Coronavirus, Vaccination and the Reaction of Consumer Sentiment in The United States: Time Trends and Persistence Analysis
Abstract
:1. Introduction
2. Data
3. Methodology
3.1. Unit Roots
3.2. ARFIMA (p, d, q) Model
3.3. FCVAR Model
4. Empirical Results
5. Concluding Comments
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kutak, R.I. The sociology of crises: The Louisville flood of 1937. Soc. Forces 1938, 17, 66–72. [Google Scholar] [CrossRef]
- Koos, S.; Vihalemm, T.; Keller, M. Coping with crises: Consumption and social resilience on markets. Int. J. Consum. Stud. 2017, 41, 363–370. [Google Scholar] [CrossRef]
- Lynch, J.G., Jr.; Zauberman, G. When do you want it? Time, decisions, and public policy. J. Public Policy Mark. 2006, 25, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Kaytaz, M.; Gul, M.C. Consumer response to economic crisis and lessons for marketers: The Turkish experience. J. Bus. Res. 2014, 67, 2701–2706. [Google Scholar] [CrossRef]
- Sarmento, M.; Marques, S.; Galan-Ladero, M. Consumption dynamics during recession and recovery: A learning journey. J. Retail. Consum. Serv. 2019, 50, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Alonso, L.E.; Fernández Rodríguez, C.J.; Ibáñez Rojo, R. “I think the middle class is disappearing”: Crisis perceptions and consumption patterns in Spain. Int. J. Consum. Stud. 2017, 41, 389–396. [Google Scholar] [CrossRef]
- Boost, M.; Meier, L. Resilient practices of consumption in times of crisis—Biographical interviews with members of vulnerable households in Germany. Int. J. Consum. Stud. 2017, 41, 371–378. [Google Scholar] [CrossRef]
- Castilhos, R.B.; Fonseca, M.J.; Bavaresco, V. Consumption, crisis, and coping strategies of lower class families in Brazil: A sociological account. Int. J. Consum. Stud. 2017, 41, 379–388. [Google Scholar] [CrossRef]
- McKenzie, D.; Schargrodsky, E.; Cruces, G. Buying less but shopping more: The use of nonmarket labor during a crisis [with comment]. Economia 2011, 11, 1–43. [Google Scholar] [CrossRef]
- Urbonavičius, S.; Pikturnienė, I. Consumers in the face of economic crisis: Evidence from two generations in Lithuania. Ekon. Vadyb. 2010, 15, 827–834. [Google Scholar]
- Jebarajakirthy, C.; Lobo, A.C. War affected youth as consumers of microcredit: An application and extension of the theory of planned behaviour. J. Retail. Consum. Serv. 2014, 21, 239–248. [Google Scholar] [CrossRef]
- Sneath, J.Z.; Lacey, R.; Kennett-Hensel, P.A. Coping with a natural disaster: Losses, emotions, and impulsive and compulsive buying. Mark. Lett. 2009, 20, 45–60. [Google Scholar] [CrossRef]
- Weinberger, M.F.; Wallendorf, M. Intracommunity gifting at the intersection of contemporary moral and market economies. J. Consum. Res. 2012, 39, 74–92. [Google Scholar] [CrossRef]
- Worldometer, D. COVID-19 Coronavirus Pandemic; World Health Organization: Geneva, Switzerland, 2020. Available online: https://www.worldometers.info (accessed on 24 September 2022).
