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Abstract: This paper studies the problem of the event-triggered control of nonaffine stochastic non-
linear systems with actuator hysteresis. The echo state network (ESN) is introduced to approximate
an unknown nonlinear function. The command filtering technology is used to avoid the derivation of
the virtual controller in the controller design process and tries to solve the problem of complexity
explosion in the traditional method. Based on Lyapunov’s finite-time stability theory, the proposed
method verifies the stability of non-affine stochastic nonlinear systems. It is proved that the proposed
controller method can guarantee that all of the signals in the closed-loop system are bounded, and
the tracking error can converge to a minimal neighborhood of zero even if there exists an actuator
hysteresis. The effectiveness of the proposed method is demonstrated by the simulation example.
The simulation results show that the proposed method is effective.

Keywords: stochastic nonaffine systems; adaptive control; echo state network (ESN); event-
triggered; hysteresis

MSC: 93E15

1. Introduction

With the development of society, system control plays a vital role in many fields such
as the military, as well as industrial production. Linear systems are not only theoretically
studied but also widely applied [1]. However, in real life the system can be easily affected
by uncertain factors. As a result, the system will be nonlinear [2]. With the passage of
time, the traditional nonlinear system cannot meet the needs of social development. The
research of complex systems has increasingly attracted scholars’ attention. Due to the
influence of stochastic disturbances, the actual systems are embodied with randomness.
Therefore, the study of stochastic nonlinear systems is of great significance and practical
value. Regarding stochastic nonlinear systems, there are also many systems whose state
variables or actual controls are not clearly represented. Therefore, the system often has a
non-affine appearance.

Stochastic nonaffine nonlinear systems can be applied to many fields, including
aerospace systems and robot operations. In [3,4], the unknown nonaffine input is trans-
formed into a partially affine form using the mean value theorem, and all signals in a closed
loop system are bounded. Therefore, the same method is used in this paper to deal with
the nonaffine problem of control variables by using the mean value theorem and transform
the nonaffine system into a simple standard stochastic nonlinear system.

For some nonlinear systems, backstepping control is a powerful and typical control
method for parametric uncertainty [5,6]. The backstepping method was proposed in [7].
A controller was established by constructing the quadratic Lyapunov function. So far,
many new algorithms have been created to solve the nonlinear system problems. The
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backstepping control strategy is an effective method for solving uncertain systems, and
it has been widely used. However, the traditional backstepping design method also has
disadvantages. The complexity of the control design and stability increase exponentially
with the increase in the system order, that is, each calculation step of the virtual controller
may lead to the “explosion of complexity”. In order to solve this problem, ref. [8] developed
a dynamic surface control (DSC) technique that introduced a low-pass filter in each control
input for the first time. The above DSC technique does not take the error of the first-
order filter into consideration, which may affect the precision and accuracy of the system.
The command filter control (CFC) adopted in this paper utilizes an error compensation
mechanism at each step of the command filter to reduce the influence of filter errors.

The control of nonlinear systems with unknown hysteretic nonlinearity has always
been a popular topic. Hysteretic nonlinearity is very common in the actuation of smart
materials, such as piezoelectric materials and shape memory alloys. Nonlinearity and
hysteresis have a remarkable influence on the system, causing it to become unstable [9].
Robust adaptive control and adaptive inversion control for a class of nonlinear systems with
unknown hysteresis are studied in [10,11]. The approach presented in [12–14] cannot solve
the control problem of nonlinear systems with a post-performance period. Therefore, it is a
great challenge to solve the problem of stochastic nonaffine systems with actuator hysteresis.

In addition, with the development of the network, event-triggered control has be-
come popular as it can effectively reduce the waste of communication and resources.
The article [15] considers the problem of adaptive fuzzy switching event-triggered control
for a class of nonaffine stochastic systems with periodic actuator faults. The paper [16]
considers the event-triggered adaptive tracking control for RDE systems with coexisting
parametric uncertainties and severe nonlinearities. In traditional control design, the output
of the controller is transmitted to the actuators, which may generate redundant update
signals and then cause waste of the communication network [17]. Thus, these issues mo-
tivate the development of event-triggered strategies. In [18], an event-triggered strategy
is developed for nonlinear uncertain systems, in which the uncertain part is represented
by the product of known functions and unknown parameters. In [19], for nonlinear un-
certain systems, an event-triggered strategy using neural networks to approximate the
uncertain part is proposed. The fixed threshold strategy and the relative threshold strategy
are discussed in [20,21] since the threshold of the fixed threshold strategy is a constant
but the control signal of the actual system is not static. If the amplitude of the control
signal is too large, it will lead to system instability. A neural adaptive event-triggered
strategy that greatly saves communication resources while ensuring system performance is
proposed [22]. Therefore, this paper employs the relative threshold strategy. However, to
the best of our knowledge, there are currently few methods to solve the event-triggered
problem of stochastic nonaffine systems with actuator hysteresis, thus motivating our
current work.

