wδ

(
X̄δ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδĈxδ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

)

−
γ

∑
δ=1

Wδ

(
X̄δ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈ2xδ(M(j))

)

+
γ

∑
δ=1

Wδ

(
Cxδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))Ĉxδ(M(j))

)

−
γ

∑
δ=1

Wδ

(
Cxδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)
.

H =

(
γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδĈ2xδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)
−
(

γ

∑
δ=1

QδWδ x̄δ(M(j))

)2( γ

∑
δ=1

QδWδĈ2xδ(M(j))

)

−
(

γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)2

−
(

γ

∑
δ=1

QδWδĈxδ(M(j))

)2( γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)

+ 2

(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))Ĉxδ(M(j))

)
.

Substituting these values in (30) and (25), we obtain the calibrated estimator for study
variable

ȳPM = ȳst(M(j)) + λ1(M(j))

(
γ

∑
δ=1

QδWδ x̄δ(M(j)) ȳδ(M(j))

)
+ λ2(M(j))

(
γ

∑
δ=1

QδWδĈxδ(M(j)) ȳδ(M(j))

)
+ λ3(M(j))

(
γ

∑
δ=1

QδWδ ȳδ(M(j))

)
, (32)

=
γ

∑
δ=1

Wδ ȳδ(M(j)) + b̂1

[
γ

∑
δ=1

Wδ

(
X̄δ(M) − x̄δ(M(j))

)]
+ b̂2

[
γ

∑
δ=1

Wδ

(
Cxδ(M) − Ĉxδ(M(j))

)]
, (33)

where

b̂1(j) =
D4

H
, b̂2(j) =

D5

H
,

where

D4(M(j)) =

(
γ

∑
δ=1

QδWδ x̄δ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδĈ2xδ(M(j))

)

−
(

γ

∑
δ=1

QδWδ x̄δ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)2

−
(

γ

∑
δ=1

QδWδĈxδ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

)(
γ

∑
δ=1

QδWδ

)

+

(
γ

∑
δ=1

QδWδĈxδ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)

+

(
γ

∑
δ=1

QδWδȳδ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

)

−
(

γ

∑
δ=1

QδWδȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈ2xδ(M(j))

)
,



Mathematics 2023, 11, 1825 10 of 21

D5(M(j)) =

(
γ

∑
δ=1

QδWδ x̄δ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)

−
(

γ

∑
δ=1

QδWδ x̄δ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

)

+

(
γ

∑
δ=1

QδWδȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))Ĉxδ(M(j))

)

−
(

γ

∑
δ=1

QδWδȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)

+

(
γ

∑
δ=1

QδWδĈxδ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)

−
(

γ

∑
δ=1

QδWδĈxδ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)2

.

ȳPM =



ȳst(M(O)) + b̂1(O)

[
γ

∑
δ=1

Wδ

(
X̄δ(M) − x̄δ(M(O))

)]
+ b̂2(O)

[
γ

∑
δ=1

Wδ

(
Cxδ(M) − Ĉxδ(M(O))

)]
when n is odd

ȳst(M(E)) ++b̂1(E)

[
γ

∑
δ=1

Wδ

(
X̄δ(M) − x̄δ(M(E))

)]
+ b̂2(E)

[
γ

∑
δ=1

Wδ

(
Cxδ(M) − Ĉxδ(M(E))

)]
when n is even.

(34)

4. Two Stage Stratified MRSS

In real life, the double sampling approach can be used to estimate population mean
when the population mean of an auxiliary variable is unknown. This section makes the
assumption that the auxiliary variable’s mean is not available. As a result, using the
two-stage MRSS approach described in Al-Omari [12] and Koyuncu [13], basic random
sampling is utilized at the first stage and median ranked set sampling is utilized at the
second stage. Keep in mind that the first-phase sample is na = n2 and the second-phase
sample is n. Let x̄aδ(M), Ĉxaδ(M) be the first-phase sample mean and CV of the auxiliary
variable. While x̄δ(M(j)), ȳδ(M(j)) and Ĉxδ(M(j)) are the second-phase sample characteristics
of the auxiliary variable and study variable.

