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Abstract: We propose a scheme to generate and control high-dimensional rogue waves in a coherent
three-level Λ-type atomic system via electromagnetically induced transparency (EIT). Under EIT
conditions, the probe field envelopes obey the non-integrable nonlinear Schrödinger equations (NLSE)
with or without the external potential, which result from the stark (Zeeman) effect contributed by an
electric (magnetic) field. By adjusting the amplitude and width of the initial pulse, we can generate
the high-dimensional rogue waves and obtain the phase-transition curves of high-dimensional rogue
waves. In the system, the far-detuned electric field, the random weak magnetic field, and the Gauss
weak magnetic field are not conducive to the excitation of high-dimensional rogue waves. The
results not only provide a theoretical basis for the experimental realization or prevention of the
high-dimensional rogue waves, but also prove the possibility of generating and controlling the rogue
waves in other high-dimensional non-integrable systems.
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1. Introduction

Rogue waves, first detected in the ocean [1–3], are extreme local waves [4–10]. They
could devour ships in the ocean as they sail. Draper, a British scientist, first proposed the
concept of the freak wave in the scientific literature in 1965 [11], and it has since attracted
the attention of researchers in the field of nonlinear optics. Since the United States ship
Ramapo was hit by an extreme shock wave [1], rogue waves in the ocean have caused many
catastrophic events [12–16]. Therefore, it is necessary to understand the characteristics of
the rogue wave and to obtain the mechanism of its regulation. On the one hand, rogue
waves have localization of time and space [4,5]. On the other hand, the peak height of the
rogue wave is at least 2.2 times higher than the background plane value [6,7,17,18]. In the
past few decades, the research progress of rogue waves was slow. In 2007, Solli et al. first
observed rogue waves experimentally [19], and in 2010, Kibler et al. observed Peregrine
solitons [20] through a combination of experiment and numerical simulations. These two
works have made the study of rogue waves a hot topic. There have also been many reports
of rogue waves in recent years [21–45].

In the past thirty years, the phenomena and applications of weak-light nonlinear op-
tics have attracted much attention, especially electromagnetic induced transparency (EIT),
which is an ideal platform for studying the nonlinear effects of weak light.
Currently, there are many reports about EIT [46–52]. There are also reports about ana-
lytic solitons [53], dark solitons [54], and spatial solitons [55]. On the one hand, it can
significantly enhance nonlinearity [56], inhibit absorption [57], and reduce group veloc-
ity [58]. On the other hand, parameters such as control field, detunings, and density with
atoms can be regulated [59]. These advantages make it an ideal platform for studying
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nonlinear phenomena, especially rogue waves [17,60,61]. Recently, in the EIT system,
one-dimensional analytic [60,61] and numerical [17] rogue waves of integrable model have
been discussed. However, the high-dimensional rogue waves of non-integrable model have
not been reported yet.

In this paper, we consider a resonant, three-level, Λ-type EIT system. The high-
dimensional envelope equation satisfied by the probe field is obtained. By taking the
different initial parameters and external electric or magnetic fields, the different nonlinear
Schrödinger equations (NLSE) are obtained, including the high-dimensional Kerr NLSE,
the high-dimensional, non-integrable, saturated, nonlinear Schrödinger equation (SNLSE)
and the high-dimensional, non-integrable SNLSE with external potential. By adjusting the
amplitude and width of the initial pulse, we not only obtain the high-dimensional rogue
waves, but also get the phase-transition curves between rogue wave and general wave. We
find that the far-detuned electric field, the random weak magnetic field, and the Gauss
weak magnetic field are not conducive to the excitation of high-dimensional rogue waves,
so the external fields can be used to inhibit the excitation of high-dimensional rogue waves,
prevent and control the high-dimensional rogue waves. There are three contributions of
this article. Firstly, we obtain the rogue-wave solutions of three kinds of models under
different conditions. Secondly, we provide a universal method for studying the rogue-wave
solutions of non-integrable nonlinear models. Finally, it provides a scheme to control rogue
waves through electric and magnetic fields.

2. Model

We consider a lifetime-broadened atomic system with a Λ-type energy-level configura-
tion, as shown in Figure 1. A weak probe field Ep = exEp(x, y, z, t) exp [i(kpz−ωpt)] + c.c.
and a strong control field Ec = exEc exp [i(−kcz−ωct)] + c.c. interact resonantly with
levels |1〉 → |3〉 and |2〉 → |3〉, respectively. Here, ej, k j, and Ej, are the polarization unit
vector in the jth direction, the wave number, and the envelope of the jth field, respectively.
The levels |l〉 (l = 1, 2, 3), together with Ep and Ec, constitute a well-known Λ-type EIT core
in which the absorption of probe field is suppressed due to the quantum interference effect
induced by the control field.