- Nowzohour, L.; Stracca, L. More than a Feeling: Confidence, Uncertainty and Macroeconomic Fluctuations; European Central Bank: Frankfurt, Germany, 2017. [Google Scholar]
- Mehrolia, S.; Alagarsamy, S.; Solaikutty, V.M. Customers response to online food delivery services during COVID-19 outbreak using binary logistic regression. Int. J. Consum. Stud. 2021, 45, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Prentice, C.; Quach, S.; Thaichon, P. Antecedents and consequences of panic buying: The case of COVID-19. Int. J. Consum. Stud. 2022, 46, 132–146. [Google Scholar] [CrossRef]
- Milaković, K.I. Purchase experience during the COVID-19 pandemic and social cognitive theory: The relevance of consumer vulnerability, resilience, and adaptability for purchase satisfaction and repurchase. Int. J. Consum. Stud. 2021, 45, 1425–1442. [Google Scholar] [CrossRef]
- Andersen; Lau, A.; Hansen, E.T.; Johannesen, N.; Sheridan, A. Consumer Responses to the COVID-19 Pandemic; Working Papers in Responsible Banking & Finance; VOX EU: London, UK, 2020; pp. 1–41. [Google Scholar]
- Barro, R.J.; Ursúa, J.F.; Weng, J. The Coronavirus and the Great Influenza Pandemic: Lessons from the “Spanish Flu” for the Coronavirus’s Potential Effects on Mortality and Economic Activity (No. w26866); National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Coibion, O.; Gorodnichenko, Y.; Weber, M. Labor Markets During the COVID-19 Crisis: A Preliminary View (No. w27017); National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Van der Wielen, W.; Barrios, S. Economic sentiment during the COVID pandemic: Evidence from search behaviour in the EU. J. Econ. Bus. 2021, 115, 105970. [Google Scholar] [CrossRef]
- Baker, S.R.; Bloom, N.; Davis, S.J.; Terry, S.J. Covid-Induced Economic Uncertainty (No. w26983); National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Barone-Adesi, G.; Pisati, M.; Sala, C. Greed and Fear: The Nature of Sentiment; Research Paper; Swiss Finance Institute: Zürich, Switzerland, 2018; pp. 18–45. [Google Scholar]
- Benhabib, J.; Spiegel, M.M. Sentiments and economic activity: Evidence from US states. Econ. J. 2019, 129, 715–733. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chong, T.T.L.; She, Y. A principal component approach to measuring investor sentiment in China. Quant. Financ. 2014, 14, 573–579. [Google Scholar] [CrossRef]
- Chu, L.; He, X.Z.; Li, K.; Tu, J. Market Sentiment and Paradigm Shifts in Equity Premium Forecasting; Working Paper; Singapore Management University: Singapore, 2015. [Google Scholar]
- Dieckelmann, D. Market Sentiment, Financial Fragility, and Economic Activity: The Role of Corporate Securities Issuance; Discussion Paper; Freie Universität Berlin, School of Business & Economics: Berlin, Germany, 2021. [Google Scholar]
- Fuhrer, J.C. What role does consumer sentiment play in the US macroeconomy? N. Engl. Econ. Rev. 1993, 1, 32–44. [Google Scholar]
- Gillitzer, C.; Prasad, N. The effect of consumer sentiment on consumption: Cross-sectional evidence from elections. Am. Econ. J. Macroecon. 2018, 10, 234–269. [Google Scholar] [CrossRef] [Green Version]
- Golinelli, R.; Parigi, G. Consumer sentiment and economic activity: A cross country comparison. J. Bus. Cycle Meas. Anal. 2004, 2004, 147–170. [Google Scholar] [CrossRef]
- Rakovská, Z.; Ehrenbergerová, D.; Hodula, M. The power of sentiment: Irrational beliefs of households and consumer loan dynamics. J. Financ. Stab. 2020, 59, 100973. [Google Scholar]
- Monge, M.; Lazcano, A. Commodity Prices after COVID-19: Persistence and Time Trends. Risks 2022, 10, 128. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Distributions of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 1979, 74, 427–481. [Google Scholar]
- Phillips, P.C.B.; Perron, P. Testing for a unit root in time series regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Elliot, G.; Rothenberg, T.J.; Stock, J.H. Efficient tests for an autoregressive unit root. Econometrica 1996, 64, 813–836. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, D.; Phillips, P.C.; Schmidt, P.; Shin, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econom. 1992, 54, 159–178. [Google Scholar] [CrossRef]