Based on the above discussion, a neural network control design for stochastic non-
affine nonlinear systems with event triggering and actuator hysteresis is constructed,
and the echo state network (ESN) is introduced to approximate the unknown nonlinear
functions. In other papers, such as [23,24], the radial basis function neural network (RBFNN)
structure is used to approximate the unknown functions. In [25], a recurrent neural network
(RNN) is proposed to approximate the unknown function. However, the former can only
rely on the current input, while the latter requires higher computational costs. This paper
proposes a simple method to approximate the unknown functions by using the echo state
network, which is better than other methods and can be trained easily.

(1) The ESN network is used to approximate the unknown function generated during
the design process. Compared with RBFNN in [24], ESN has better stability than the
RBFNN network without a complex training process. Compared with RNNS in [25],
weight updating does not require a particularly high computational cost, and the training
speed is faster than that of RNNS. Therefore, this paper uses the echo state network as a
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new approach to approximate the unknown function more simply and accurately in the
controller design, which greatly reduces the calculation cost.

(2) This paper introduces the actuator hysteresis into the nonaffine system and uses
the mean value theorem to transform the nonaffine stochastic nonlinear system into a
stochastic nonlinear system. Compared with the nonlinear control problem of [12–14],
actuator hysteresis has not been fully considered. This paper greatly reduces the complexity
of the system and solves the problem of actuator hysteresis in nonlinear systems.

(3) Compared with [17] and [18], the problem of resource waste in the communication
process is solved by designing an event-triggered controller, and the relative threshold is
used to ensure the stability of the system in the design process.

The rest of the paper is as follows. In Section 2, more information of stochastic
nonaffine systems and ESN will be further illustrated. Section 3 introduces the design
method of the event trigger controller and provides the stability analysis of the system.
Section 4 describes the simulation process to verify the effectiveness of the proposed
method. In the end, the conclusions are given in Section 5.

2. Preliminaries
2.1. Problem Formulation

For the following stochastic nonlinear system

dι = f (ι)dt + g(ι)dω (1)

where ι is the system state, f (ι) and g(ι) indicate the locally Lipschitz functions with
f (0) = g(0) = 0. ω represents an r-dimensional standard Wiener process.

Definition 1 ([26]). For any given function V(ι) in C2, define the differential operator L as

LV =
∂V
∂ι

f +
1
2

Tr
{

gT ∂2V
∂ι2

g
}

(2)

with Tr as the matrix trace.

Lemma 1 ([27]). For the stochastic nonlinear system (1), there is a Lyapunov function V(ι), ψ1(·)
and ψ2(·) ∈ k∞. When 0 < k ≤ 1, function V(ι) meets the following requirements:

ψ1(‖ι‖) ≤ V(ι) ≤ ψ2(‖ι‖)
LV(ι) ≤ −αVk(ι) + Γ (3)

when k = 1, two normal numbers, α and Γ, exist. System (1) has a unique strong solution, all of
the signals in the closed-loop system are bounded in probability, and the system satisfies

E[V(ι)] ≤ V(ι0)e−αt +
Γ
α

(4)

For the following class of stochastic nonaffine systems with actuator hysteresis:
dxi = fi(xi, xi+1)dt + ϕ>i (xi)dω

dxn = fn(xn, φ(v))dt + ϕ>n (xn)dω

y = x1, i = 1, . . . , n− 1

(5)

where xi = [x1, x2, . . . , xi], v ∈ R is the system input, and y ∈ R is the system output.
φ(v) denotes the hysteresis nonlinearities. ω is a r-dimensional standard Brownian motion
defined in the complete probability space (Ω, F, P). Ω denotes the sample space. F denotes
the σ-field. P denotes the probability measure. fi(·) and ϕi(·) represent the unknown
smooth functions.
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The control signal v and the hysteresis type of nonlinearity φ(v) in the Formula (5) are
defined as

dφ

dt
= µ

∣∣∣∣dv
dt

∣∣∣∣(πv− φ) + ψ
du
dt

(6)

where µ, π, and φ are designed parameters; π > 0 is the slope of lines; and guarantee
π > ψ.

