
Citation: Cao, F.; Guo, X.; Gao, F.;

Yuan, D. Deep Learning

Nonhomogeneous Elliptic Interface

Problems by Soft Constraint

Physics-Informed Neural Networks.

Mathematics 2023, 11, 1843. https://

doi.org/10.3390/math11081843

Academic Editors: Nicholas

Christakis, George Kossioris and

Mayur Patel

Received: 18 February 2023

Revised: 18 March 2023

Accepted: 28 March 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Deep Learning Nonhomogeneous Elliptic Interface Problems
by Soft Constraint Physics-Informed Neural Networks
Fujun Cao 1,2,* , Xiaobin Guo 3, Fei Gao 3 and Dongfang Yuan 1,2

1 School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China;
yuandf@imust.edu.cn

2 School of Mathematics and Science, Inner Mongolia Normal University, Hohhot 010028, China
3 School of Information Engineering, Inner Mongolia University of Science and Technology,

Baotou 014010, China; guoxb0710@163.com (X.G.); 970114532@163.com (F.G.)
* Correspondence: caofujun@imust.edu.cn

Abstract: It is a great challenge to solve nonhomogeneous elliptic interface problems, because the
interface divides the computational domain into two disjoint parts, and the solution may change
dramatically across the interface. A soft constraint physics-informed neural network with dual neural
networks is proposed, which is composed of two separate neural networks for each subdomain, which
are coupled by the connecting conditions on the interface. It is beneficial to capture the singularity of
the solution across the interface. We formulate the PDEs, boundary conditions, and jump conditions
on the interface into the loss function by means of the physics-informed neural network (PINN),
and the different terms in the loss function are balanced by optimized penalty weights. To enhance
computing efficiency for increasingly difficult issues, adaptive activation functions and the adaptive
sampled method are used, which may be improved to produce the optimal network performance, as
the topology of the loss function involved in the optimization process changes dynamically. Lastly,
we present many numerical experiments, in both 2D and 3D, to demonstrate the proposed method’s
flexibility, efficacy, and accuracy in tackling nonhomogeneous interface issues.

Keywords: partial differential equations; physics-informed neural networks; nonhomogeneous
elliptic interface problems; dual neural networks

MSC: 35J05; 35J25; 35Q79

1. Introduction

Elliptic interface problems with discontinuous coefficients and singular sources are
found in many applications, such as incompressible two-phase flow [1,2], computational
electro-magnetics [3], heat conduction between materials of different heat capacity and
conductivity [4–6], thermal convection in a Forchheimer–Brinkman model [7,8], etc. The
solution of elliptic interface problems with discontinuous coefficients has low global reg-
ularity and usually belongs to H1(Ω) if the jump conditions are homogeneous. When
the jump conditions are nonhomogeneous, the solutions to the elliptic interface problems
are often discontinuous [9]. It is a difficult job to construct an efficient numerical method
for such problems. In the past decades, various numerical methods have been provided
to solve these kinds of problems. According to the geometric relationship between the
computational grid and the material interface, the numerical method can be generally
divided into two categories: (1) The interface-fitted methods [10–14]. In this kind of method
the computational mesh fits the interface, which means that an element of the underlying
mesh is required to intersect with the interface only through its edges. This approach is
beneficial for the numerical scheme to reach optimal convergence. Material interactions in
real-world applications can be geometrically complex and very heterogeneous. Geometric
singularities, such as sharp edges, cusps, and tips, may be encountered in some extreme

Mathematics 2023, 11, 1843. https://doi.org/10.3390/math11081843 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11081843
https://doi.org/10.3390/math11081843
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4188-495X
https://doi.org/10.3390/math11081843
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11081843?type=check_update&version=1

Mathematics 2023, 11, 1843 2 of 23

circumstances with nonsmooth surfaces or interfaces with Lipschitz continuity. Yet, creat-
ing high-quality meshes for some exotically complicated geometries may be challenging
and time-consuming. Such a challenge drives the development of numerical algorithms
that employ structured meshes and allow the interface to cut through elements. (2) The
interface-unfitted method [15–20]. By allowing the interface to cut computational elements,
the immersed interface approach lessens the effort of creating meshes for complicated do-
mains and interface geometry. Specific interface techniques are required to manage interface
jump conditions, which are essential for the well-posedness of the interface problem. The
convergence order in the L∞ norm oscillates while using the interface immersed numerical
approach, and the point-by-point error across the interface elements is often large.

To secure accuracy near the interface, the jump conditions on the interface have to
be incorporated into the numerical discretization in a certain manner, and some special
treatment needs to be introduced on the elements through which the interface passes.
Although both sorts of solutions have had some success in tackling interface difficulties,
implementing such numerical schemes is not an easy undertaking, due to the inhomoge-
neous jump conditions on the interface. High dimensional interface difficulties, nonlinear
interface problems, and other generic interface problems continue to provide significant
hurdles to traditional numerical methods.

Deep neural networks (DNNs) have recently received a lot of interest in the field of
scientific machine learning (SciML) and have been used to build new ways of solving partial
differential equations, e.g., the deep Ritz method (DRM) [21], deep Galerkin method [22]
and physics-informed neural networks (PINNs) [23]. DNNs provide nonlinear approxima-
tion through the composition of hidden layers because of their universal approximation
capabilities, which do not limit the approximation to linear spaces. In SciML, PINN has
become one of the most prominent deep learning approaches. While the differential opera-
tors in the governing PDEs are approximated by automated differentiation, PINNs provide
a mesh-free approach. Such techniques have also been applied in solving different types of
partial differential equations (PDEs), including integro-differential equations [24], fractional
PDEs [25], and stochastic PDEs [26,27]. Furthermore, PINNs have been effectively used
to tackle a variety of issues in other domains, such as optics [28,29], fluid mechanics [30],
systems biology [31], etc.

Several initiatives have been launched in recent years to employ neural networks to
tackle interface problems, since neural network approaches are meshless and may benefit
from deep learning techniques, such as automated differentiation and GPU acceleration.
In particular, the use of multiple neural networks based on the domain decomposition
method (DDM) have attracted increasing attention as they are more accurate and flexible
in dealing with the interface and have shown remarkable success in various interface
problems [32–38].

In [34], a deep-learning-based domain decomposition approach (DeepDDM) was in-
troduced, which uses deep neural networks to discretize the subproblems split by domain
decomposition methods (DDMs) to solve PDEs with complicated interfaces in the compu-
tational domain. Wang [35] proposed a mesh-free method based on DRM to solve interface
problems with high-contrast discontinuous coefficients. He et al. [37] proposed a mesh-free
method using piecewise DNN for elliptic interface problems with discontinuous solution
and derivatives across the interface. In order to ensure that the solution is smooth in each
subdomain, they approximate the solution using two neural networks that correspond to
two distinct subdomains. In [33], it was suggested to use a conservative physics-informed
neural network (cPINN) on discrete subdomains for nonlinear conservation laws. The com-
puting domain is subdivided into discrete subdomains, with a different PINN applied in
each subdomain. The conservation property of the cPINN is then attained by enforcing flux
continuity in the strong form along the subdomain interfaces. A generalized space–time
domain decomposition framework, named eXtended PINN (xPINN) was proposed in [32]
to solve nonlinear PDEs in arbitrary complex-geometry domains. Wu et al. [38] performed
a convergence analysis of neural network combined with domain decomposition technolo-

Mathematics 2023, 11, 1843 3 of 23

gies and gradient-enhanced strategies for solving second-order elliptic interface problems.
It was demonstrated that, as the number of samples increased, the neural network sequence
generated by minimizing a Lipschitz regularized loss function converged to the unique
solution to the interface problem in H2.