4.1. Adapted Estimators in Two-Stage Stratified MRSS

Sinha et al.’s [19] estimator under two-stage stratified MRSS is as follows

ȳSaM =
γ

∑
δ=1

Φaδȳδ(M(j)), (35)

subject to the constraints

γ

∑
δ=1

Φaδ =
γ

∑
δ=1

Wδ, (36)

γ

∑
δ=1

Φaδ x̄δ(M(j)) =
γ

∑
δ=1

Wδ x̄aδ(M) (37)

Defining λ1(M(j)) and λ2(M(j)) as Lagrange multipliers, the Lagrange function is
given by

∆(M(j)) =
γ

∑
δ=1

(Φaδ − Wδ)
2

QδWδ
− 2λ1(M(j))

[
γ

∑
δ=1

Φaδ −
γ

∑
δ=1

Wδ

]
− 2λ2(M(j))

[
γ

∑
δ=1

Φaδ x̄δ(M(j)) −
γ

∑
δ=1

Wδ x̄aδ(M)

]
. (38)
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Differentiating ∆(M(j)) according to calibration weights, we obtain

Φaδ = Wδ + QδWδ

[
λ2(M(j)) x̄δ(M(j)) + λ1(M(j))

]
, (39)

putting (39) in (36) and (37), we obtain

λ1(M(j)) = −

γ

∑
δ=1

Wδ

[
x̄aδ(M) − x̄δ(M(j))

][ γ

∑
δ=1

QδWδ x̄δ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

]2 , (40)

λ2(M(j)) =

γ

∑
δ=1

Wδ

[
x̄aδ(M) − x̄δ(M(j))

][ γ

∑
δ=1

QδWδ

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

]2 . (41)

By substituting these weights in (39), we obtain the optimum calibration weight as

Φaδ = Wδ + QδWδ

[
γ

∑
δ=1

QδWδ

]
x̄δ(M(j)) −

[
γ

∑
δ=1

QδWδ x̄δ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

]2

γ

∑
δ=1

Wδ

[
x̄aδ(M) − x̄δ(M(j))

]
, (42)

By putting Φaδ in ȳSaM

ȳSaM =
γ

∑
δ=1

Wδ ȳδ(M(j)) +

[
γ

∑
δ=1

QδWδ

][
γ

∑
δ=1

QδWδ ȳδ(M(j)) x̄δ(M(j))

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

][
γ

∑
δ=1

QδWδ ȳδ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

]2

γ

∑
δ=1

Wδ

[
x̄aδ(M) − x̄δ(M(j))

]
. (43)

This estimator can be rewritten as

ȳSaM = ȳst(M(j)) + b̂j

[
γ

∑
δ=1

Wδ(x̄aδ(M) − x̄δ(M(j)))

]
, (44)

where

b̂j =

[
γ

∑
δ=1

QδWδ

][
γ

∑
δ=1

QδWδȳδ(M(j)) x̄δ(M(j))

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

][
γ

∑
δ=1

QδWδȳδ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδ x̄δ(M(j))

]2 . (45)

ȳSaM =



ȳst(M(O)) + b̂O

[
γ

∑
δ=1

Wδ(x̄aδ(M) − x̄δ(M(j)))

]
when n is odd

ȳst(M(E)) + b̂E

[
γ

∑
δ=1

Wδ(x̄aδ(M) − x̄δ(M(j)))

]
when n is even.

(46)

Garg and Pachori’s [20] estimator under two-stage MRSS is given below

ȳGaM =
γ

∑
δ=1

Φaδȳδ(M(j)), (47)

subject to the constraints
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γ

∑
δ=1

Φaδ =
γ

∑
δ=1

Wδ, (48)

γ

∑
δ=1

ΦaδĈxδ(M(j)) =
γ

∑
δ=1

WδĈxaδ(M) (49)

Defining λ1(M(j)) and λ2(M(j)) as Lagrange multipliers, the Lagrange function is
given by

∆(M(j)) =
γ

∑
δ=1

(Φaδ − Wδ)
2

QδWδ
− 2λ1(M(j))

[
γ

∑
δ=1

Φaδ −
γ

∑
δ=1

Wδ

]
− 2λ2(M(j))

[
γ

∑
δ=1

ΦaδĈxδ(M(j)) −
γ

∑
δ=1

WδĈxaδ(M)

]
. (50)

Differentiating ∆(M(j)) according to calibration weights, we obtain

Φaδ = Wδ + QδWδ

[
λ2(M(j))Ĉxδ(M(j)) + λ1(M(j))