Dynamics (6) is used to simulate the backlash-like hysteresis, and additional parame-
ters are put up as µ = 0.05, π = 0.2, and ψ = 0.0055, and the initial conditions as v(0) = 0,
φ(0) = 0.

Moreover, Equation (6) can be properly handled as follows:

φ(v) = πv(t) + ρ(v)

ρ(v) = [φ0 − πv0]e−µ(v−v0)sgn{v̇}

+ e−µvsgn{v̇}
v∫

v0

[ψ− π]e−µvsgn{v̇}dxi

where v(0) = v0 and φ(v0) = φ(0). ρ(v) are bounded and satisfy |ρ(v)| ≤ ρ̄, and ρ̄ is the
unknown constant.

For the sake of simplicity, the time variable t will be omitted below. Based on mean
value theorem, the smooth nonlinear function fi(·) can be changed into the form as

fi(xi, xi+1) = fi(xn, x0
i+1) + hµi (xi+1 − x0

i+1) (7)

where hµi =
∂ fi(xi ,xi+1)

∂xi+1

∣∣∣
xi+1=xµi

, xµi = µixi+1 + (1− µi)x0
i+1, 0 < µi < 1, i = 1, . . . , n− 1,

xn+1 = v. With x0
i+1 = 0, the original system (5) can be described as follows:

dxi =
(

fi(xi, 0) + hµi xi+1
)
dt + ϕT

i (xi)dω

dxn = ( fn(xn, 0) + hµn πv + hµn ρ)dt + ϕT
n (xn)dω

y = x1, i = 1, . . . , n− 1

(8)

Assumption 1. The sign of hµi in (8) is known for i = 1, . . . , n− 1. Without a loss of generality,
and for the convenience of analysis and design, assume that

0 < ci < hµi < c̄i, 1 ≤ i ≤ n− 1
0 < cn < πhµn < c̄n

(9)

Assumption 2. The reference signal yd and its time derivatives up to the n th order are continuous
and bounded.

2.2. Echo State Network

The following form of ESN continuous-time dynamics is given [28]

Ṗ(Z) = −λP(Z) + tanh(W∗inu + W∗d P(Z) + W∗f by) (10)

where the activation function of the dynamic reservoirs P(Z). λ is a positive number
representing the stored neuron’s leakage rate; tanh(·) denotes a hyperbolic tangent function.
W∗in and W∗d represent the input and internal connection weight matrices, respectively.
W∗f b represents feedback connection weight matrices; u means the external input with
K-dimensional. The output signal’s equation is defined as follows:

y = W∗T P(Z) (11)

with W∗ ∈ RN×1 being the weight matrix of output.
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It can be seen in [29] that the output of RNNs can be used to approximate any continu-
ous function, which indicates that there is an ESN system, as shown in Equation (11) above.
Therefore, as for any given continuous smooth function f (·), the below inequality is true

sup
Z∈Ω

∣∣∣ f (Z)−W∗T P(Z)
∣∣∣ ≤ ε (12)

In addition, the function f (Z) can be approached by

f (Z) = WT P(Z) + δ, ∀Z ∈ Ω (13)

where W ∈ RN×1 is the ideal weight matrix satisfying W = arg minW∗∈RN×1{sup
Z∈Ω

f (x)−

W∗T P(Z)}, and δ is bounded to satisfy |δ| ≤ ε. P(Z) = [p1(Z), . . . , pN(Z)]T stands for the
activation function where pj(Z) is chosen as

pj(Z) =
rj

sj + e
− Z

qj

+ uj, j = 1, . . . , N (14)

where rj, sj, qj, and uj are the constant parameters, and pj(Z) is bounded by 0 < pj(Z) < um
and um = max{|(rj)/(sj) + uj|, |(rj)/(sj + 1) + uj|}.

On account of the fact the weight W is generally uncharted in reality, to guarantee the
asymptotic tracking performance, the estimated value of W, (expressed as Ŵ), is employed
and updated by designing adaptive laws online.

Remark 1. From the above discussions, it can be deduced that ESN is an optional tool for function
approximation and can be replaced with any other approximation techniques, for instance, RBFNNs,
FLSs, and others [30,31]. Compared to RBFNNs, ESN does not need to adjust the weights between
the input layer and the hidden layer, and the training is simple and accurate.

Lemma 2. The hyperbolic function holds the following property [32]:

0 ≤ |p| − p tanh(
p
q
) ≤ 0.2785q (15)

where −p tanh( p
q ) ≤ 0, q > 0, and p ∈ R.

Lemma 3. The Young’s inequality is described as [33]:

ab ≤ µn

n
|a|n + 1

pµp |b|
p (16)

where n > 1, p > 1, µ > 0, and (n/l) + (1/p) = 1.