Figure 1. (Color online) Excitation scheme of the lifetime broadened three-state atomic system
interacting with a weak probe field with the half Rabi frequency Ωp, and a strong continuous-wave
control field with the half Rabi frequency Ωc.

Furthermore, a far-detuned (Stark) optical lattice field EStark = ey
√

2E0(x, y) cos(ωLt)
and a weak magnetic field B(x, y) = eyB1(x, y) are added to the system, where E0 and
ωL are the field amplitude and angular frequency, respectively; B1(x, y) is a nonuniform
magnetic field distributed in the transverse direction. Due to the existence of EStark and
B(x, y), a small Stark shift ∆Ej = − 1

2 αj
〈
E2

Stark

〉
t = −

1
2 αjE2

0(x, y) and Zeeman level shift

∆EZeeman = µBgj
Fmj

FB1(x, y) = µjB1(x, y) to the state |j〉 occur in the transverse direction.
Here, αj is the scalar polarizability of the level |j〉, and 〈· · · 〉t denotes the time average in

an oscillating cycle, and gj
F is the Landéfactor.
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The Stark shift contributed by the far-detuned Stark field EStark and the Zeeman level
shift contributed by the magnetic field B will provide the refractive index to the probe
filed. The form of the refractive index will be decided by the spatial distributions of the
Stark field and magnetic field. In Figure 1, Ωp = (ex · p13)Ep/h̄ and Ωc = (ex · p23)Ec/h̄
are the half Rabi frequencies of the probe and control fields, respectively. pij signifies the
electric dipole matrix element of the transition from state |i〉 to |j〉; ∆3 and ∆2, are one- and
two-photon detunings in the relevant transitions, respectively.

Under electric-dipole and rotating-wave approximations, the Hamiltonian reads
Ĥint = −h̄ ∑3

j=1 ∆′j|j〉〈j| − h̄(Ωp|3〉〈1|+ Ωc|3〉〈2|+ h.c.), where h.c. denotes the Hermitian

conjugate, and ∆′j = ∆j +
αj
2h̄ |E0(x, y)|2 − µj

h̄ B1(x, y). The motion of atoms interacting with

the light field is described by the time-dependent Schrödinger equation ih̄ ∂|ψ〉
∂t = Ĥint|ψ〉,

and |ψ〉 = ∑3
j=1 aj|j〉. Then, we can obtain(

i
∂

∂t
+ d′2

)
a2 + Ω∗c a3 = 0, (1)

(
i

∂

∂t
+ d′3

)
a3 + Ωpa1 + Ωca2 = 0, (2)

with ∑3
j=1 |aj|2 = 1 and d′j = ∆′j + iγj = dj +

αj
2h̄ |E0(x, y)|2 − µj

h̄ B1(x, y), aj and γj are the
probability amplitude and the decay rate of the states |j〉 (j = 2, 3).

Under a slowly varying envelope approximation, the Maxwell equation of the probe

field O2Ep − 1
c2

∂2Ep
∂t2 = 1

c2ε0

∂P
∂t2 , with the polarization intensity P = a3a∗1 , is reduced to

i
(

∂

∂z
+

1
c

∂

∂t

)
Ωp +

c
2ωp

(
∂2

∂x2 +
∂2

∂y2

)
Ωp + κ13a3a∗1 = 0, (3)

κ13 = Nωp|ex · p13|2/(2ε0h̄c) with N being the atomic concentration. Here, the slowly-

variable envelope approximation ∂Ωp
∂z � ikpΩp and ∂Ωp

∂t � iωpΩp.
We focus on steady-state regime, in which time-derivative terms in Equations (1)–(3) can

be deleted. The regime can be realized by taking the probe field with a width time pulse
(i.e., |dj|τ0 >> 1, where τ0 is the pulse length of the probe field), and hence, the response
of atoms can follow the variation of the probe field adiabatically. The solutions of Equa-
tions (1) and (2) are acquired: a3 = d′2Ωpa1/D′, a2 = −Ω∗c Ωpa1/D′, with |a1|2 = 1

1+W ′ |Ωp |2
.