In this paper, we propose a soft constraint physics-informed neural network to solve
the nonhomogeneous elliptic interface problems with discontinuous solutions and deriva-
tives across the interface. Since the interface divides the domain into two disjoint parts, the
solution may change dramatically across the interface. Instead of representing the ap-
proximate solutions on the whole domain with a single DNN structure, we employ two
DNN structures to approximate the solution when the interface splits the domain into
two subdomains. The solution is approximated by the PINNs, which formulate the PDEs
and jump condition on the interface into the loss of the neural network. To improve the
computational efficiency for more challenging problems, the adaptive activation function,
as well as the adaptive sampling strategy, are employed to achieve the best performance
as the network is optimized in the learning process. Lastly, we present many numerical
experiments, in both 2D and 3D, to demonstrate the flexibility, efficacy, and accuracy of the
proposed technique for handling interface issues.

The remainder of the paper is structured as follows. Section 2 describes the second-
order elliptic interface issue and its three types of boundary conditions. The topology of
neural networks with adaptive activation functions is discussed in Section 3. We present
physical-informed neural networks with soft constraints in Section 4. Section 5 shows
numerical data to demonstrate the efficacy of the suggested technique. Lastly, in Section 6,
we draw some conclusions.

2. Problem Formulation

Let Ω be a bounded domain inRd, d = 2, 3, with a border ∂Ω and an interface Γ that
separates Ω into two disjoint subdomains, Ω+ and Ω−. The border ∂Ω and the interface Γ
are assumed to be Lipschitz continuous. The interface is defined by a piecewise smooth
level-set function φ ∈ Ω, such that Γ = {~x|φ(~x) = 0, ∀~x ∈ Ω}. As such, two subdomains
can be given by Ω+ = {~x|φ(~x) ≥ 0, ∀~x ∈ Ω} and Ω− = {~x|φ(~x) < 0, ∀~x ∈ Ω}. In some
practical applications, the interface may be given as an iso value of a scalar field. ~n = ∇φ

|∇φ|
is the outward unit normal vector of the interface. The following second-order semi-linear
elliptic interface issue is taken into consideration.

−∇ · (κ∇u) = f (~x), ~x ∈ Ω+ ∪Ω−,
[[u]] = u+ − u− = φ, ~x on Γ,
[[~κ∇u ·~n]] = κ+u+

n − κ−u−n = ψ, ~x on Γ,

u =


gd, ~x ∈ ∂Ωd,
κ∇u ·~n = q, ~x ∈ ∂Ωq,
κ∇u ·~n = h(u∞ − u), ~x ∈ ∂Ωh.

(1)

where the function f (~x) describes acting source, the physical meaning of which is deter-
mined by the nature of the considered processes. The boundary ∂Ω has been split into
partitions ∂Ωd, ∂Ωq, and ∂Ωh, each of which is mutually exclusive. Here, ∂Ωd corresponds
to the Dirichlet boundary condition for the given temperature gd and ∂Ωq corresponds
to the Neumann boundary condition with the heat flux q : ∂Ωq → R, and ∂Ωh denotes
the region with Robin (convective) boundary conditions with the heat transfer coefficient
h : ∂Ωh → R, and surrounding temperature u∞ : ∂Ωh → R. u+, u+

n , κ+ indicate their
limiting value from the Ω+ side of the interface, and u−, u−n , κ− indicate their limiting
value from the Ω− side of the interface Γ. On the interface, the derivatives u+

n and u−n are
assessed along the normal direction. φ(~x) and ψ(~x) are at least C1 continuous.

Mathematics 2023, 11, 1843 4 of 23

3. Mathematical Setup for Dual Neural Networks Structure

A feed-forward neural network of L layers and Nk neurons in the kth layer (N0 = Di,
and NL = Do) is denoted by N : RDi → RDo . Wk ∈ RNk×Nk−1 and bk ∈ RNk are the weight
matrix and bias vector in the kth layer (1 ≤ k ≤ L), respectively. The input vector is denoted
by ~x ∈ RDi and the output vector at the kth layer is denoted byN k(~x) andN 0(~x) = ~x. The
activation function is denoted by Φ and is applied layer-wise together with the scalable
parameters nak, where n is the scaling factor. The extra parameters ak modify the slope of
the activation function in each hidden layer, resulting in faster training speed. By means of
the slope recovery term, the activation slopes can also influence the loss function, see [39,40]
for more details. Such locally adaptable activation functions, in particular during the initial
training phase, improve the network’s potential for learning. This document uses a scaling
factor n = 5 for all hidden layers and an initialization nak = 1, · · · , k.

The (L− 1)-hidden layer feed-forward neural network is defined by

N k = WkΦ(ak−1N k−1(~x)) + bk, 2 ≤ k ≤ L (2)

and N 1(~x) = W1~x + b1, where, on the first layer, the activation function is identity.
Θ = {Wk, bk, ak} ∈ V is the collection of all weights, biases, and slopes and takes V as
the parameter space.

However, unlike conventional approaches that use only a single DNN to approximate
the u(~x) solution over the entire Ω domain, we use two DNN structures independently to
estimate u+(~x) and u−(~x) on Ω+ and Ω−, respectively. For ~x ∈ Ωi, i = 1, 2, a dual neural
network is used to approximate ui(~x), i = 1, 2, as follows,

ui(~x) ≈ Ui,N (~x, Θi) = N L
i ◦ N L−1

i ◦ · · · ◦ N 2
i ◦ N 1

i (~x), i = 1, 2, (3)

where Ui,N (~x, Θi) highlights the dependence of the neural network output Ui,N (~x) on Θi.
Then, the global approximation of u(~x) can be defined as follows,

u(~x) ≈ UN (~x, Θ) =

{
U1,N (~x, Θ), i f ~x ∈ Ω1,
U2,N (~x, Θ), i f ~x ∈ Ω2.

(4)

where Θ = Θi, if ~x ∈ Ωi, i = 1, 2. UN (~x, Θ) emphasizes the dependence of the neural
network output UN (~x) on Θ.

4. Physics-Informed Neural Networks with Soft Constraints

A key feature of a PINN is that it can easily turn a PDE problem into an optimization
problem by combining all available information, including control equations, empirical
data, and initial/boundary conditions into a loss function. The advantage of this approach
is that it provides a meshless algorithm, because the differential operators in the managed
PDE are approximated by an automatic discriminant. To reduce the difficulty of neural
network learning, we hope that the network constructed can, as far as possible, meet the
general solution of PDE, and then achieve the goal of accelerating convergence speed and
improving solution accuracy. The dual neural networks structure of the approximation
UN (~x, Θ) is shown in Figure 1. As we can see, these two networks were used to approximate
the solution in different domains. The sampling points were classified, according to the
location of the sample pickup points, and then it was determined to which separate
DNN network they belonged. This method can effectively approximate the singular
discontinuous solution along the material interface.

For a forward problem, we define the loss function as

L(Θ) = ω1LΩ1 + ω2LΩ2 + ω3LΓ + ω4L∂Ω + ω5Ld, (5)

where LΩ1 and LΩ2 are the losses corresponding to the residuals of governing equations in
subdomains Ω1 and Ω2 , respectively. L∂Ω is the loss due to the boundary condition, LΓ

Mathematics 2023, 11, 1843 5 of 23

is the loss due to the interface conditions, and Ld is the loss corresponding to label data
(if any).