]
, (51)

putting (51) in (48) and (49), we obtain

λ1(M(j)) = −

γ

∑
δ=1

Wδ

[
Ĉxaδ(M) − Ĉxδ(M(j))

][ γ

∑
δ=1

QδWδĈxδ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

]2 , (52)

λ2(M(j)) =

γ

∑
δ=1

Wδ

[
Ĉxaδ(M) − Ĉxδ(M(j))

][ γ

∑
δ=1

QδWδ

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

]2 . (53)

By substituting these weights in (51), we obtain calibration weights as

Φaδ = Wδ + QδWδ

[
γ

∑
δ=1

QδWδ

]
Ĉxδ(M(j)) −

[
γ

∑
δ=1

QδWδĈxδ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

]2

γ

∑
δ=1

Wδ

[
Ĉxaδ(M) − Ĉxδ(M(j))

]
, (54)

By putting Φaδ in ȳGaM

ȳGaM =
γ

∑
δ=1

Wδ ȳδ(M(j)) +

[
γ

∑
δ=1

QδWδ

][
γ

∑
δ=1

QδWδ ȳδ(M(j))Ĉxδ(M(j))

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

][
γ

∑
δ=1

QδWδ ȳδ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

]2

γ

∑
δ=1

Wδ

[
Ĉxaδ(M) − Ĉxδ(M(j))

]
. (55)

This estimator can be rewritten as

ȳGaM = ȳst(M(j)) + b̂j

[
γ

∑
δ=1

Wδ(Ĉxaδ(M) − Ĉxδ(M(j)))

]
, (56)

where

b̂j =

[
γ

∑
δ=1

QδWδ

][
γ

∑
δ=1

QδWδȳδ(M(j))Ĉxδ(M(j))

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

][
γ

∑
δ=1

QδWδȳδ(M(j))

]
[

γ

∑
δ=1

QδWδ x̄2
δ(M(j))

][
γ

∑
δ=1

QδWδ

]
−
[

γ

∑
δ=1

QδWδĈxδ(M(j))

]2 . (57)
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ȳGaM =



ȳst(M(O)) + b̂O

[
γ

∑
δ=1

Wδ(Ĉxaδ(M) − Ĉxδ(M(O)))

]
when n is odd

ȳst(M(E)) + b̂E

[
γ

∑
δ=1

Wδ(Ĉxaδ(M) − Ĉxδ(M(E)))

]
when n is even.

(58)

4.2. Proposed Family of Estimators in Two Stage Stratified MRSS

The proposed estimator under stratified MRSS is given below

ȳPaM =
γ

∑
δ=1

Φaδȳδ(M(j)), (59)

subject to the constraints

γ

∑
δ=1

Φaδ x̄δ(M(j)) =
γ

∑
δ=1

Wδ x̄aδ(M) (60)

γ

∑
δ=1

ΦaδĈxδ(M(j)) =
γ

∑
δ=1

WδĈxaδ(M) (61)

γ

∑
δ=1

Φaδ =
γ

∑
δ=1

Wδ, (62)

Defining λ1(M(j)), λ2(M(j)) and λ3(M(j)) as Lagrange multipliers, the Lagrange function
is given by

∆(M(j)) =
γ

∑
δ=1

(Φaδ − Wδ)
2

QδWδ
− 2λ1(M(j))

[
γ

∑
δ=1

Φaδ x̄δ(M(j)) −
γ

∑
δ=1

Wδ x̄aδ(M)

]

− 2λ2(M(j))

[
γ

∑
δ=1

ΦaδĈxδ(M(j)) −
γ

∑
δ=1

WδĈxaδ(M)

]
− 2λ3(M(j))

[
γ

∑
δ=1

Φaδ −
γ

∑
δ=1

Wδ

]
.