In general, we consider that the probe field is weaker than control field, and the Stark
and Zeeman energy shifts are smaller than the detuning ∆j. After some simple calculations,
and neglecting the higher-order terms, Equation (3) is reduced into the (2 + 1) D equation
with the saturable nonlinearity and trapping potential [54].

i
∂Ωp

∂z
+

c
2ωp
∇2
⊥Ωp +

κ13d2

D
Ωp

1 + W|Ωp|2
+ α|E0(x, y)|2Ωp + βB1(x, y)Ωp = 0, (4)

with α = κ13[α2D + d2(α2d3 + α3d2)]/(2h̄D2), β = κ13[µ2D + d2(µ2d3 + µ3d2)]/(h̄D2),
W = (|Ωc|2 + |d2|2)/|D|2, and D = |Ωc|2 − d2d3.

Equation (4) can be written into the dimensionless form

i
∂u
∂s

+ (
∂2

∂ξ2 +
∂2

∂η2 )u +
c1

1 + c2|u|2
u + c3|v|2u + c4wu = 0, (5)

where s = z/Ldi f f , (ξ, η) = (x, y)/R⊥, u = Ωp/U0, v = E0(x, y)/V0, and w = B0(x, y)/W0.
With Ldi f f (≡ 2R2

⊥ωp/c), R⊥, U0, V0, and B0 being, respectively, the characteristic diffrac-
tion length, beam radius, half Rabi frequency of the probe field, intensity of far-detuned
(Stark) optical lattice field, and intensity of the magnetic field. In Equation (5),
c1 = κ13d2Ldi f f /D, c2 = WU0

2, c3 = αLdi f f V2
0 , and c4 = βLdi f f W0.
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We select the D1 line transition 52S1/2−→52P1/2 of the 87Rb atoms. The levels, re-
spectively, are |1〉 = |5S1/2, F = 1, mF = −1〉, |2〉 = |5S1/2, F = 2, mF = −1〉, and
|3〉 = |5S1/2, F = 2, mF = −2〉. Let γ1 = 0, γ2 = 150 s−1, γ3 = 1.8 × 107 s−1,
ωp = 2.37× 1015 s−1, R⊥ = 2.52×10−3 cm, Ωc = 6.0× 107 s−1, κ13 = 1.0× 1011 cm−1 s−1,
∆1 = 0, ∆2 = 3.6× 104σ1 s−1, ∆3 = 1.0× 109 s−1, U0 = 6.0× 107√σ2 s−1, V0 = 380σ3 V/cm,
and W0 = 0.09σ4 Gs. By substituting these parameters into Equation (5), we can obtain the
characteristic diffraction length: Ldi f f = 1.0 cm.

c1/σ1 = 1.0 + 0.01i, c2/σ2 = 1.0, c3/σ3 = 1.0 + 0.001i, c4/σ4 = 1.0 + 0.001i. (6)

The imaginary part of ci/σi(i = 1, 2, 3, 4) can be ignored because it is much smaller than its
real part, and the dimensionless evolution equation of the probe field is obtained [54].

i
∂u
∂s

+ (
∂2

∂ξ2 +
∂2

∂η2 )u +
σ1

1 + σ2|u|2
u + σ3|v|2u + σ4wu = 0. (7)

where the values of σ1, σ2, σ3, and σ4 are individually controlled by ∆2, U0, V0, and W0.
From these coefficient expressions below Equation (4), we find that σ1−4 relate to ∆2, but the
effect of ∆2 on σ2,3,4 can be ignored. Thus, these coefficients can be controlled individually
by the system’s parameters. Thus, we obtain the (2 + 1) D Equation (7) with the trapping
potential, and the nonlinear coefficient and the intensity of trapping potential can be
adjusted at will.

3. High-Dimensional Rogue-Wave Solutions

In this section, we discuss the high-dimensional rogue waves based on the high-
dimensional NLSE (7), which is non-integrable. Modulation instability (MI) is the most
familiar numerical method for exciting rogue waves, but the rogue waves excited by MI are
uncontrollable. Therefore, we propose a simple and effective method of generating rogue
waves. It is the split-step Fourier propagation method, which is carried out by adjusting
the amplitude and width of the initial pulse. Take initial pulse as

u(ξ, η, s = 0) = C + A exp(− ξ2 + η2

ω2 ). (8)

C is the height of uniform background; A and ω are the amplitude and width of Gaussian
pulse, respectively. The method has been used to generate rogue waves in low-dimensional
systems [17,18]. Without losing generality, we take C = 1.

