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Abstract: In this paper, inspired by the previous work in (Appl. Math. Comput., 369 (2020) 124890),
we focus on the convergence condition of the modulus-based matrix splitting (MMS) iteration method
for solving the horizontal linear complementarity problem (HLCP) with H+-matrices. An improved
convergence condition of the MMS iteration method is given to improve the range of its applications,
in a way which is better than that in the above published article.
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1. Introduction

As is known, the horizontal linear complementarity problem, for the given matrices
A, B ∈ Rn×n, is to find that two vectors z, w ∈ Rn satisfy

Az = Bw + q ≥ 0, z ≥ 0, w ≥ 0 and zTw = 0, (1)

where q ∈ Rn is given, which is often abbreviated as HLCP. If A = I in (1), the HLCP (1) is
no other than the classical linear complementarity problem (LCP) in [1], where I denotes
the identity matrix. This implies that the HLCP (1) is a general form of the LCP.

The HLCP (1), used as a useful tool, often arises in a diverse range of fields, including
transportation science, telecommunication systems, structural mechanics, mechanical and
electrical engineering, and so on, see [2–7]. In the past several years, some efficient algo-
rithms have been designed to solve the HLCP (1), such as the interior point method [8],
the neural network [9], and so on. Particularly, in [10], the modulus-based matrix splitting
(MMS) iteration method in [11] was adopted to solve the HLCP (1). In addition, the par-
tial motivation of the present paper is from complex systems with matrix formulation,
see [12–14] for more details.

Recently, Zheng and Vong [15] further discussed the MMS method, as described below.
The MMS method [10,15]. Let Ω be a positive diagonal matrix and r > 0, and let

A = MA−NA and B = MB−NB be the splitting of matrices A and B, respectively. Assume
that (z(0), w(0)) is an arbitrary initial vector. For k = 0, 1, 2, . . . until the iteration sequence
(z(k), w(k)) converges, compute (z(k+1), w(k+1)) by

z(k+1) =
1
r
(|x(k+1)|+ x(k+1)), w(k+1) =

1
r

Ω(|x(k+1)| − x(k+1)), (2)

where x(k+1) is obtained by

(MA + MBΩ)x(k+1) = (NA + NBΩ)x(k) + (BΩ− A)|x(k)|+ rq. (3)

For the later discussion, some preliminaries are gone over. For a square matrix
A = (aij) ∈ Rn×n, |A| = (|aij|), and 〈A〉 = (〈aij〉), where 〈aii〉 = |aii| and 〈aij〉 = −|aij|
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for i 6= j. A matrix A = (aij) ∈ Rn×n is called a non-singular M-matrix if A−1 ≥ 0 and
aij ≤ 0 for i 6= j; an H-matrix if its comparison matrix 〈A〉 is a non-singular M-matrix; an
H+-matrix if it is an H-matrix with positive diagonals; and a strictly diagonally dominant
(s.d.d.) matrix if |aii| > ∑j 6=i |aij|, i = 1, 2, . . . , n. In addition, A ≥ (>)B with A, B ∈ Rn×n,
means aij ≥ (>)bij for i, j = 1, 2, . . . , n.

For the MMS method with H+-matrix, two new convergence conditions are obtained
in [15], which are weaker than the corresponding convergence conditions in [10]. One of
these is given below.

Theorem 1 ([15]). Assume that A, B ∈ Rn×n are two H+-matrices and Ω = diag(ωjj) ∈ Rn×n

with ωjj > 0, i, 2, . . . , n,

|bij|ωjj ≤ |aij| (i 6= j) and sign(bij) = sign(aij), bij 6= 0.

Let A = MA − NA be an H-splitting of A, B = MB − NB be an H-compatible splitting of B, and
MA + MBΩ be an H+-matrix. Then the MMS method is convergent, provided one of the following
conditions holds:

(a) Ω ≥ DAD−1
B ;

(b) Ω < DAD−1
B ,

D−1
B (DA −

1
2

D−1(〈A〉+ 〈MA〉 − |NA|)D)e < Ωe < DAD−1
B e (4)

with Ω = kD−1D1 and k < ‖DAD−1
B D−1

1 D‖∞, where e = (1, 1, . . . , 1)T , D and D1 are positive
diagonal matrices such that (〈MA〉 − |NA|)D and (〈MB〉 − |NB|)D1 are two strictly diagonally
dominant (s.d.d.) matrices.

At present, the difficulty in Theorem 1 is to check the condition (4). Besides that,
the condition (4) of Theorem 1 is limited by the parameter k. That is to say, if the choice
of k is improper, then we cannot use the condition (4) of Theorem 1 to guarantee the
convergence of the MMS method. To overcome this drawback, the purpose of this paper is
to provide an improved convergence condition of the MMS method, for solving the HLCP
of H+-matrices, to improve the range of its applications, in a way which is better than that
in Theorem 1 [15].

2. An Improved Convergence Condition

In fact, by investigating condition (b) of Theorem 1, we know that the left inequality in
(4) may have a flaw. Particularly, when the choice of k is improper, we cannot use condition
(b) of Theorem 1 to guarantee the convergence of the MMS method. For instance, we
consider two matrices

A =

(
6 2
2 6

)
, B =

(
6 1
3 6

)
.