LΩ1 =
1

Nr1

Nr1

∑
i=1
| − ∇ · (κ∇u1(xi

r1, θ))− f1|2,

LΩ2 =
1

Nr2

Nr1

∑
i=1
| − ∇ · (κ∇u2(xi

r2, θ))− f2|2,

LΓ =
1

NI

NI

∑
i=1
|[[ui]]− φ|2 +

NI

∑
i=1
|[[κ∇u(xi

γ, θ) · n]]− ψ|2,

L∂Ω =
1

Nb

Nb

∑
i=1
|u(xi

b; θ)− gi
b|

2

Ld =
1

Nd

Nd

∑
i=1
|û(xi

d, θ))− yi
d|

2,

where {~xi
r1}

Nr1
i=1 and {~xi

r2}
Nr2
i=1 are the collocation points randomly distributed in the domain

Ω1 and Ω2, {~xi, gi
b = g(~xi

b)}
Nb
i=1 are the boundary condition points, {~xi

I}
NΓ
i=1 are the interface

condition points, and {~xi
d, ti

d}
Nd
i=1 are sample data (if any). NΩ1 , NΩ2 , NΓ, N∂Ω, Nd denote

the total number of collocation points in two different regions, interface points, boundary
points and labeled data, respectively. The weights ω1, ω2, ω3, ω4 and ω5 are the weights of
residuals for two governing equations, interface conditions, boundary conditions, and la-
beled data. Weights in PINNs are crucial for learnability and can be set manually or
auto-configured [41–43].

Governing equation

N

Done
Y

Figure 1. Schematic duel PINNs for interface problems. Two independent neural networks are
constructed to approximate solutions to two subdomains, respectively.

The basic idea is to train a neural network to approximate the solution of PDE by
minimizing the physically-informed loss function, given the residual of the PDEs together
with the interface and boundary conditions, as follows:

Θ∗ = argmin
Θ
L(Θ).

where Θ∗ is the minimizer and UN (~x; Θ∗) is the related DNN approximation.

Mathematics 2023, 11, 1843 6 of 23

5. Numerical Experiments

Several numerical tests for the elliptic interface problems in two and three dimensions
were carried out, using the current soft constraint PINNs. Due to these intricate contact
geometries, traditional numerical methods for handling such problems provide a significant
challenge to the robustness of numerical schemes. Apart from numerical scheme concerns,
the great computational complexity of typical numerical approaches for three-dimensional
problems is a significant challenge in dealing with complex interface challenges. As a result,
this section highlights the benefits and potential utility of deep learning approaches in
dealing with such difficult numerical instances. The setup we use in the example below
aims to demonstrate the robustness and efficacy of the suggested algorithm, even in the
case of a small network architecture. By choosing the sigmoid as the activation function,
we terminate the learning process when the stopping standardization Loss(Θ) < ε is
satisfied (the ε tolerance was set to at least 10−5). Cross-validation was used in machine
learning practice for validation. That is, we used the test error instead of the training error
to measure the accuracy of the solution. The L∞ and L2 norm errors are calculated by
randomly selecting test points Ntest located in Ω as

‖û− u‖∞ = max
1≤i≤Ntest

|û(~xi)− u(~xi)|
|û(~xi)|

, ‖û− u‖2 =

√√√√∑Ntest
i=1 |û(~xi)− u(~xi)|2

∑Ntest
i=1 |û(~xi)|2

, (6)

where û was the function obtained by the present PINN.

Example 1. This example employs a sophisticated interface in the form of parameters

x(θ) = (a + b cos(mθ)) sin(nθ) cos(θ), y(θ) =
(
a + b cos(mθ)

)
sin(nθ) sin(θ), (7)

where θ ∈ [0, 2π], a = b = 0.40178, m = 2 and n = 6. The coefficients κ± and the solutions u±

are given as follows

κ =


2+xy

5 , (x, y) ∈ Ω+,
x2−y2+3

7 , (x, y) ∈ Ω−,
u =

x + y + 1, (x, y) ∈ Ω+,

sin(x + y) + cos(x + y) + 1, (x, y) ∈ Ω−.
(8)

A dual neural network with 3 layers and 20 neurons in each layer was used. The
geometry of interface Γ and subdomains is illustrated in Figure 2a. The uniform sampled
points with Nr1 = 500 on the domain Ω1, Nr2 = 300 on the domain Ω2 and NΓ = 300 on
the interface Γ, and N∂Ω = 800 on the boundary ∂Ω, were used to calculate the numerical
solution, see Figure 2b. The balance weights in the loss function were chosen as ω1 =
0.00001, ω2 = 0.00001, ω3 = 0.99999, ω4 = 0.99999. The PINN solution is shown in
Figure 3a. The error between PINN and exact solutions is shown in Figure 3b. It can be seen
that the presented PINN was able to approximate the solution of the interface problem,
and the relative error between the numerical and the analytical solution was between
−4.0× 10−3 and 1.0× 10−3. Figure 4 presents the evolution process of the loss function
with adaptive and fixed activation functions for Sub-Net1 and Sub-Net2, respectively. It is
shown that the adaptive activation function was beneficial in improving the convergence
speed of the loss function in the process of deep learning.

Mathematics 2023, 11, 1843 7 of 23

(a) (b)

Figure 2. (a) Computational domain and interface geometry and (b) training points.

(a) (b)

Figure 3. (a) The PINN solution and (b) the error between PINN and exact solutions for Example 1.

Figure 4. The evolution of loss error for Example 1.

Mathematics 2023, 11, 1843 8 of 23

Table 1 shows the relative L2 errors with the different number of training points under
the adaptive activation function and fixed activation function. eΩ1 , eΩ2 , eΓ and e∂Ω are
the loss errors at Ω+, Ω−, interface Γ and boundary ∂Ω, respectively. It can be seen that
the error decreased with increase in the number of training points on the boundary and
interface, and the error by the adaptive activation function method was better than that of
the fixed activation function. Table 2 presents the relative L2 errors of the same training
points with different numbers of neurons. In this table, we can see that the calculation
accuracy increased with increase in the number of neurons, but the calculation time cost
increased accordingly. Therefore, the appropriate network depth and width should be
selected in order to acquire good accuracy and efficiency.

Table 1. Comparison of the errors of the adaptive and the fixed activating function strategies for
different numbers of training points for Example 1.

Activation
Function N∂Ω/Nr1/Nr2/NΓ eΩ1 eΩ2 eΓ e∂Ω

200/500/300/75 9.997 × 10−4 6.553 × 10−4 6.621 × 10−4 7.786 × 10−4

Adaptive 400/500/300/150 7.223 × 10−4 4.552 × 10−4 2.800 × 10−4 5.483 × 10−4

800/500/300/300 4.539 × 10−4 3.675 × 10−4 3.319 × 10−4 5.771 × 10−4

200/500/300/75 5.137 × 10−4 7.497 × 10−4 6.797 × 10−4 5.013 × 10−4

Fixed 400/500/300/150 4.997 × 10−4 6.513 × 10−4 6.628 × 10−4 5.186 × 10−4

800/500/300/300 4.560 × 10−4 4.164 × 10−4 3.724 × 10−4 4.843 × 10−4

Table 2. Comparison of errors in different terms with different numbers of neurons for Example 1.