(63)

Differentiating ∆(M(j)) according to calibration weights, we obtain

Φaδ = Wδ + QδWδ

[
λ1(M(j)) x̄δ(M(j)) + λ2(M(j))Ĉxδ(M(j)) + λ3(M(j))

]
, (64)

Substituting (64) in (60), (61), and (62), respectively, we obtain a system of equations
containing three equations. The system of equations in matrix form

G(3×3)λ(3×1) = F(3×1), (65)

where

λ(3×1) =

 λ1(M(j))
λ2(M(j))
λ3(M(j))

,

F(3×1) =


γ

∑
δ=1

Wδ

(
x̄aδ(M) − x̄δ(M(j))

)
γ

∑
δ=1

Wδ

(
Ĉxaδ(M) − Ĉxδ(M(j))

)
0

,
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G(3×3) =



(
γ

∑
δ=1

QδWδ x̄2
δ(M(j))

) (
γ

∑
δ=1

QδWδ x̄δ(M(j))Ĉxδ(M(j))

) (
γ

∑
δ=1

QδWδ x̄δ(M(j))

)
(

γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

) (
γ

∑
δ=1

QδWδĈ2xδ(M(j))

) (
γ

∑
δ=1

QδWδĈxδ(M(j))

)
(

γ

∑
δ=1

QδWδ x̄δ(M(j))

) (
γ

∑
δ=1

QδWδĈxδ(M(j))

) (
γ

∑
δ=1

QδWδ

)

.

By substituting the values of G(3×3),λ(3×1), F(3×1) in (65) and then solving the system
of equations for lambdas, we obtain

λ1(M(j)) =
D1(M(j))

H
, λ2(M(j)) =

D2(M(j))

H
, λ3(M(j)) =

D1(M(j))

H
,

where

D1(M(j)) =
γ

∑
δ=1

Wδ

(
x̄aδ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδĈ2xδ(M(j))

)

−
γ

∑
δ=1

Wδ

(
x̄aδ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδĈxδ(M(j))

)2

+
γ

∑
δ=1

Wδ

(
Ĉxaδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)

−
γ

∑
δ=1

Wδ

(
Ĉxaδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

)
,

D2(M(j)) =
γ

∑
δ=1

Wδ

(
Ĉxaδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)

−
γ

∑
δ=1

Wδ

(
Ĉxaδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ x̄δ(M(j))

)2

−
γ

∑
δ=1

Wδ

(
x̄aδ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

)(
γ

∑
δ=1

QδWδ

)

+
γ

∑
δ=1

Wδ

(
x̄aδ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)
,

D3(M(j)) =
γ

∑
δ=1

Wδ

(
x̄aδ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδĈxδ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

)

−
γ

∑
δ=1

Wδ

(
x̄aδ(M) − x̄δ(M(j))

)( γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈ2xδ(M(j))

)

+
γ

∑
δ=1

Wδ

(
Ĉxaδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))Ĉxδ(M(j))

)

−
γ

∑
δ=1

Wδ

(
Ĉxaδ(M) − Ĉxδ(M(j))

)( γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)
.
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H =

(
γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδĈ2xδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)
−
(

γ

∑
δ=1

QδWδ x̄δ(M(j))

)2( γ

∑
δ=1

QδWδĈ2xδ(M(j))

)

−
(

γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)2

−
(

γ

∑
δ=1

QδWδĈxδ(M(j))

)2( γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)

+ 2

(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))Ĉxδ(M(j))

)
.

Substituting these values in (64) and (59), we have

ȳPaM = ȳst(M(j)) + λ1(M(j))

(
γ

∑
δ=1

QδWδ x̄δ(M(j)) ȳδ(M(j))

)
+ λ2(M(j))

(
γ

∑
δ=1

QδWδĈxδ(M(j)) ȳδ(M(j))

)
+ λ3(M(j))

(
γ

∑
δ=1

QδWδ ȳδ(M(j))

)
,

=
γ

∑
δ=1

Wδ ȳδ(M(j)) + b̂1

[
γ

∑
δ=1

Wδ

(
x̄aδ(M) − x̄δ(M(j))

)]
+ b̂2

[
γ

∑
δ=1

Wδ

(
Ĉxaδ(M) − Ĉxδ(M(j))

)]
, (66)

where

b̂1(j) =
D4(M(j))

H
, b̂2(j) =

D5(M(j))

H
,

where

D4(M(j)) =

(
γ

∑
δ=1

QδWδȳδ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

)

−
(

γ

∑
δ=1

QδWδȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈ2xδ(M(j))

)

−
(

γ

∑
δ=1

QδWδĈxδ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j)) x̄δ(M(j))

)(
γ

∑
δ=1

QδWδ

)

+

(
γ

∑
δ=1

QδWδĈxδ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)