To make A and B satisfy the convergence conditions of Theorem 1, we take

MA =

(
6 0

3.5 6

)
, NA =

(
0 −2

1.5 0

)
, MB =

(
6 0
0 6

)
, NB =

(
0 −1
−3 0

)
.

By the simple computations,

〈MA〉 − |NA| =
(

6 −2
−5 6

)
, (〈MA〉 − |NA|)−1 =

1
26

(
6 2
5 6

)
≥ 0.

Hence, 〈MA〉 − |NA| is a non-singular M-matrix, so that A = MA − NA is an H-splitting.
On the other hand, 〈B〉 = 〈MB〉 − |NB|, so that B = MB − NB is an H-compatible splitting.
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For convenience, we take D = D1 = I, where I denotes the identity matrix. By simple
calculations, we have

D−1
B (DA −

1
2

D−1(〈A〉+ 〈MA〉 − |NA|)D)e =
( 1

3
3.5
6

)
and

Ω = kD−1D1 = k
(

1 0
0 1

)
, and k < ‖DAD−1

B D−1
1 D‖∞ = 1.

Further, we have

Ωe = k
(

1
1

)
.

Obviously, when k ≤ 1/3, we naturally do not get that( 1
3

3.5
6

)
< k

(
1
1

)
.

This implies that condition (b) of Theorem 1 may be invalid when we use condition (b) of
Theorem 1 to judge the convergence of the MMS method for solving the HLCP. To overcome
this disadvantage, we obtain an improved convergence condition for the MMS method, see
Theorem 2, whose proof is similar to the proof of Theorem 2.5 in [15].

Theorem 2. Assume that A, B ∈ Rn×n are two H+-matrices, and Ω = diag(ωjj) ∈ Rn×n with
ωjj > 0, i, 2, . . . , n,

|bij|ωjj ≤ |aij| (i 6= j) and sign(bij) = sign(aij), bij 6= 0.

Let A = MA − NA be an H-splitting of A, B = MB − NB be an H-compatible splitting of B, and
MA + MBΩ be an H+-matrix. Then the MMS method is convergent, provided one of the following
conditions holds:

(a) Ω ≥ DAD−1
B ;

(b) when Ω < DAD−1
B ,

D−1
B (DA −

1
2

D−1(〈A〉+ 〈MA〉 − |NA|)D)e < Ωe < DAD−1
B e, (5)

where D is a positive diagonal matrix, such that 〈MA + MBΩ〉D is an s.d.d. matrix.

Proof. For Case (a), see the proof of Theorem 2.5 in [15].
For Case (b), by simple calculations, we have

〈MBΩ〉 − |NBΩ| = 〈MB〉Ω− |NB|Ω = 〈B〉Ω, |BΩ− A| = |A| − |B|Ω ≥ 0. (6)

Making use of Equation (6), based on the proof of Theorem 2.5 in [15], we have

|x(k+1) − x∗| ≤〈MA + MBΩ〉−1(|NA + NBΩ|+ |BΩ− A|)|x(k) − x∗|

=〈MA + MBΩ〉−1(|NA + NBΩ|+ |A| − |B|Ω)|x(k) − x∗|

≤〈MA + MBΩ〉−1(|NA|+ |NB|Ω + |A| − |B|Ω)|x(k) − x∗|

=Ŵ|x(k) − x∗|,

where
Ŵ = Ŝ−1T̂, Ŝ = 〈MA + MBΩ〉 and T̂ = |NA|+ |NB|Ω + |A| − |B|Ω.
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Since MA + MBΩ is an H+-matrix, it follows that Ŝ = 〈MA + MBΩ〉 is a non-singular
M-matrix, and the existence of such a matrix D (see [16], p. 137) satisfies

ŜDe = 〈MA + MBΩ〉De > 0.

From the left inequality in (5), we have

(2DBΩ + 〈MA〉 − |NA| − |A|)De > 0. (7)

Further, based on the inequality (7), we have

(Ŝ− T̂)De = (〈MA + MBΩ〉 − |NA| − |NB|Ω− |A|+ |B|Ω)De

≥ (〈MA〉+ 〈MB〉Ω− |NA| − |NB|Ω− |A|+ |B|Ω)De

= (〈MA〉 − |NA| − |A|+ 〈MB〉Ω− |NB|Ω + |B|Ω)De

= (〈MA〉 − |NA| − |A|+ 〈B〉Ω + |B|Ω)De

= (〈MA〉 − |NA| − |A|+ 2DBΩ)De

> 0.

Thus, based on Lemma 2.3 in [15], we have

ρ(Ŵ) =ρ(D−1ŴD)

≤‖D−1ŴD‖∞

=‖(〈MA + MBΩ〉)D)−1(|NA|+ |NB|Ω + |A| − |B|Ω)D‖∞

≤ max
1≤i≤n

((|NA|+ |NB|Ω + |A| − |B|Ω)De)i
(〈MA + MBΩ〉De)i

<1.