3. Event-Triggered Adaptive Controller Design

In the backstepping design process, the following tracking errors are defined as{
e1 = x1 − yd

ei = xi − xi,c
(17)

where i = 2, . . . , n, yd represents the reference signals, virtual controllers αi are the input
signals of the command filters, and the outputs signal of the filters are xi,c. The command
filters are defined as follows:

ẋ2,cωn = α1 − x2,c, x1,c(0) = α1(0) (18)
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If the input signal α1 satisfies |α̇1| ≤ ρ1 and |α̈1| ≤ ρ2 for all 0 ≤ t, where ρ1 > 0,
ρ2 > 0, and x2,c(0) = 0, for any ξ > 0, the filter design parameters ωn > 0 exist, and the
following inequality holds: |x1,c − α1| ≤ ξ.

In order to reduce the influence of command filtering on error, the following new
tracking error signals are defined by using the error compensation mechanism:{

v1 = e1 − q1

vi = ei − qi
(19)

where i = 2, . . . , n, the compensating signals qi are designed as

q̇1 = −k1q1 + hµ1 q2 + hµ1(x2,c − α1) (20)

q̇i = −kiqi + hµi qi+1 + hµi (xi+1,c − αi) (21)

q̇n = −knqn (22)

where ki > 0 are design constants and q(0) = 0.
Step 1: The following can be obtained from (17)

dv1 = ( f1(x1, 0) + hµ1 x2)dt + ϕT
1 (x1)dω− ẏd − q̇1

= ( f1(x1, 0) + hµ1(e2 + x2,c)− ẏd − q̇1)dt

+ϕT
1 (x1)dω (23)

Choose the Lyapunov candidate function as follows:

V1 =
1
4

v4
1 +

1
2r1

θ̃2
1 (24)

where r1 is a design constant, and θ̃1 = θ1 − θ̂1, θ̂1 denotes the estimation of θ1.
According to (23) and Definition 1, we have

LV1 = v3
1dv1 −

1
r1

θ̃1
˙̂θ1

= v3
1( f1

(
x1, 0) + hµ1(e2 + x2,c)− ẏd − q̇1

)
+

3
2

v2
1 ϕT

1 ϕ1 −
1
r1

θ̃1
˙̂θ1 (25)

By using Young’s inequality, the following inequality holds:

3
2

v2
1 ϕT

1 ϕ1 ≤
3
4

v4
1‖ϕ1‖4l−2

1 +
3
4

l2
1 (26)

where l1 > 0 is a designed constant. Substituting (26) into (25), we have

LV1 ≤ v3
1( f1(x1, 0) + hµ1(e2 + x2,c)− ẏd − q̇1) +

3
4

v4
1‖ϕ1‖4l−2

1 +
3
4

l2
1 −

1
r1

θ̃1
˙̂θ1 (27)

where f̄1(Z1) = f1(x1, 0) + 3
4 v1‖ϕ1‖4l−2

1 and Z1 = [x]. By the ESN (13), the uncharted
nonlinear function f̄1 can be approximated to f̄1(Z1) = WT

1 P1(Z1) + δ1(Z1), δ1(Z1) is the
approximation error satisfying |δ1(Z1)| ≤ ε1, and ε1 > 0.

By using Lemma 3, the following inequality holds:

v3
1 f̄1 = v3

1(W
T
1 P1(Z1) + δ1(Z1))

≤ 1
2

v6
1θ1PT

1 P1

a2
1

+
1
2

a2
1 +

3
4

v4
1 +

1
4

ε2
1 (28)
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where θ1 = ‖W1‖2, a1 > 0 is a designed parameter.
Substituting (28) into (27) yields,

LV1 ≤ v3
1

v3
1θ1PT

1 P1

2a2
1

+
3
4

v1 + hµ1(e2 + x2,c)− ẏd − q̇1 +
1
2

a2
1 +

1
4

ε4
1+

3
4

l2
1 −

1
r1

θ̃1
˙̂θ1 (29)

The compensating signal q̇1 can be designed as follows:

q̇1 = −k1q1 + hµ1 q2 + hµ1(x2,c − α1) (30)

with k1 > 0.
Substituting (30) into (29) yields

LV1 ≤ v3
1(

v3
1θ1PT

1 P1

2a2
1

+
3
4

v1 + hµ1 v2 − ẏd + k1q1 + hµ1 α1) +
1
2

a2
1 +

1
4

ε4
1 +

3
4

l2
1 −

1
r1

θ̃1
˙̂θ1 (31)