+

(
γ

∑
δ=1

QδWδ x̄δ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδĈ2xδ(M(j))

)

−
(

γ

∑
δ=1

QδWδ x̄δ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)2

,
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D5(M(j)) =

(
γ

∑
δ=1

QδWδ x̄δ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)

−
(

γ

∑
δ=1

QδWδ x̄δ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)

+

(
γ

∑
δ=1

QδWδȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))Ĉxδ(M(j))

)

−
(

γ

∑
δ=1

QδWδȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)(
γ

∑
δ=1

QδWδĈxδ(M(j))

)

+

(
γ

∑
δ=1

QδWδĈxδ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ

)(
γ

∑
δ=1

QδWδ x̄2
δ(M(j))

)

−
(

γ

∑
δ=1

QδWδĈxδ(M(j))ȳδ(M(j))

)(
γ

∑
δ=1

QδWδ x̄δ(M(j))

)2

.

ȳPaM =



ȳst(M(O)) + b̂1(O)

[
γ

∑
δ=1

Wδ

(
x̄aδ(M) − x̄δ(M(O))

)]
+ b̂2(O)

[
γ

∑
δ=1

Wδ

(
Ĉxaδ(M) − Ĉxδ(M(O))

)]
when n is odd

ȳst(M(E)) + b̂1(E)

[
γ

∑
δ=1

Wδ

(
x̄aδ(M) − x̄δ(M(E))

)]
+ b̂2(E)

[
γ

∑
δ=1

Wδ

(
Ĉxaδ(M) − Ĉxδ(M(E))

)]
when n is even.

(67)

Note that all the family members of the adapted and proposed classes of estimators
based on different values Qδ are provided in Table 3. It is worth mentioning that Qδ is a
suitably chosen weight for determining various types of estimators as provided in Table 3.

Table 3. Family members of all classes.

MRSS Estimators Qδ Two-Stage MRSS Estimators
ȳSMI 1 ȳSaMI
ȳSMI I 1/Ĉxδ(M(j)) ȳSaMI I

ȳSMI I I 1/x̄δ(M(j)) ȳSaMI I I

ȳGMI 1 ȳGaMI
ȳGMI I 1/Ĉxδ(M(j)) ȳGaMI I

ȳGMI I I 1/x̄δ(M(j)) ȳGaMI I I

ȳPMI 1 ȳPaMI
ȳPMI I 1/Ĉxδ(M(j)) ȳPaMI I

ȳPMI I I 1/x̄δ(M(j)) ȳPaMI I I

5. Simulation Study
5.1. Simulation Design

The simulation experiments considered in this section are designed to provide insight
into the efficiency of the proposed estimators ȳPMI , ȳPMI I , ȳPMI I I , ȳPaMI , ȳPaMI I and ȳPaMI I I
compared to the estimators ȳSMI , ȳSMI I , ȳSMI I I , ȳSaMI , ȳSaMI I , ȳSaMI I I , ȳGMI , ȳGMI I , ȳGMI I I ,
ȳGaMI , ȳGaMI I , and ȳGaMI I I . All samples were generated from a finite stratified population
having size Ω = 1000 in each stratum, using four distinctive (with respect to variance–
covariance matrix) bivariate Gaussian distributions for each stratum with (µx = 2, µy = 4)
and the variance–covariance matrix given, respectively, by

• Stratum 1

Σ =

[
1 0.90

0.90 1

]
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• Stratum 2

Σ =

[
1 0.76

0.76 1

]
• Stratum 3

Σ =

[
1 0.55

0.55 1

]
• Stratum 4

Σ =

[
1 0.30

0.30 1

]
.

Taking motivation from Koyuncu [13], we select samples from the above-mentioned
stratified population. As they used stratified SRS, however, we are adapting their frame-
work under stratified MRSS design. For the fair comparison among adapted and proposed
estimators, we draw different sample sizes regarding even and odd sample sizes under
MRSS. For increasing the readability of the article, we are providing the considered sample
sizes in Table 4, where A1, A2, A3, A4, B1, B2, B3, and B4 represent the overall selected
strata sample sizes at the first and second stage.

Table 4. Details of different sample sizes for simulation study.