Number of
Neurons eΩ1 eΩ2 eΓ e∂Ω

10 1.007 × 10−3 3.101 × 10−4 3.336 × 10−4 5.140 × 10−4

20 5.397 × 10−4 4.652 × 10−4 3.488 × 10−4 6.003 × 10−4

40 2.912 × 10−4 1.573 × 10−4 1.208 × 10−4 1.967 × 10−4

Example 2. This example used the same interface geometric parameter equation as in Example 1.
The same problem setting and analysis solution as in the previous example and the balance weight
in the loss function were used. Here, a = 0.50012563, b = 0.250012563, m = 0, and n = 12. The
geometry of interface Γ and subdomains is illustrated in Figure 5a. The numerical solution was
calculated on the uniform sampled points with Nr1 = 500, Nr2 = 300, NΓ = 300, and N∂Ω = 800,
see Figure 5b. The PINN solution is shown in Figure 6a. The relative error in L2 norm is plotted in
Figure 6. It can be seen that the present method effectively approximated the solution of the interface
problem, and the range of error was between−3× 10−3 to 3× 10−3. This example shows that, even
at uniform sampling points, the present dual neural network technology could produce sufficient
accurate approximation for two-dimensional elliptic problems with complex interface geometry.
Figure 7 displays the evolution process of the loss function with adaptive and fixed activation
functions for Sub-Net1 and Sub-Net2, respectively. It is shown that the adaptive activation function
was beneficial in improving the convergence speed of the loss function in the process of deep learning.

Mathematics 2023, 11, 1843 9 of 23

(a) (b)

Figure 5. (a) Domain and interface geometry and (b) training points.

(a) (b)

Figure 6. (a) The PINN solution and (b) the error between PINN and the exact solution for Example 2.

Figure 7. The evolution of average loss error for Example 2.

Mathematics 2023, 11, 1843 10 of 23

Table 3 compares the relative L2 errors in a different number of training points with
adaptive and fixed activation functions, respectively. We can see that the error decreased
with increase in the number of training points on the boundary and interface, and the error
of the adaptive activation function method was better than that of the fixed activation
function. Table 4 shows the relative L2 errors of the same training points with a different
number of neurons. It is shown that the calculation accuracy increased with increase of the
number of neurons, but the calculation time cost increased accordingly.

Table 3. Comparison of errors by adaptive and fixed activation function strategies with different
numbers of training points for Example 2.

Activation
Function N∂Ω/Nr1/Nr2/NΓ eΩ1 eΩ2 eΓ e∂Ω

200/500/300/75 4.517 × 10−4 3.827 × 10−4 6.621 × 10−4 4.786 × 10−4

Adaptive 400/500/300/150 4.213 × 10−4 1.653 × 10−4 2.800 × 10−4 5.483 × 10−4

800/500/300/300 4.167 × 10−4 1.719 × 10−4 2.409 × 10−4 4.691 × 10−4

200/500/300/75 8.257 × 10−4 7.546 × 10−4 6.348 × 10−4 7.221 × 10−4

Fixed 400/500/300/150 6.458 × 10−4 6.114 × 10−4 6.227 × 10−4 7.102 × 10−4

800/500/300/300 4.139 × 10−4 3.449 × 10−4 4.677 × 10−4 5.677 × 10−4

Table 4. Comparison of errors in different terms with different numbers of neurons for Example 2.

Number of
Neurons eΩ1 eΩ2 eΓ e∂Ω

10 7.108 × 10−4 3.548 × 10−4 5.548 × 10−4 4.591 × 10−4

20 4.517 × 10−4 3.827 × 10−4 6.621 × 10−4 4.786 × 10−4

40 4.559 × 10−4 7.968 × 10−4 8.676 × 10−4 3.454 × 10−4

Example 3. Consider the following level set function to describe an annular region with inner and
outer radii rinn = 0.151 and rout = 0.911 with an immersed star interface.

φ(x, y) =
√
(x2 + y2)− r0

(
1 +

3

∑
k=1

βk cos
(
nk(arctan(

y
x
)− θk)

))
, (9)

with parameters:

r0 = 0.483,

n1
β1
θ1

 =

 3
0.3
0.5

,

n2
β2
θ2

 =

 4
−0.1
1.8

, and

n3
β3
θ3

 =

 7
0.15

0

. (10)

The exact solution is

u =


(

16
(y−x

3
)5 − 20

(y−x
3
)3
)
+ 5
(y−x

3
)

log(x + y + 3), (x, y) ∈ Ω+,

sin(2x) cos(2y), (x, y) ∈ Ω−.
(11)

We tested the problems on dual neural networks. Each neural network had 3 layers
and each layer had 20 neurons. The geometry of interface Γ and subdomains is illustrated
in Figure 8a. The numerical solution was calculated on the uniform sampled points with
Nr1 = 500, Nr2 = 300, NΓ = 300, and Nb1 = 200, Nb2 = 800, see Figure 8b. The PINN
solution is shown in Figure 9a. The errors between PINN and the exact solutions is
shown in Figure 9b. It can be seen that the presented method effectively approximated
the solution of the interface problem, and the range of error was from −2.0× 10−3 to
6.0× 10−3. Figure 10 shows the evolution process of the loss function with adaptive and
fixed activation functions for Sub-Net1 and Sub-Net2, respectively.

Mathematics 2023, 11, 1843 11 of 23

(a) (b)

Figure 8. (a) Problem geometry and (b) training points.

(a) (b)

Figure 9. (a) The PINN solution and (b) the error between PINN and exact solutions for Exampe 3.

Figure 10. The evolution plot of loss L2 error for Example 3.

Table 5 compares the relative L2 errors with a different number of training points
under adaptive and fixed activation functions. We can see that the error decreased with
increase in the number of training points on the boundary and interface, and the error of the
adaptive activation function method was better than that of the fixed activation function.
e∂Ω1 and e∂Ω2 were the loss errors on the internal and the outer boundary, respectively.

Mathematics 2023, 11, 1843 12 of 23

Table 6 illustrates the relative L2 errors of the same training points with a different number
of neurons. It is shown that the calculation accuracy increased with increase in the number
of neurons.

Table 5. Comparison of errors by adaptive and fixed activation function strategies with different
numbers of training points for Example 3.

Activation Function N∂Ω1 /N∂Ω2 /Nr1/Nr2/NΓ eΩ1 eΩ2 eΓ e∂Ω1 e∂Ω2

200/50/500/300/75 2.870 × 10−3 3.765 × 10−4 6.621 × 10−4 3.138 × 10−4 7.113 × 10−4

Adaptive 400/100/500/300/150 1.897 × 10−3 2.103 × 10−4 7.083 × 10−4 3.203 × 10−4 4.120 × 10−4

800/200/500/300/300 1.475 × 10−3 2.403 × 10−4 2.853 × 10−4 3.608 × 10−4 2.001 × 10−4

200/50/500/300/75 5.894 × 10−3 5.556 × 10−4 6.790 × 10−4 6.185 × 10−4 5.327 × 10−4

Fixed 400/100/500/300/150 5.501 × 10−3 4.778 × 10−4 5.025 × 10−4 5.110 × 10−4 6.311 × 10−4

800/200/500/300/300 4.540 × 10−3 3.633 × 10−4 5.515 × 10−4 5.904 × 10−4 5.522 × 10−4

Table 6. Comparison of errors in different terms with different numbers of neurons for Example 3.