By using Young’s inequality and Assumption 1, the inequality is as follows:

v3
1hµ1 v2 ≤

3
4

v4
1 c̄−

4
3

1 +
1
4

v4
2 (32)

Substituting (32) and into (31) yields

LV1 ≤ v3
1(

v3
1θ1PT

1 P1

2a2
1

+
3
4

v1 +
3
4

v1 c̄−
4
3

1 − ẏd + k1q1

+c̄1α1) +
1
4

v4
2 +

1
2

a2
1 +

1
4

ε4
1 +

3
4

l2
1 −

1
r1

θ̃1
˙̂θ1 (33)

The virtual control signal is devised as follows:

α1 =
1
c̄1
(−k1e1 −

v3
1θ̂1PT

1 P1

2a2
1

+ ẏd −
3
4

v1 c̄−
4
3

1 − 3
4

v1) (34)

By using (34), (33) can be rewritten as

LV1 ≤ −k1v4
1 +

1
4

v4
2 +

1
2

a2
1 +

1
4

ε4
1 +

3
4

l2
1 +

θ̃1

r1
(

r1v6
1PT

1 P1

2a2
1
− ˙̂θ1) (35)

The designed adaptive law is as follows:

˙̂θ1 =
r1v6

1PT
1 P1

2a2
1
− σ1θ̂1 (36)

Substituting (36) into (35) yields

LV1 ≤ −k1v4
1 +

1
4

v4
2 +

1
2

a2
1 +

1
4

ε4
1 +

3
4

l2
1 +

σ1

r
θ̃1θ̂1 (37)

Step i (2 ≤ i ≤ n− 1) : Based on (17), the following formula comes into existence:

dvi = ( fi(xi, 0) + hµi xi+1)dt + ϕT
i (xi)dω− ẋi,c − q̇i

= ( fi(xi, 0) + hµi (xi+1,c + ei+1)− ẋi,c − q̇i)dt + ϕT
i (xi)dω (38)

Select the following candidate Lyapunov function:

Vi = Vi−1 +
1
4

v4
i +

1
2ri

θ̃2
i (39)
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where ri are designed constants, θ̃i = θi − θ̂i, i = 2, . . . , n− 1, θ̂i are expressed as an estimate
of θi, and θi = ‖Wi‖2. According to Definition 1 and (38), the conclusions can be drawn
as follows:

LVi = LVi−1 + v3
i ( fi(xi, 0) + hµi (xi+1,c + ei+1)− ẋi,c − q̇i) +

3
2

v2
i ϕT

i ϕi −
1
ri

θ̃i
˙̂θi (40)

According to Lemma 3, the following equation is true

3
2

v2
i ϕT

i ϕi ≤
3
4

v4
i ‖ϕi‖4l−2

i +
3
4

l2
i (41)

and li(i = 2, . . . , n) are the designed normal numbers. By using (41), (40) can be rewritten
as follows:

LVi ≤ LVi−1 + v3
i ( fi(xi, 0) + hµi (xi+1,c + ei+1)− ẋi,c − q̇i) +

3
4

v4
i c̄−

4
3

i +
3
4

l2
i −

1
ri

θ̃i
˙̂θi (42)

where f̄i(Zi) = fi(xi, 0) + 3
4 vi‖ϕi‖4l−2

i and Zi = xi. For any given εi > 0, WT
i Pi(X1) exists,

such that f̄i(Zi) = WT
i Pi + δi(Zi), |δi(Zi)| ≤ εi, where |δi(Zi)| denotes the approximation

error.
By using Young’s inequality, it follows that

v3
i f̄i = v3

i (W
T
i Pi(Zi)) + δi(Zi))

≤
v6

i θiPT
i Pi

2a2
i

+
1
2

a2
i +

3
4

v4
i +

1
4

ε2
i (43)

where θi = ‖Wi‖2 and ai is a positive constant.
By substituting (43) into (42) yields, we obtain that

LVi ≤ LVi−1 + v3
i (

v3
i θiPT

i Pi

2a2
i

+
3
4

vi + hµi (xi+1,c + ei+1)− ẋi,c − q̇i)

+
1
2

a2
i +

1
4

ε4
i +

3
4

l2
i −

1
ri

θ̃i
˙̂θi (44)

The compensation signal q̇i is designed as

q̇i = −kiqi + hµi qi+1 + hµi (xi+1,c − αi) (45)

with ki > 0, substituting (45) into (44), the following can be obtained:

LVi ≤ LVi−1 + v3
i (

v3
i θiPT

i Pi

2a2
i

+
3
4

vi + hµi vi+1 − ẋi,c + kiqi + hµi αi)