MRSS Two-Stage MRSS
(n1, n2, n3, n4) Table (na1, na2, na3, na4)

(n1, n2, n3, n4)

A1 (3, 5, 5, 3) Table 5 (9, 25, 25, 9)
B1 Table 5 (3, 5, 5, 3)
A2 (4, 6, 6, 4) Table 6 (16, 36, 36, 16)
B2 Table 6 (4, 6, 6, 4)
A3 (5, 7, 7, 5) Table 7 (25, 49, 49, 25)
B3 Table 7 (5, 7, 7, 5)
A4 (6, 8, 8, 6) Table 8 (36, 64, 64, 36)
B4 Table 8 (6, 8, 8, 6)

Table 5. PRE values for (A1, B1).

PRE MRSS PRE Two-Stage MRSS

φ̂ ȳPMI ȳPMI I ȳPMI I I φ̂ ȳPaMI ȳPaMI I ȳPaMI I I

ȳSMI 133.0992 132.9015 133.0761 ȳSaMI 118.0992 119.9015 116.5761
ȳSMI I 132.8973 132.7000 132.8742 ȳSaMI I 127.8973 126.7000 126.3742
ȳSMI I I 133.1524 132.9547 133.1293 ȳSaMI I I 129.1524 127.9547 129.6293
ȳGMI 536.1575 535.3614 536.0645 ȳGaMI 534.1575 532.3614 532.7645
ȳGMI I 530.6326 529.8446 530.5405 ȳGaMI I 522.6326 522.8446 520.3405
ȳGMI I I 536.6391 535.8423 536.5460 ȳGaMI I I 525.6391 525.8423 522.1460

Table 6. PRE values for (A2, B2).

PRE MRSS PRE Two-Stage MRSS

φ̂ ȳPMI ȳPMI I ȳPMI I I φ̂ ȳPaMI ȳPaMI I ȳPaMI I I

ȳSMI 1017.100 1017.528 1017.366 ȳSaMI 992.0999 994.5282 1009.366
ȳSMI I 1018.984 1019.413 1019.251 ȳSaMI I 1003.9842 1003.4134 1009.751
ȳSMI I I 1016.884 1017.312 1017.149 ȳSaMI I I 1002.8836 1002.3119 1010.649
ȳGMI 1560.270 1553.899 1563.418 ȳGaMI 1557.2701 1562.8991 1561.118
ȳGMI I 1647.891 1650.885 1648.266 ȳGaMI I 1645.8907 1649.8852 1648.766
ȳGMI I I 1561.818 1564.453 1563.970 ȳGaMI I I 1559.8180 1567.4527 1562.370
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Table 7. PRE values for (A3, B3).

PRE MRSS PRE Two-Stage MRSS

φ̂ ȳPMI ȳPMI I ȳPMI I I φ̂ ȳPaMI ȳPaMI I ȳPaMI I I

ȳSMI 122.9272 124.3531 122.8358 ȳSaMI 101.92718 101.3531 114.8358
ȳSMI I 126.9125 128.3847 126.8182 ȳSaMI I 111.91254 112.3847 117.3182
ȳSMI I I 123.1588 124.5874 123.0673 ȳSaMI I I 109.15884 109.5874 116.5673
ȳGMI 1627.4355 1704.3119 1622.5118 ȳGaMI 1615.43551 1691.3119 1617.2118
ȳGMI I 1720.3714 1798.3259 1715.3786 ȳGaMI I 1702.37144 1791.3259 1705.8786
ȳGMI I I 1658.3218 1735.5565 1653.3751 ȳGaMI I I 1637.32178 1715.5565 1637.7751

Table 8. PRE values for (A4, B4).

PRE MRSS PRE Two-Stage MRSS

φ̂ ȳPMI ȳPMI I ȳPMI I I φ̂ ȳPaMI ȳPaMI I ȳPaMI I I

ȳSMI 782.1886 800.9280 772.5701 ȳSaMI 757.1886 777.9280 764.5701
ȳSMI I 788.7738 807.6710 779.0744 ȳSaMI I 773.7738 791.6710 769.5744
ȳSMI I I 781.7996 800.5298 772.1859 ȳSaMI I I 767.7996 785.5298 765.6859
ȳGMI 1485.6027 1521.5577 1467.9012 ȳGaMI 1484.6027 1520.5577 1466.6012
ȳGMI I 1484.5264 1520.1681 1467.9857 ȳGaMI I 1482.5264 1519.1681 1465.4857
ȳGMI I I 1492.3204 1528.9696 1474.7493 ȳGaMI I I 1490.3204 1526.9696 1472.1493

For single-stage stratified MRSS, K1 = 7000 samples of sizes n = A1, A2, A3, A4 were
chosen independently under the stratified MRSS design from the population, and for the
kth sample, the estimate (φ̂(k1), φ̂(k2)) of µy was calculated, where

φ̂(k1) = ȳSMI , ȳSMI I , ȳSMI I I , ȳGMI , ȳGMI I , ȳSMI I I .