Number of
Neurons eΩ1 eΩ2 eΓ e∂Ω1 e∂Ω2

10 4.754 × 10−3 9.017 × 10−4 1.550 × 10−3 7.443 × 10−4 1.134 × 10−3

20 2.870 × 10−3 3.765 × 10−4 6.621 × 10−4 3.138 × 10−4 7.113 × 10−4

40 2.282 × 10−3 4.866 × 10−4 8.330 × 10−4 2.915 × 10−4 3.276 × 10−4

Example 4. A two-dimensional elliptic problem with irregular interface geometry.

We tested an interface problem with variable coefficients, and the computational
domain is shown in Figure 11. The boundary is given in polar coordinates r = 1.5 +
0.14 sin(4θ) + 0.12 cos(6θ) + 0.09 cos(5θ), where θ ∈ [0, 2π), and the boundary points are
obtained as x1 = r cos(θ) and x2 = r sin(θ). The computational domain is further divided
into two highly irregular, non-convex subdomains, where the interface is given by r =
0.6 + 0.216 sin(3θ) + 0.096 cos(2θ) + 0.24 cos(5θ) and the corresponding interface points
are obtained as x1 = r cos(θ) and x2 = r sin(θ). The coefficient κ± is defined as

κ(x, y) =

{
xy, (x, y) ∈ Ω+,
x2 + y2, (x, y) ∈ Ω−.

(12)

The exact solution is

u(x, y) =

{
sin(x + y), (x, y) ∈ Ω+,
cos(x + y), (x, y) ∈ Ω−.

(13)

The necessary forcing term f , boundary and interface conditions are divided from the
exact solution.

The geometry of interface Γ and subdomains is illustrated in Figure 11a. The numerical
solution was calculated on the uniform sampled points with Nr1 = 500, Nr2 = 300,
NΓ = 300, and N∂Ω = 800, see Figure 11b. The balance weights in this example were
chosen as ω1 = 0.99999, ω2 = 0.00001, ω3 = 0.99999, ω4 = 0.99999, ω5 = 0. The PINN
solution is shown in Figure 12a. The error between PINN and exact solutions was between
−1.5× 10−3 and 2.5× 10−3, as shown in Figure 12b. Figure 13 shows the evolution process
of the loss function with adaptive and fixed activation functions for Sub-Net1 and Sub-Net2,
respectively.

Mathematics 2023, 11, 1843 13 of 23

(a) (b)

Figure 11. (a) Computational domain and interface shape and (b) training points.

(a) (b)

Figure 12. (a) The PINN solution and (b) the error between PINN and the exact solution for
Example 4.

Figure 13. The plot of Ls average error loss for Example 4.

Table 7 compares the relative L2 errors with different numbers of training points
under adaptive activation function and fixed activation function. We can see that the error
decreased with increase in the number of training points on the boundary and interface,

Mathematics 2023, 11, 1843 14 of 23

and the error of the adaptive activation function method was better than that of the fixed
activation function. Table 8 illustrates the relative L2 errors of the same training points with
a different number of neurons. It is shown that the calculation accuracy decreased with
increase in the number of neurons, but the calculation time cost increased accordingly.

Table 7. Comparison of errors by adaptive and fixed activation function strategies with different
numbers of training points for Example 4.

Activation
Function N∂Ω/Nr1/Nr2/NΓ eΩ1 eΩ2 eΓ e∂Ω

200/500/300/75 1.933 × 10−4 5.989 × 10−4 5.774 × 10−4 3.591 × 10−4

Adaptive 400/500/300/150 1.733 × 10−4 3.367 × 10−4 8.803 × 10−4 7.697 × 10−4

800/500/300/300 1.443 × 10−4 1.102 × 10−4 7.815 × 10−4 2.587 × 10−4

200/500/300/75 2.866 × 10−4 6.241 × 10−4 7.144 × 10−4 5.460 × 10−4

Fixed 400/500/300/150 3.221 × 10−4 6.001 × 10−4 6.456 × 10−4 4.564 × 10−4

800/500/300/300 2.754 × 10−4 7.596 × 10−4 6.843 × 10−4 3.219 × 10−4

Table 8. Comparison of errors in different terms with different numbers of neurons for Example 4.

Number of
Neurons eΩ1 eΩ2 eΓ e∂Ω

10 3.011 × 10−4 7.143 × 10−4 9.133 × 10−4 5.119 × 10−4

20 1.933 × 10−4 5.989 × 10−4 5.774 × 10−4 3.591 × 10−4

40 2.278 × 10−4 1.473 × 10−4 1.284 × 10−4 4.471 × 10−4

Example 5. Constant gradient jump over a flat interface.

We also tested a more complicated three-dimensional cube interface problem. Along
the z- axis, there were two zones that made up the cube. The conductivity values of the
bottom and top sections were 1 and 8 W/m·K, respectively, and the material contact was
planar. The prescribed temperatures were 5 and 10 ◦C along the top and bottom surfaces,
respectively, while the remaining surfaces were insulated. Figure 14 depicts the problem’s
size and boundary conditions.

With the origin of the Cartesian coordinates system located at the lower front corner
of the cubic domain, a distributed heat source f (x, y, z) = 5000(z2 − z + 1) was applied,
yielding the following exact temperature field in the domain:

u(x, y, z) =

{
−33750z4 + 833.3z3 − 2500z2 + 70.9z + 10, z < 0.05,
−4218.7z4 + 104.2z3 − 312.5z2 + 8.86z + 7.56, z ≥ 0.05.

(14)

We adopted a dual neural network structure, which included two neural networks.
Each network had 3 layers, and each layer had 20 neurons. The numerical solution was
calculated on the uniform sampled points with Nr1 = 2000, Nr2 = 2000, NΓ = 2000,
and N∂Ω1 = 3200, N∂Ω2 = 3200. Figure 15a shows the PINN solution. The balance weights
in this problem were chosen as ω1 = 0.00001, ω2 = 0.99999, ω3 = 0.99999, ω4 = 0.99999,
ω5 = 0.99999. The error between PINN and exact solutions is shown in Figure 15b and the
error range was between−5.0× 10−3 and 1.5× 10−2. This method was shown to accurately
approximate the solution of three-dimensional interface problems. Figure 16 shows the
evolution process of the loss function with adaptive and fixed activation functions for
Sub-Net1 and Sub-Net2, respectively. The effectiveness of the presented algorithm for
complex three-dimensional problems on uniform sampling points can be demonstrated by
this example.

Mathematics 2023, 11, 1843 15 of 23

Figure 14. Physical model and interface geometry.

(a) (b)

Figure 15. (a) The PINN solution and (b) the error between PINN and exact solution for Example 5.

Figure 16. The plot of Ls average error loss for Example 5.

Table 9 compares the relative L2 errors with different numbers of training points under
the adaptive activation function and the fixed activation function. We can see that the error
decreased with increase in the number of training points on the boundary and interface,
and the error of the adaptive activation function method was better than that of the fixed
activation function. Table 10 illustrates the relative L2 errors of the same training points

Mathematics 2023, 11, 1843 16 of 23

with a different number of neurons. It was shown that the calculation accuracy decreased
with increase in the number of neurons, but the calculation time cost increased accordingly.

Table 9. Comparison of errors by adaptive and fixed activation function strategies with different
numbers of training points for Example 5.