3.1. High-Dimensional Rogue Waves of the Kerr Nonlinear Schrödinger Equation

By taking ∆2 = −1.44× 105 s−1, U0 ≈ 4.24× 107 s−1, V0 = 0 V/cm, and W0 = 0 Gs,
we can obtain σ1 = −4, σ2 = 0.5, σ3 = 0, and σ4 = 0. The high-dimensional Kerr NLSE,

i
∂u
∂s

+ (
∂2

∂ξ2 +
∂2

∂η2 )u + |u|2u = 0, (9)

is obtained by substituting parameters into Equation (7), and performing Taylor-series
expansion and the phase transformation. The phase-transition regions of nonlinear modes
as functions of the amplitude and width of initial pulse are shown in Figure 2a when C = 1.
We chose some points (black points 1–2 in Figure 2a) to exhibit their propagating results.
According to above criteria about shock waves, we found the red region containing point 1
for high-dimensional rogue waves, and there are only general waves in the white regions
containing point 2. The profiles of nonlinear modes with different distances are shown
in Figure 2b–d. We chose ω = 1.2. Figure 2b is the profile of initial input pulse at s = 0,
Figure 2c is the profile of a high-dimensional rogue wave at s = 0.72, and Figure 2d denotes
that the high-dimensional rogue wave disappeared at s = 1.63. Therefore, we can control
the high-dimensional rogue waves by adjusting the amplitude (A) and width (ω) of the
initial pulse.
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Figure 2. (Color online) (a) The phase transition regions of nonlinear modes as functions of amplitude
(A) and width (ω) of the initial pulse when C = 1. According to above criteria about nonlinear modes,
we found the red region containing point 1 is for high-dimensional rogue waves. (b–d) The profiles
of nonlinear modes with different distance: s = 0, 0.72, and 1.63, respectively. Here, ω = 1.2.

3.2. High-Dimensional Rogue Waves of the SNLSE

After choosing ∆2 = −3.46 × 105 s−1, U0 = 6.0 × 107 s−1, V0 = 0 V/cm, and
W0 = 0 Gs, σ1 = −9.6, σ2 = 1, σ3 = 0, and σ4 = 0 are obtained. Equation (7) is reduced to
the high-dimensional SNLSE:

i
∂u
∂s

+ (
∂2

∂ξ2 +
∂2

∂η2 )u−
9.6

1 + |u|2 u = 0, (10)

which is non-integrable model. We can use the same method to find its rogue wave solutions.
The existence regions of nonlinear modes are shown in Figure 3a. Point 1 in Figure 3a

was chosen to exhibit the propagating results. The profiles of nonlinear modes are shown
in Figure 3b–d for different distances when ω = 1.20. Figure 3b–d are the initial pulse at
s = 0, the high-dimensional rogue wave at s = 1.08, and the disappeared state of high-
dimensional rogue waves at s = 2.00, respectively. These results tell us that the propagation
method not only can be used to generate rogue waves for NLSE (9), but also for the SNLSE
(10). Both of them are non-integrable.

3.3. High-Dimensional Rogue Waves of the SNLSE with the Trapping Potential Contributed by a
Far-Detuned (Stark) Optical Lattice Field

We can also take ∆2 = −3.46× 105 s−1, U0 = 6.0× 107 s−1, V0 = 1.22× 103 V/cm,
and W0 = 0 Gs; then, σ1 = −9.6, σ2 = 1, σ3 = 3.2, and σ4 = 0. The SNLSE

i
∂u
∂s

+ (
∂2

∂ξ2 +
∂2

∂η2 )u−
9.6

1 + |u|2 u + 3.2|v|2u = 0, (11)

in which the trapping potential contributed by far-detuned (Stark) optical lattice field is de-

rived. When |v|2 = exp(− ξ2+η2

52 ) is chosen, the phase-transition regions of nonlinear modes
for the SNLSE (11) are shown in Figure 4a. In Figure 4b, the phase-transition curves of
high-dimensional rogue waves are plotted with different values of σ3. The blue solid line is
for Equation (10), and the red dotted line is for Equation (11). The right regions of the phase-
transition curves are for the rogue waves. From these, we know that the high-dimensional
rogue waves can be suppressed by appropriately increasing the far-detuned electric
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field. The propagation process of nonlinear modes of point 1 are shown in Figure 4c–e.
Here, ω = 1.20. Figure 4c is the profile of the initial pulse at s = 0. Figure 4d is for the
high-dimensional rogue wave at s = 0.99, when s = 1.61, the rogue wave disappears, as
shown in Figure 4e.