+
1
2

a2
i +

1
4

ε4
i +

3
4

l2
i −

1
ri

θ̃i
˙̂θi (46)

Based on Young’s inequality, we have

v3
i hµi vi+1 ≤

3
4

v4
i c̄−

4
3

i +
1
4

v4
i+1 (47)

Substituting (47) into (46) yields

LVi ≤ LVi−1 + v3
i (

v3
i θiPT

i Pi

2a2
i

+
3
4

vi − ẋi,c + kiqi + c̄iαi +
3
4

vi c̄
4
3
i )

+
1
4

v4
i+1 +

1
2

a2
i +

1
4

ε4
i +

3
4

l2
i −

1
ri

θ̃i
˙̂θi
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Design the virtual control signals as follows:

αi =
1
c̄i
(−kiei −

v3
i θ̂iPT

i Pi

2a2
i

+ ẋi,c −
3
4

vi c̄
− 4

3
i − 3

4
vi) (48)

Using (48), (48) can be rewritten as

LVi ≤
i

∑
j=1

(−k jv4
j +

1
2

a2
j +

1
4

ε4
j+

3
4

l2
j ) +

1
4

v4
i+1 −

i−1

∑
j=1

σj

ri
θ̃j θ̂j +

θ̃i
ri
(

v3
i riPT

i Pi

2a2
i
− ˙̂θi) (49)

Design the adaptive laws as follows:

˙̂θi =
riv6

i PT
i Pi

2a2
i
− σi θ̂i (50)

Substituting (50) into (49) yields

LVi ≤
i

∑
j=1

(−k jv4
j +

1
2

a2
j +

1
4

ε4
j+

3
4

l2
j −

σj

rj
θ̃j θ̂j) +

1
4

v4
i+1 (51)

Design of Event-Triggered Controller

The event-triggered strategy is described as follows:{
u(t) = ζ(tk), ∀t ∈ [tk, tk+1)

tk+1 = inf{t ∈ R||$(t)| > Ξ|u(t)|+ d1 }
(52)

where $(t) = ζ(t)− u(t), and d1 > 0 is the designed parameter.

Remark 2. Whensoever the event-triggered mechanism tk+1 = inf{t ∈ R||$(t)| ≥ Ξ|u(t)| + d1}
is triggered, the time is marked as tk+1 and the control value u(tk+1) is applied to the system. During
the time t ∈ [tk, tk+1), the control signal holds as a constant.

From (52), we can draw a conclusion ζ(t) = (1 + z1(t)Ξ)u(t) + z2(t)d1, tk ≤ t < tk+1,
and |z(t)| ≤ 1 is the time-varying parameter. As a result, the equation is obtained as follows:

u(t) =
ζ(t)

1 + z1(t)Ξ
− z2(t)d1

1 + z1(t)Ξ
(53)

Step n: From (17), we can obtain

dvn = ( fn(x¯n, 0) + hµn πu + hµn ρ− ẋn,c − q̇n)dt + ϕT
n (xn)dω (54)

Choose a Lyapunov function as

Vn = Vn−1 +
1
4

v4
n +

1
2rn

θ̃2
n

where rn is a designed constant, and θ̃n = θn − θ̂n, θ̂n is the estimation of θn, and θn = ‖Wn‖2.
According to Definition 1 and (54), it can be deduced that

LVn = LVn−1 + v3
n( fn(xn, 0) + hµn πu + hµn ρ− ẋn,c − q̇n) +

3
2

v2
n ϕT

n ϕn −
1
rn

θ̃n
˙̂θn (55)
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Design the compensating signal q̇n as follows:

q̇n = −knqn (56)

According to (56), (55) can be rewritten as follows:

LVn ≤ LVn−1 + v3
n fn(xn, 0) + v3

n c̄nu + v3
nhµn ρ− v3

n(ẋn,c − knqn) +
3
2

v2
n ϕT

n ϕn −
1
rn

θ̃n
˙̂θn (57)

Substituting (53) into (57) yields

LVn ≤ v3
n fn(xn, 0) + LVn−1 − v3

n(ẋn,c − knqn) + v3
nhµn π(

ζ(t)
1 + z1(t)Ξ

− z2(t)d1

1 + z1(t)Ξ
) (58)

+v3
nhµn ρ +

3
2

v2
n ϕT

n ϕn −
1
rn

θ̃n
˙̂θn

By Assumption 1, and z1(t) ∈ [−1, 1], z2(t) ∈ [−1, 1], the inequalities can be held as

hµn π
v3

nζ(t)
1 + z1(t)Ξ

≤ c̄n
v3

nζ(t)
1 + Ξ

(59)