Activation Function N∂Ω1 /N∂Ω2 /Nr1/Nr2/NΓ eΩ1 eΩ2 eΓ e∂Ω1 e∂Ω2

800/800/2000/2000/500 6.781 × 10−4 1.612 × 10−3 1.711 × 10−3 5.117 × 10−4 9.959 × 10−4

Adaptive 1600/1600/2000/2000/1000 5.353 × 10−4 1.144 × 10−3 1.555 × 10−3 4.531 × 10−4 6.983 × 10−4

3200/3200/2000/2000/2000 6.731 × 10−4 1.040 × 10−3 1.415 × 10−3 3.375 × 10−4 7.691 × 10−4

800/800/2000/2000/500 1.457 × 10−3 4.612 × 10−3 4.556 × 10−3 9.456 × 10−4 1.528 × 10−3

Fixed 1600/1600/2000/2000/1000 9.458 × 10−4 2.784 × 10−3 3.455 × 10−3 7.781 × 10−4 7.546 × 10−4

3200/3200/2000/2000/2000 8.456 × 10−4 7.458 × 10−4 2.785 × 10−3 3.441 × 10−4 6.745 × 10−4

Table 10. Comparison of errors in different terms with different numbers of neurons for Example 5.

Number of
Neurons eΩ1 eΩ2 eΓ e∂Ω1 e∂Ω2

10 1.323 × 10−3 4.117 × 10−3 3.213 × 10−3 9.094 × 10−4 2.362 × 10−3

20 6.781 × 10−4 1.612 × 10−3 1.711 × 10−3 5.117 × 10−4 9.959 × 10−4

40 4.935 × 10−4 8.247 × 10−4 1.203 × 10−3 3.752 × 10−4 4.445 × 10−4

Example 6. Three-dimensional sphere with a complicated inner region.

Consider a three-dimensional spherical shell with internal and exterior radii of rinn = 0.151
and rout = 0.911, respectively, in which there is an immersed-type complex star interface
and the interface geometry is given by the level set function shown below.

φ(x, y, z) =
√
(x2 + y2 + z2)− r0

(
1 +

(x2 + y2

x2 + y2 + z2

)2 3

∑
k=1

βk cos
(

nk(arctan(
y
x
)− θk)

))
, (15)

The exact solution is taken as follows with the same parameters (10) as for the two-
dimensional case.

u =


(

16
(y−x

3
)5 − 20

(y−x
3
)3

+ 5
(y−x

3
))

log(x + y + 3)cos(z), (x, y, z) ∈ Ω+,

sin(2x) cos(2y) exp(z), (x, y, z) ∈ Ω−.
(16)

The problem geometry is illustrated in Figure 17.
The numerical solution is calculated on the uniform sampled points with Nr1 = 500,

Nr2 = 300 , NΓ = 600, and N∂Ω1 = 400, N∂Ω2 = 400 . The balance weights in the
loss function were chosen as ω1 = 0.00001, ω2 = 0.99999, ω3 = 0.99999, ω4 = 0.99999,
ω5 = 0.99999.

Figure 18a depicts the PINN solution on the domain inside the interface. The error
between PINN and the exact solutions in the internal domain is shown in Figure 18b.
The relative error range of the internal domain was between −2.0× 10−3 and 1.5× 10−3.
Figure 19a depicted the PINN solution on the domain outside the interface. The error
between PINN and the exact solutions in the external domain is shown in Figure 19b. It
can be seen that the relative error range of the external domain was between −1.0× 10−2

and 1.0× 10−2. Figure 20 shows the evolution process of the loss function with adaptive
and fixed activation functions for Sub-Net1 and Sub-Net2, respectively.

Mathematics 2023, 11, 1843 17 of 23

Figure 17. Computational geometry and interface.

(a) (b)

Figure 18. (a) The PINN solution and (b) the error between PINN and the exact solution for internal
domain.

(a) (b)

Figure 19. (a) The PINN solution and (b) the error between PINN and exact solution for external
domain.

Mathematics 2023, 11, 1843 18 of 23

Figure 20. The evolution of Ls average error loss for Example 6.

Table 11 compares the relative L2 errors with different numbers of training points under
the adaptive activation function and the fixed activation function. We can see that the error
decreased with increase in the number of training points on the boundary and interface,
and the error of the adaptive activation function method was better than that of the fixed
activation function. Table 12 illustrates the relative L2 errors of the same training points
with a different number of neurons. It is shown that the calculation accuracy decreased
with increase in the number of neurons, but the calculation time cost increased accordingly.

Table 11. Comparison of errors by adaptive and fixed activation function strategies with different
numbers of training points for Example 6.

Activation Function N∂Ω1 /N∂Ω2 /Nr1/Nr2/NΓ eΩ1 eΩ2 eΓ e∂Ω1 e∂Ω2

100/100/500/300/150 4.851 × 10−3 1.075 × 10−3 1.746 × 10−3 7.861 × 10−3 7.923 × 10−4

Adaptive 200/200/500/300/300 2.359 × 10−3 6.597 × 10−4 1.036 × 10−3 1.901 × 10−3 4.145 × 10−4

400/400/500/300/600 1.888 × 10−3 5.012 × 10−4 1.167 × 10−3 1.229 × 10−3 3.762 × 10−4

100/100/500/300/150 5.540 × 10−3 2.552 × 10−3 3.290 × 10−3 5.315 × 10−3 2.215 × 10−3

Fixed 200/200/500/300/300 4.180 × 10−3 1.576 × 10−3 2.277 × 10−3 3.299 × 10−3 1.561 × 10−3

400/400/500/300/600 2.902 × 10−3 1.337 × 10−3 2.032 × 10−3 1.692 × 10−3 8.895 × 10−4

Table 12. Comparison of errors in different terms with different numbers of neurons for Example 6.

Number of
Neurons eΩ1 eΩ2 eΓ e∂Ω1 e∂Ω2

10 5.394 × 10−3 2.087 × 10−3 3.303 × 10−3 7.094 × 10−3 2.062 × 10−3

20 4.851 × 10−3 1.075 × 10−3 1.746 × 10−3 7.861 × 10−3 7.923 × 10−4

40 2.068 × 10−3 1.226 × 10−3 1.637 × 10−3 2.391 × 10−3 6.592 × 10−4

Example 7. Consider a sphere with an inner doughnut, the level set function of the inner doughnut
interface is given as:

φ(x, y, z) =
(√

x2 + y2 − 0.6
)2

+ z2 − 0.32. (17)

Mathematics 2023, 11, 1843 19 of 23

The elliptic coefficients and exact solution are given as prior:

κ(x, y, z) =

{
80, (x, y, z) ∈ Ω+,
2, (x, y, z) ∈ Ω−.

(18)

u =

{
xy + x4 + y4 + xz2 + cos(2x + y2 + z3), (x, y, z) ∈ Ω+,
x3 + xy2 + y3 + z4 + sin(3(x2 + y2)), (x, y, z) ∈ Ω−.

(19)

In this problem, a dual neural network structure with two neural networks was
adopted. Each network had 4 layers, and each layer had 20 neurons. The numerical solution
was calculated on the uniform sampled points with Nr1 = 2000, Nr2 = 300, NΓ = 300,
and N∂Ω = 2000. The balance weights were chosen as ω1 = 0.24999, ω2 = 0.00024,
ω3 = 0.49999, ω4 = 0.24999, ω5 = 0. Figure 21a shows the PINN solution within the
interface. The error between PINN and the exact solutions on the internal domain is shown
in Figure 21b. It is shown that the relative error range of the internal domain was between
−4× 10−2 and 2× 10−2. Figure 22 plots the PINN solution outside the interface. The errors
between PINN and the exact solutions on the external domain is shown in Figure 22b. It
can be seen that the relative error range of the external domain was between −4× 10−2

and 2× 10−2. Figure 23 shows the evolution process of the loss function with adaptive and
fixed activation functions for Sub-Net1 and Sub-Net2, respectively.