The proof of Theorem 2 is completed.

Comparing Theorem 2 with Theorem 1, the advantage of the former is that condition
(b) of Theorem 2 is not limited by the parameter k of the latter. Besides that, we do not
need to find two positive diagonal matrices D and D1, such that (〈MA〉 − |NA|)D and
(〈MB〉− |NB|)D1 are, respectively, s.d.d. matrices, we just find one positive diagonal matrix
D, such that 〈MA + MBΩ〉D is an s.d.d. matrix.

Incidentally, there exists a simple approach to obtain a positive diagonal matrix
D in Theorem 2: first, solving the system Āx = e gives the positive vector x, where
Ā = 〈MA + MBΩ〉; secondly, we take D = diag(Ā−1e), which can make 〈MA + MBΩ〉D
an s.d.d. matrix.

In addition, if the H+-matrix MA + MBΩ itself is an s.d.d. matrix, then we can take
D = I in Theorem 2. In this case, we can obtain the following corollary.

Corollary 1. Assume that A, B ∈ Rn×n are two H+-matrices, and Ω = diag(ωjj) ∈ Rn×n with
ωjj > 0, i, 2, . . . , n,

|bij|ωjj ≤ |aij| (i 6= j) and sign(bij) = sign(aij), bij 6= 0.

Let A = MA − NA be an H-splitting of A, B = MB − NB be an H-compatible splitting of B, and
the H+-matrix MA + MBΩ be an s.d.d. matrix. Then, the MMS method is convergent, provided
one of the following conditions holds:

(a) Ω ≥ DAD−1
B ;

(b) when Ω < DAD−1
B ,

D−1
B (DA −

1
2
(〈A〉+ 〈MA〉 − |NA|))e < Ωe < DAD−1

B e.
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3. Numerical Experiments

In this section, we consider a simple example to illustrate our theoretical results in
Theorem 2. All the computations are performed in MATLAB R2016B.

Example 1. Consider the HLCP(A, B, q), in which A = Ā + µI, B = B̄ + νI, where Ā =
blktridiag(−I, S,−I) ∈ Rn×n, B̄ = I ⊗ S ∈ Rn×n, S = tridiag(−1, 4,−1) ∈ Rm×m, and µ, ν
are real parameters. Let q = Az∗ − Bw∗, with

z∗ = (0, 1, 0, 1 . . . , 0, 1, . . .)T ∈ Rn, w∗ = (1, 0, 1, 0 . . . , 1, 0, . . .)T ∈ Rn.

In our calculations, we take µ = 4 and ν = 0 for A and B in Example 1, x(0) = (2, 2, . . . , 2)T ∈ Rn

is used for the initial vector. The modulus-based Jacobi (NMJ) method and Gauss–Seidel (NMGS)
method, with r = 2, are adopted. The NMJ and NMGS methods are stopped once the number of
iterations is larger than 500 or the norm of residual vectors (RES) is less than 10−6, where

RES := ‖Azk − Bwk − q‖2.

Here, we consider two cases of Theorem 2. When Ω ≥ DAD−1
B , we take Ω = 2I

for the NMJ method and the NMGS method. In this case, Table 1 is obtained. When
Ω < DAD−1

B , we take D = I, and obtain that I < Ω < 2I and 〈MA + MBΩ〉D is an s.d.d.
matrix. In this case, we take Ω = 1.5I and Ω = 1.2I for the NMJ and NMGS methods, and
obtain Tables 2 and 3.

Table 1. Numerical results for Ω = 2I.

m 100 200 300

NMJ IT 30 31 32
CPU 0.0381 0.2120 0.4114
RES 6.35 × 10−7 6.61 × 10−7 5.02 × 10−7

NMGS IT 19 20 20
CPU 0.0314 0.0952 0.2488
RES 6.86 × 10−7 4.79 × 10−7 7.30 × 10−7

Table 2. Numerical results for Ω = 1.5I.

m 100 200 300

NMJ IT 29 30 31
CPU 0.0379 0.1553 0.3976
RES 9.71 × 10−7 9.05 × 10−7 6.65 × 10−7

NMGS IT 18 19 19
CPU 0.0243 0.0931 0.2300
RES 6.01 × 10−7 4.00 × 10−7 6.11 × 10−7

Table 3. Numerical results for Ω = 1.2I.

m 100 200 300

NMJ IT 39 39 40
CPU 0.0474 0.1930 0.5127
RES 6.78 × 10−7 9.78 × 10−7 8.12 × 10−7

NMGS IT 20 20 21
CPU 0.0283 0.1109 0.2595
RES 4.76 × 10−7 8.47 × 10−7 4.59 × 10−7
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The numerical results in Tables 1–3 not only further confirm that the MMS method
is feasible and effective, but also show that the convergence condition in Theorem 2 is
reasonable.

4. Conclusions

In this paper, the modulus-based matrix splitting (MMS) iteration method for solving
the horizontal linear complementarity problem (HLCP) with H+-matrices, has been further
considered. The main aim of this paper is to present an improved convergence condition of
the MMS iteration method, to enlarge the range of its applications, in a way which is better
than previous work [15].
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