−hµn π
v3

nz2(t)d1

1 + z1(t)Ξ
≤
∣∣∣∣v3

n c̄nd1

1− Ξ

∣∣∣∣ (60)

Substituting (59) and (60) into (58) yields

LVn ≤ v3
n fn(xn, 0) + c̄n

v3
nζ(t)

1 + Ξ
+

∣∣∣∣v3
n c̄nd1

1− Ξ

∣∣∣∣+ v3
nhµn ρ

−v3
n(ẋn,c − knqn) +

3
2

v2
n ϕT

n ϕn −
1
rn

θ̃n
˙̂θn + LVn−1 (61)

where

ζ(t) = −(1 + Ξ)(αn tan
v3

n c̄nαn

ε
+ m̄1 tanh

v3
n c̄nm̄1

ε
) (62)

and m̄1 > d1/(1− Ξ).
Substituting (62) into (61) yields

LVn ≤ v3
n fn(xn, 0)− c̄nv3

n(αn tan
v3

n c̄nαn

ε
+ m̄1 tanh

v3
n c̄nm̄1

ε
) +

∣∣∣∣v3
n c̄nd1

1− Ξ

∣∣∣∣
+v3

nhµn ρ− v3
n(ẋn,c − knqn) +

3
2

v2
n ϕT

n ϕn −
1
rn

θ̃n
˙̂θn + LVn−1 (63)

Based on Lemma 3, we can obtain

LVn ≤ v3
n fn(xn, 0) + c̄nv3

nαn −
∣∣∣c̄nv3

nm̄1

∣∣∣+ ∣∣∣∣v3
n c̄nd1

1− Ξ

∣∣∣∣+ v3
nhµn ρ

−v3
n(ẋn,c − knqn) +

3
2

v2
n ϕT

n ϕn −
1
rn

θ̃n
˙̂θn + LVn−1 + 0.557ε (64)

Based on Young’s inequality, one has

3
2

v2
n ϕT

n ϕn ≤
3
4

v4
n‖ϕn‖4l−2

n +
3
4

l2
n (65)
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Substituting (65) into (64) yields

LVn ≤ v3
n fn(xn, 0) + c̄nv3

nαn −
∣∣∣c̄nv3

nm̄1

∣∣∣+ ∣∣∣∣v3
n c̄nd1

1− Ξ

∣∣∣∣− v3
n(ẋn,c − knqn)

+v3
nhµn ρ +

3
4

v4
n‖ϕn‖4l−2

n +
3
4

l2
n −

1
rn

θ̃n
˙̂θn + LVn−1 + 0.557ε (66)

During the process of designing virtual controllers, the unknown nonlinear function
f̄n(Zn, 0) is approximated by ESNs, where f̄n(Zn) = fn(xn, 0) + 3

4 vn‖ϕn‖4l−2
n Zn = xn.

By using the universal approximation capability of ESN (13), for any given εn, an ESN
WT

n Pn(Zn) always exist, such that f̄n(Zn) = WT
n Pn + δn, where Zn = xn and δn is the

approxomation error satisfying |δn(Zn)| ≤ εn.
Baesd on Lemma 3, the inequality holds that

v3
n f̄n = v3

n(W
T
n Pn(Zn)) + δn(Zn))

≤ v6
nθnPT

n Pn

2a2
n

+
1
2

a2
n +

3
4

v4
n +

1
4

ε2
n (67)

where θn = ‖Wn‖2, an is a given positive constant.
Substituting (67) into (66) yields

LVn ≤ v6
nθnPT

n Pn

2a2
n

+
3
4

v4
n +

1
2

a2
n +

1
4

ε4
n + c̄nv3

nαn −
∣∣∣c̄nv3

nm̄1

∣∣∣+ ∣∣∣∣v3
n c̄nd1

1− Ξ

∣∣∣∣
+v3

nhµn ρ− v3
n(ẋn,c − knqn) +

3
4

l2
n −

1
rn

θ̃ṅ̂θn + LVn−1 + 0.557ε (68)

It can be known from Young’s inequality that the inequality holds

v3
nhµn ρ ≤ 3

4
v4

nh
4
3
µn +

1
4

ρ4 ≤ 3
4

v4
n c̄

4
3
n +

1
4

ρ̄4 (69)