Table 13 compares the relative L2 errors with different numbers of training points under
the adaptive activation function and the fixed activation function. We can see that the error
decreased with increase in the number of training points on the boundary and interface,
and the error of the adaptive activation function method was better than that of the fixed
activation function. Table 14 illustrates the relative L2 errors of the same training points
with a different number of neurons. It is shown that the calculation accuracy decreased with
increase in the number of neurons, while the calculation time cost increased accordingly.

(a) (b)

Figure 21. (a) The PINN solution and (b) the error between PINN and the exact solution on exter-
nal area.

Mathematics 2023, 11, 1843 20 of 23

(a) (b)

Figure 22. (a) The PINN solution and (b) the error between PINN and the exact solution on internal
domain.

Figure 23. The plot of Ls average error loss for Example 7.

Table 13. Comparison of errors by adaptive and fixed activation function strategies with different
numbers of training points for Example 7.

Activation Functions N∂Ω/N1/N2/Ni eΩ1 eΩ2 eΓ e∂Ω

500/2000/300/75 6.022 × 10−2 2.514 × 10−2 3.580 × 10−2 1.011 × 10−1

Adaptive 1000/2000/300/150 3.742 × 10−2 1.437 × 10−2 2.165 × 10−2 8.032 × 10−2

2000/2000/300/300 5.330 × 10−2 1.061 × 10−2 1.425 × 10−2 8.363 × 10−2

500/2000/300/75 8.459 × 10−2 6.155 × 10−2 4.486 × 10−2 3.785 × 10−1

Fixed 1000/2000/300/150 7.489 × 10−2 4.128 × 10−2 2.445 × 10−2 1.567 × 10−1

2000/2000/300/300 6.446 × 10−2 3.546 × 10−2 3.457 × 10−2 8.458 × 10−2

Mathematics 2023, 11, 1843 21 of 23

Table 14. Comparison of errors in different terms with different numbers of neurons for Example 7.

Number of
Neurons eΩ1 eΩ2 eΓ e∂Ω

10 6.125 × 10−2 3.221 × 10−2 4.208 × 10−2 9.971 × 10−2

20 5.330 × 10−2 1.061 × 10−2 1.425 × 10−2 8.363 × 10−2

40 2.175 × 10−2 7.691 × 10−3 1.228 × 10−2 2.674 × 10−2

6. Conclusions

A soft constraint physics-informed neural network is proposed to solve nonhomoge-
neous elliptic interface problems. Due to the complexity of geometry, the solution may
change dramatically across the interface. Traditional numerical methods for solving these
problems are challenging. As the interface divides the computational domain into two
disjoint parts, a dual neural network structure with two separate neural networks in two
disjoint subdomains is employed. The two neural networks are joined by jumping con-
ditions on the interface, which are necessary to capture the solution singularity on the
interface. The PDEs, boundary conditions and jump condition on the interface are then
formulated into the loss function by PINN, and the terms in the loss function balanced by
penalty weights. An adaptive activation function method is used to increase the computing
efficiency in more difficult situations. This method may be optimized by dynamically
changing the topology of the loss function used in the optimization process to attain the
optimal network performance. Numerical experiments for 2D and 3D situations demon-
strated that the proposed method can solve interface problems with flexibility, effectiveness,
and enough accuracy.

Author Contributions: Methodology, F.C.; Software, X.G.; Validation, X.G. and F.G.; Writing—review
& editing, D.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was partially supported by the National Natural Science Foundation of China
(12261067, 12161067, 62201298, 12001015, 51961031), the Inner Mongolia Autonomous Region “Youth
Science and Technology Talents” Support Program (NJYT20B15), the Inner Mongolia Scientific
Fund Project (2020MS06010, 2021LHMS01006, 2022MS01008), and Innovation Fund Project of Inner
Mongolia University of Science and Technology-Excellent Youth Science Fund Project (2019YQL02).

Conflicts of Interest: The authors declare that they have no competing interests.

References
1. Oevermann, M.; Scharfenberg, C.; Klein, R. A sharp interface finite volume method for elliptic equations on Cartesian grids. J.

Comput. Phys. 2009, 228, 5184–5206. [CrossRef]
2. Preskill, B.; Sethian, J.A. Jump splicing schemes for elliptic interface problems and the incompressible Navier-Stokes equations.

arXiv 2016, arXiv:1612.09342.
3. Guyomarc’h, G.; Lee, C.O.; Jeon, K. A discontinuous Galerkin method for elliptic interface problems with application to

electroporation. Commun. Numer. Methods Eng. 2009, 25, 991–1008. [CrossRef]
4. López-Ruiz, G.; Bravo-Castillero, J.; Brenner, R.; Cruz, M.E.; Guinovart-Díaz, R.; Pérez-Fernández, L.D.; Rodríguez-Ramos,

R. Variational bounds in composites with nonuniform interfacial thermal resistance. Appl. Math. Model. 2015, 39, 7266–7276.
[CrossRef]

5. Rocha, R.P.A.; Cruz, M.E. Computation of the effective conductivity of unidirectional fibrous composites with an interfacial
thermal resistance. Numer. Heat Transf. Part A Appl. 2001, 39, 179–203. [CrossRef]

6. Costa, R.; Nobrega, J.M.; Clain, S.; Machado, G.J. Very high-order accurate polygonal mesh finite volume scheme for conjugate
heat transfer problems with curved interfaces and imperfect contacts. Comput. Methods Appl. Mech. Eng. 2019, 357, 112560.
[CrossRef]

7. Meften, G.A.; Ali, A.H. Continuous dependence for double diffusive convection in a Brinkman model with variable viscosity.
Acta Univ. Sapientiae Math. 2022, 14, 125–146. [CrossRef]

8. Meften, G.A.; Ali, A.H.; Yaseen, M.T. Continuous dependence for thermal convection in a Forchheimer-Brinkman model with
variable viscosity. AIP Conf. Proc. 2023, 2457, 020005.

9. Huang, P.; Wu, H.; Xiao, Y. An unfitted interface penalty finite element method for elliptic interface problems. Comput. Methods
Appl. Mech. Eng. 2017, 323, 439–460. [CrossRef]

http://doi.org/10.1016/j.jcp.2009.04.018
http://dx.doi.org/10.1002/cnm.1132
http://dx.doi.org/10.1016/j.apm.2015.02.048
http://dx.doi.org/10.1080/104077801300004267
http://dx.doi.org/10.1016/j.cma.2019.07.029
http://dx.doi.org/10.2478/ausm-2022-0009
http://dx.doi.org/10.1016/j.cma.2017.06.004

Mathematics 2023, 11, 1843 22 of 23

10. Barrett, J.; Elliott, C. Fitted and unfitted finite element methods for elliptic equations with smooth interfaces. IMA J. Numer. Anal.
1987, 7, 283–300. [CrossRef]

11. Guo, H.; Yang, X. Gradient recovery for elliptic interface problem: I. body-fitted mesh. arXiv 2016, arXiv:1607.05898.
12. Li, J.; Wohlmuth, J.M.J.B.; Zou, J. Optimal a priori estimates for higher order finite elements for elliptic interface problems. Appl.