- Diebold, F.X.; Rudebush, G.D. On the power of Dickey-Fuller tests against fractional alternatives. Econ. Lett. 1991, 35, 155–160. [Google Scholar] [CrossRef]
- Hassler, U.; Wolters, J. On the power of unit root tests against fractional alternatives. Econ. Lett. 1994, 45, 1–5. [Google Scholar] [CrossRef]
- Lee, D.; Schmidt, P. On the power of the KPSS test of stationarity against fractionally-integrated alternatives. J. Econom. 1996, 73, 285–302. [Google Scholar] [CrossRef]
- Nelson, C.R.; Plosser, C.I. Trends and random walks in macroeconomic time series: Some evidence and implications. J. Monet. Econ. 1982, 10, 139–162. [Google Scholar] [CrossRef]
- Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 1973, 60, 255–265. [Google Scholar] [CrossRef]
- Akaike, H. A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika 1979, 66, 237–242. [Google Scholar] [CrossRef]
- Reisen, V.A.; Cribari-Neto, F.; Jensen, M.J. Long memory inflationary dynamics: The case of Brazil. Stud. Nonlinear Dyn. Econom. 2003, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Johansen, S. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models; Oxford University Press: New York, NY, USA, 1996. [Google Scholar]
- Johansen, S.; Nielsen, M.Ø. Likelihood inference for a fractionally cointegrated vector autoregressive model. Econometrica 2012, 80, 2667–2732. [Google Scholar] [CrossRef] [Green Version]
- Sowell, F. Maximum likelihood estimation of stationary univariate fractionally integrated time series models. J. Econom. 1992, 53, 165–188. [Google Scholar] [CrossRef]
Variable | N | Date | Max | Min | Mean | Std. Dev. |
---|---|---|---|---|---|---|
COVID-19 New Cases | 31 | January 2020–July 2022 | 536.642 | 2 | 102.653097 | 131.546492 |
Consumer Sentiment | 31 | January 2020–July 2022 | 101 | 50 | 74.98 | 11.91 |
Total Vaccination (variation) | 20 | December 2020–July 2022 | 0.85 | 0 | 0.34 | 0.26 |
ADF | PP | KPSS | |||||
---|---|---|---|---|---|---|---|
(i) | (ii) | (iii) | (ii) | (iii) | (ii) | (iii) | |
Original Data | |||||||
COVID-19 new cases | −2.7215 * | −4.168 * | −4.4454 * | −3.1068 * | −3.1336 | 0.2878 * | 0.0543 |
Consumer Sentiment Index | −1.6817 | −2.0433 | −2.8667 | −1.4709 | −2.2411 | 0.7736 | 0.1473 |
Total Vaccination | −0.3231 | −3.3669 * | −2.7304 | −3.2679 * | −0.6459 | 0.7334 | 0.1808 |
Data Analyzed | Sample Size (Month) | Model Selected | d | Std. Error | Interval | I(d) |
---|---|---|---|---|---|---|
Original Time Series | ||||||
COVID-19 new cases | 31 | ARFIMA (2, d, 2) | 0.41 | 0.354 | [−0.17, 1.00] | I(0), I(1) |
Consumer Sentiment Index | 31 | ARFIMA (0, d, 0) | 0.86 | 0.190 | [0.55, 1.17] | I(1) |
Total Vaccination | 20 | ARFIMA (0, d, 0) | 1.43 | 0.087 | [1.29, 1.58] | I(1) |
Cointegrating Equation Beta | |||
---|---|---|---|
Var1 | Var2 | ||
Panel I: Total Vaccination (Var1) on Consumer Sentiment (Var2) | 1.000 | 1.778 | |
Panel II: COVID-19 new cases variation (Var1) on Consumer Sentiment (Var2) | 1.000 | –13.237 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monge Moreno, J.T.; Monge, M. Coronavirus, Vaccination and the Reaction of Consumer Sentiment in The United States: Time Trends and Persistence Analysis. Mathematics 2023, 11, 1851. https://doi.org/10.3390/math11081851
Monge Moreno JT, Monge M. Coronavirus, Vaccination and the Reaction of Consumer Sentiment in The United States: Time Trends and Persistence Analysis. Mathematics. 2023; 11(8):1851. https://doi.org/10.3390/math11081851
Chicago/Turabian StyleMonge Moreno, Jesús Tomás, and Manuel Monge. 2023. "Coronavirus, Vaccination and the Reaction of Consumer Sentiment in The United States: Time Trends and Persistence Analysis" Mathematics 11, no. 8: 1851. https://doi.org/10.3390/math11081851
APA StyleMonge Moreno, J. T., & Monge, M. (2023). Coronavirus, Vaccination and the Reaction of Consumer Sentiment in The United States: Time Trends and Persistence Analysis. Mathematics, 11(8), 1851. https://doi.org/10.3390/math11081851