φ̂(k2) = ȳPMI , ȳPMI I , ȳPMI I I .

Al-Omari [12] and Koyuncu [13] considered double MRSS design. However, we are
adapting their strategy for double MRSS in δth stratum where K1 = 7000 samples of
sizes naδ = nδ × nδ = A1, A2, A3, A4 were chosen independently under the SRS at the
first stage and then stratified MRSS samples of sizes nδ = B1, B2, B3, B4 were chosen from
nδ × nδ at the second stage, and for the kth sample, the estimate (φ̂(k1), φ̂(k2)) of µy was
calculated, where

φ̂(k1) = ȳSaMI , ȳSaMI I , ȳSaMI I I , ȳGaMI , ȳGaMI I , ȳSaMI I I .

φ̂(k2) = ȳPaMI , ȳPaMI I , ȳPaMI I I .

The bias and MSE were calculated from the formula given below

Bias(φ̂(k1)) =
K1

∑
k1=1

(φ̂(k1) − µy)/K1.

MSE(φ̂(k1)) =
K1

∑
k1=1

(φ̂(k1) − µy)
2/K1.

Bias(φ̂(k2)) =
K1

∑
k1=1

(φ̂(k2) − µy)/K1.

MSE(φ̂(k2)) =
K1

∑
k1=1

(φ̂(k2) − µy)
2/K1.

The calculated bias values are presented in Table 9.
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Table 9. Bias values of estimators for simulation study.

φ̂ (A1, B1) (A2, B2) (A3, B3) (A4, B4)

MRSS
ȳSMI 0.9587 0.8480 0.8210 0.7302
ȳSMI I 0.6095 0.4988 0.4718 0.3810
ȳSMI I I 0.7104 0.5997 0.5727 0.4819
ȳGMI 0.7864 0.6757 0.6487 0.5579
ȳGMI I 0.6381 0.5274 0.5004 0.4096
ȳGMI I I 0.5753 0.4646 0.4376 0.3468
ȳPMI 0.5550 0.4443 0.4173 0.3265
ȳPMI I 0.4471 0.3364 0.3094 0.2186
ȳPMI I I 0.4261 0.3154 0.2884 0.1976

Two stage
MRSS
ȳSaMI 0.6656 0.5549 0.5279 0.4371
ȳSaMI I 0.5114 0.4007 0.3737 0.2829
ȳSaMI I I 0.5163 0.4056 0.3786 0.2878
ȳGaMI 0.6020 0.4913 0.4643 0.3735
ȳGaMI I 0.4816 0.3709 0.3439 0.2531
ȳGaMI I I 0.4398 0.3291 0.3021 0.2113
ȳPaMI 0.2537 0.1430 0.1160 0.0252
ȳPaMI I 0.2739 0.1632 0.1362 0.0454
ȳPaMI I I 0.2593 0.1486 0.1216 0.0308

After calculating the MSE values separately, the efficiency of the estimators was
compared by using the percent relative efficiency (PRE) formula

PRE(φ̂(k1), φ̂(k2)) =
MSE(φ̂(k1))

MSE(φ̂(k2))
× 100,

We provide our PRE results in Tables 5–8.

5.2. Real Life Application

We also assessed the properties of the proposed estimators using a real-life example.
We use the data concerning body mass index (BMI) as a study variable and the weight
as auxiliary variables for 800 people in Turkey in 2014. The open-access dataset belongs
to a health survey prepared by the Turkish Statistical Institute (TSI) that examines the
determinants ”factors which may affect obesity” of health-related behaviors in Turkey for
800 people. All the dataset information is already available in Cetin and Koyuncu [21]. The
collected data consist of N = 800 observations with ρxy = 0.86, µy = 23.77, µx = 67.55,
Cx = 0.20 and Cy = 0.17. We stratified the dataset using gender in two strata. Some major
characteristics of the strata as follows

• Stratum-I Nh1 = 477, ρyxh1 = 0.90, µyh1 = 22.36, µxh1 = 59.99, Cxh1 = 0.17, Cyh1 = 0.17.
• Stratum-II Nh2 = 323, ρyxh2 = 0.80, µyh2 = 25.85, µxh2 = 78.72, Cxh2 = 0.04,

Cyh1 = 0.13.