Numer. Math. 2010, 60, 19–37. [CrossRef]
13. Zheng, X.; Lowengrub, J. An interface-fitted adaptive mesh method for elliptic problems and its application in free interface

problems with surface tension. Adv. Comput. Math. 2016, 42, 1225–1257. [CrossRef]
14. Cao, F.; Sheng, Z.; Yuan, G. Monotone finite volume schemes for diffusion equation with imperfect interface on distorted meshes.

J. Sci. Comput. 2018, 76, 1055–1077. [CrossRef]
15. Peskin, C. Numerical analysis of blood flow in the heart. J. Comput. Phys. 1977, 25, 220–252. [CrossRef]
16. Li, Z.; Ito, K. The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains; Society for

Industrial and Applied Mathematics: Philadelphia, PA, USA, 2006.
17. Ji, H.; Zhang, Q.; Wang, Q.; Xie, Y. A partially penalised immersed finite element method for elliptic interface problems with

non-homogeneous jump conditions. East Asia J. Appl. Math. 2018, 8, 1–23. [CrossRef]
18. Wu, H.; Xiao, Y. An unfitted hp-interface penalty finite element method for elliptic interface problems. J. Comput. Math. 2019,

37, 316.
19. Guo, R.; Lin, T. A higher degree immersed finite element method based on a Cauchy extension for elliptic interface problems.

SIAM J. Numer. Anal. 2019, 57, 1545–1573. [CrossRef]
20. Wang, Q.; Zhang, Z.; Wang, L. New immersed finite volume element method for elliptic interface problems with non-

homogeneous jump conditions. J. Comput. Phys. 2020, 427, 110075. [CrossRef]
21. Weinan, E.; Yu, B. The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm for Solving Variational Problems.

Commun. Math. Stat. 2017, 6, 1–12.
22. Sirignano, J.A.; Konstantinos, S. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018,

375, 1339–1364. [CrossRef]
23. Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural network: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
24. Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A deep learning library for solving differential equations. SIAM Rev. 2021,

63, 208–228. [CrossRef]
25. Pang, G.; Lu, L.; Karniadakis, G.E. fPINNs: Fractional physics-informed neural networks. SIAM J. Sci. Comput. 2019, 41,

A2603–A2626. [CrossRef]
26. Zhang, D.; Lu, L.; Guo, L.; Karniadakis, G.E. Quantifying total uncertainty in physics-informed neural networks for solving

forward and inverse stochastic problems. J. Comput. Phys. 2019, 397, 108850. [CrossRef]
27. Zhang, D.; Guo, L.; Karniadakis, G.E. Learning in modal space: Solving time-dependent stochastic PDEs using physics-informed

neural networks. SIAM J. Sci. Comput. 2020, 42, A639–A665. [CrossRef]
28. Chen, Y.; Lu, L.; Karniadakis, G.E.; Negro, L.D. Physics-informed neural networks for inverse problems in nano-optics and

metamaterials. Opt. Express 2020, 28, 11618–11633. [CrossRef]
29. Lu, L.; Pestourie, R.; Yao, W.; Wang, Z.; Verdugo, F.; Johnson, S.G. Physics-informed neural networks with hard constraints for

inverse design. arXiv 2021, arXiv:2102.04626.
30. Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations.

Science 2020, 367, 1026–1030. [CrossRef]
31. Yazdani, A.; Lu, L.; Raissi, M.; Karniadakis, G.E. Systems biology informed deep learning for inferring parameters and hidden

dynamics. PLoS Comput. Biol. 2020, 16, e1007575. [CrossRef]
32. Jagtap, A.D.; Karniadakis, G.E. Extended physics-informed neural networks (xpinns): A generalized space-time domain

decomposition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. 2020, 28,
2002–2041.

33. Jagtap, A.D.; Kharazmi, E.; Karniadakis, G.E. Conservative physics-informed neural networks on discrete domains for conserva-
tion laws: Applications to forward and inverse problems. Comput. Methods Appl. Mech. Eng. 2020, 365, 113028. [CrossRef]

34. Li, W.; Xiang, X.; Xu, Y. Deep domain decomposition method: Elliptic problems. PMLR 2020, 107, 269–286.
35. Wang, Z.J.; Zhang, Z.W. A mesh-free method for interface problems using the deep learning approach. J. Comput. Phys. 2020, 400,

108963. [CrossRef]
36. Hu, W.F.; Lin, T.S.; Lai, M.C. A discontinuity capturing shallow neural network for elliptic interface problems. arXiv 2021,

arxiv:2106.05587.
37. He, C.Y.; Hu, X.Z.; Mu, L. A mesh-free method using piecewise deep neural network for elliptic interface problems. J. Comput.

Appl. Math. 2022, 412, 114358. [CrossRef]
38. Wu, S.D.; Zhu, A.Q.; Tang, Y.F.; Lu, B.Z. On convergence of neural network methods for solving elliptic interface problems. arXiv

2022, arxiv:2203.03407v2.
39. Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Locally adaptive activation functions with slope recovery term for deep and

physics-informed neural networks. Proc. R. Soc. A 2020, 476, 20200334. [CrossRef]

http://dx.doi.org/10.1093/imanum/7.3.283
http://dx.doi.org/10.1016/j.apnum.2009.08.005
http://dx.doi.org/10.1007/s10444-016-9460-5
http://dx.doi.org/10.1007/s10915-018-0651-8
http://dx.doi.org/10.1016/0021-9991(77)90100-0
http://dx.doi.org/10.4208/eajam.160217.070717a
http://dx.doi.org/10.1137/18M121318X
http://dx.doi.org/10.1016/j.jcp.2020.110075
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1137/19M1274067
http://dx.doi.org/10.1137/18M1229845
http://dx.doi.org/10.1016/j.jcp.2019.07.048
http://dx.doi.org/10.1137/19M1260141
http://dx.doi.org/10.1364/OE.384875
http://dx.doi.org/10.1126/science.aaw4741
http://dx.doi.org/10.1371/journal.pcbi.1007575
http://dx.doi.org/10.1016/j.cma.2020.113028
http://dx.doi.org/10.1016/j.jcp.2019.108963
http://dx.doi.org/10.1016/j.cam.2022.114358
http://dx.doi.org/10.1098/rspa.2020.0334

Mathematics 2023, 11, 1843 23 of 23

40. Jagtap, A.D.; Kawaguchi, K.; Karniadakis, G.E. Adaptive activation functions accelerate convergence in deep and physics-
informed neural networks. J. Comput. Phys. 2020, 404, 109136. [CrossRef]

41. Wang, S.F.; Yu, X.L.; Perdikaris, P. When and why PINNs fail to train: A neural tangent kernel perspective. J. Comput. Phys. 2022,
449, 110768. [CrossRef]

42. McClenny, L.D.; Braga-Neto, U.M. Self-Adaptive Physics-Informed Neural Networks using a Soft Attention Mechanism. arXiv
2022, arXiv:2009.04544.

43. van der Meer, R.; Oosterlee, C.W.; Borovykh, A. Optimally weighted loss functions for solving PDEs with Neural Networks. J.
Comput. Appl. Math. 2022, 405, 113887. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.jcp.2019.109136
http://dx.doi.org/10.1016/j.jcp.2021.110768
http://dx.doi.org/10.1016/j.cam.2021.113887

	Introduction
	Problem Formulation
	Mathematical Setup for Dual Neural Networks Structure
	Physics-Informed Neural Networks with Soft Constraints
	Numerical Experiments
	Conclusions
	References