Figure 3. (Color online) (a) The existence regions of nonlinear modes as functions of the amplitude (A)
and width (ω) of initial pulse when C = 1. The red region containing point 1 is for high-dimensional
rogue waves. (b–d) The profiles of nonlinear modes by taking s = 0, 1.08, and 2.0, respectively. Here,
ω = 1.2.

Figure 4. (Color online) (a) The existence regions of nonlinear modes as functions of A and ω when
C = 1. The red region is for high-dimensional rogue waves. (b) The phase-transition curves of
high-dimensional rogue waves for the SNLSE (11) with σ3 = 0 (blue solid line) and 3.2 (red dotted
line). The regions containing point 1 denote the existence interval of high-dimensional rogue waves.
(c–e) The profiles of nonlinear modes by taking s = 0, 0.99, and 1.61, respectively. Here, ω = 1.2.
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3.4. High-Dimensional Rogue Waves of the SNLSE with a Weak Magnetic Field

Finally, ∆2 = −3.46× 105 s−1, U0 = 6.0× 107 s−1, V0 = 0 V/cm, and W0 = 0.36 Gs
were chosen, so σ1 = −9.6, σ2 = 1, σ3 = 0, and σ4 = 4. Equation (7) can be reduced to the
SNLSE with external potential contributed by the weak magnetic field:

i
∂u
∂s

+ (
∂2

∂ξ2 +
∂2

∂η2 )u−
9.6

1 + |u|2 u + 4wu = 0. (12)

When w = 1− 0.5ρ(ξ, η), and ρ(ξ, η) are random numbers, rogue waves cannot be excited
by the initial pulse. We also took other types of random potential, and this conclusion
was consistent. That is, the random weak magnetic field is not conducive to the rogue
waves’ excitation. The reason is that rogue waves are the result of coherent resonance
between waves, but random external potentials may destroy the coherence between waves,
so rogue-wave generation is suppressed. Therefore, the random weak magnetic field can
effectively inhibit the production of high-dimensional rogue waves, which will provide an
idea for the prevention of high-dimensional freak waves, especially for the marine freak
waves that could devour ships.

For when w = exp(− ξ4+η4

54 ), the existence regions of nonlinear modes for SNLSE (12)
are shown in Figure 5a. In Figure 5b, we show the phase-transition curve of the SNLSE (12)
without (σ4 = 0, blue solid line) or with (σ4 = 4.0, red dotted line) the weak magnetic
field. By comparing the phase-transition curves, we can see that the existence region of
rogue waves becomes small after adding the weak magnetic field, which means it is more
difficult to excite the high-dimensional rogue waves. This shows that the super-Gauss weak
magnetic field is not conducive to the excitation of rogue waves. According to above criteria
about nonlinear modes, we found the red region or the right regions of the phase-transition
curves are for high-dimensional rogue waves. We took the parameters of point 1 to show
the propagation process of rogue waves. Figure 5c is the profile of the initial pulse at s = 0.
Figure 5d is for the profile of rogue wave at s = 1.08, and when s = 1.60, the rogue wave
disappears, as shown in Figure 5e.

Figure 5. (Color online) (a) The existence regions of nonlinear modes. The red region denotes rogue
waves. (b) The phase-transition curves of rogue waves for Equation (11) with σ4 = 0 (blue solid
line) and 4.0 (red dotted line). (c–e) The profiles of nonlinear modes when s = 0, 1.08, and 1.60,
respectively. Here, ω = 1.2.
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4. Conclusions

Based on the resonant, three-level, Λ-type electromagnetically induced transparency
system, the dimensionless envelope equation of the probe field was obtained. Furthermore,
we were able to obtain the non-integrable, high-dimensional, nonlinear Schrödinger equa-
tions by reducing the envelope equations of the probe field, such as the Kerr-type nonlinear
Schrödinger equation, SNLSE, and SNESE with external potential. By the numerical propa-
gation method, we found their rogue-wave solutions and their existence regions in different
cases. We not only proved that the numerical method can be used to find rogue-wave
solutions of a non-integrable model, but also found the external potential can be used to
suppress or even eliminate rogue waves. The work will not only provide a theoretical
basis for experimentally controlling the high-dimensional rogue waves, but also provide
an inspiration for the prevention of rogue waves disasters in the ocean. The research
results also provide the ideas for excitation of rogue waves in other high-dimensional
non-integrable systems.
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