The calculated bias values are presented in Table 10.

Table 10. Bias values of estimators for real-life data.

φ̂ MRSS φ̂ Two Stage MRSS

ȳSMI 2.9587 ȳSaMI 2.8480
ȳSMI I 2.7404 ȳSaMI I 2.6297
ȳSMI I I 2.6413 ȳSaMI I I 2.5306
ȳGMI 2.6293 ȳGaMI 2.5186
ȳGMI I 2.4296 ȳGaMI I 2.3189
ȳGMI I I 2.3194 ȳGaMI I I 2.2087
ȳPMI 2.0246 ȳPaMI 1.9139
ȳPMI I 2.0024 ȳPaMI I 1.8917
ȳPMI I I 2.1110 ȳPaMI I I 2.0003

The numerical comparisons based on PRE for BMT data are provided in Tables 11 and 12.
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Table 11. PRE values for BMI data for odd sample size.

PRE MRSS (3,5) PRE Two Stage MRSS (9,25,3,5)

φ̂ ȳPMI ȳPMI I ȳPMI I I φ̂ ȳPaMI ȳPaMI I ȳPaMI I I

ȳSMI 569.1733 618.0211 579.6620 ȳSaMI 549.1333 593.1211 531.5231
ȳSMI I 548.0034 598.8768 567.9848 ȳSaMI I 530.8009 571.5667 521.7440
ȳSMI I I 590.3432 637.1654 591.3392 ȳSaMI I I 567.4657 614.6755 541.3022
ȳGMI 593.0307 642.8811 603.7382 ȳGaMI 572.5669 617.4752 554.5779
ȳGMI I 571.8608 623.7368 592.0610 ȳGaMI I 554.2345 595.9208 544.7988
ȳGMI I I 614.2006 662.0254 615.4154 ȳGaMI I I 590.8993 639.0296 564.3570

Table 12. PRE values for BMI data for even sample size.

PRE MRSS (4,6) PRE Two Stage MRSS (16,36,4,6)

φ̂ ȳPMI ȳPMI I ȳPMI I I φ̂ ȳPaMI ȳPaMI I ȳPaMI I I

ȳSMI 877.1798 931.0274 881.5154 ȳSaMI 851.1444 896.1555 866.5199
ȳSMI I 856.0099 911.8831 869.8382 ȳSaMI I 832.8120 874.6011 856.7408
ȳSMI I I 898.3497 950.1717 893.1926 ȳSaMI I I 869.4768 917.7099 876.2990
ȳGMI 906.7970 961.5401 911.2057 ȳGaMI 880.3188 926.0914 895.9566
ȳGMI I 885.6271 942.3958 899.5285 ȳGaMI I 861.9864 904.5370 886.1775
ȳGMI I I 927.9669 980.6844 922.8829 ȳGaMI I I 898.6512 947.6458 905.7357

We explore the following points from numerical investigation:

• Tables 9 and 10 show bias results for proposed and existing estimators based on
simulation and real-life data. It is worth mentioning that the proposed estimators
have less bias as compared to existing ones. Furthermore, in the simulation study bias
results, i.e., Table 9, the bias is reducing by increasing the sampling size.

• Clearly, PRE > 100, which means all the proposed estimators are performing better as
compared to the adapted estimators. Although we make this conclusion based on our
simulation and real-life study, we are confident that this result would be valid under
different settings as well.

6. Conclusions

MRSS is a well-known sampling technique. In this paper, we adapt Sinha et al. [19]
and Garg and Pachori [20] estimators under stratified MRSS design. Additionally, new cali-
bration estimators that use the mean and the coefficient of variation of an auxiliary variable
as a calibration constraint are proposed in this study to estimate the population mean in
the case of stratified MRSS and stratified two-stage MRSS. It has been discovered that fresh
ideas are more effective than modified ones. The proposed work has been supported by a
simulation study. We hope to extend the present work in light of Koyuncu [13].
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