Substituting (51) and (69) into (68) yields

LVn ≤ v6
nθnPT

n Pn

2a2
n

+
3
4

v4
n +

1
2

a2
n +

1
4

ε4
n + c̄nv3

nαn −
∣∣∣c̄nv3

nm̄1

∣∣∣+ ∣∣∣∣v3
n c̄nd1

1− Ξ

∣∣∣∣
+

3
4

v4
n c̄

4
3
n +

1
4

ρ̄4 − v3
n(ẋn,c − knqn) +

3
4

l2
n −

1
rn

θ̃n
˙̂θn + 0.557ε

+
n−1

∑
j=1

(−k jv4
j +

1
2

a2
j +

1
4

ε4
j+

3
4

l2
j +

σj

rj
θ̃j θ̂j) +

1
4

v4
n (70)

Design the virtual control signal as follows:

αn =
1
c̄n

(−knen −
v3

n θ̂nPT
n Pn

2a2
n

+ ẋn,c −
3
4

vn c̄−
4
3

n − vn) (71)

Substituting (71) into (70) yields

LVn ≤ v6
n θ̃nPT

n Pn

2a2
n

+
1
2

a2
n +

1
4

ε4
n − v4

nkn −
∣∣∣c̄nv3

nm̄1

∣∣∣+ ∣∣∣∣v3
n c̄nd1

1− Ξ

∣∣∣∣+ 1
4

ρ̄4

+
3
4

l2
n −

1
rn

θ̃n
˙̂θn + 0.557ε +

n−1

∑
j=1

(−k jv4
j +

1
2

a2
j +

1
4

ε4
j+

3
4

l2
j +

σj

rj
θ̃j θ̂j) (72)
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We design the adaptive law as follows:

˙̂θn =
rnv6

nPT
n Pn

2a2
n

− σn θ̂n (73)

Substituting (73) into (72) yields

LVn ≤
n

∑
j=1

(−k jv4
j +

1
2

a2
j +

1
4

ε4
j+

3
4

l2
j +

σj

rj
θ̃j θ̂j) +

1
4

ρ̄4 + 0.557ε (74)

By using Young’s inequality,

σj

rj
θ̃j θ̂j ≤ −

σj θ̃
T
j θ̃j

2rj
+

σjθ
T
j θj

2rj
(75)

Substituting (75) into (74) yields

LVn ≤ −
n

∑
j=1

(k jv4
j +

σj θ̃
T
j θ̃j

2rj
) +

n

∑
j=1

(
1
2

a2
j +

1
4

ε4
j+

3
4

l2
j +

σjθ
T
j θj

2rj
) +

1
4

ρ̄4 + 0.557ε

≤ −
n

∑
j=1

(k jv4
j +

σj θ̃
T
j θ̃j

2rj
) + C (76)

where C =
n
∑

j=1
( 1

2 a2
j +

1
4 ε4

j+
3
4 l2

j +
σjθ

T
j θj

2rj
) + 1

4 ρ̄4 + 0.557ε

Theorem 1. Consider a class of stochastic nonaffine nonlinear system (5) under Assumptions 1 and
2. The packaged unknown f̄i can be approximated by the ESN networks by which the approximating
error δi is bounded . Event-triggered strategy (52); adaptive controllers (33), (48), (62), and (73); and
adaptive laws (36), (50), and (73) in the closed-loop system are bounded in probability. Specifically,
the tracking error y− yd will be converged as

Ω1 = {v1(t) ∈ R|E[‖y− yd‖4] ≤ 8C
η

, ∀t > T1} (77)

with η = min{4k1, · · · , 4kn, σ1, · · · , σn}, and C =
n
∑

j=1
( 1

2 a2
j +

1
4 ε4

j+
3
4 l2

j +
σjθ

T
j θj

2rj
) + 1

4 ρ̄4

+ 0.557ε.

Proof. Define Vn =
n
∑

i=1
vi, it could be obtained from (76) that

LVn ≤ −η
n

∑
i=1

(v4
i −

θ̃2
i

2ri
) + C

= −ηV + C (78)

Furthermore, according to (55) and (78), we have

dE(V(t))
dt

≤ −E(V(t)) + C, t ≥ 0 (79)

0 ≤ E(V(t)) ≤ (V(0)− C
η
)e−ηt +

C
η

(80)
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which means that
E(V(t)) ≤ C

η
, t→ ∞ (81)

E(‖v1‖4) ≤ E(‖v1‖2)2

≤ 24E(v1)

≤ 8C
η

(82)

E(‖y− yd‖4) ≤ E(‖v1‖4) ≤ 8C
η

, ∀t > T1 (83)

which means that all of the signals in the closed-loop system are bounded in probability.

Remark 3. An adaptive neural finite-time-event-triggered consensus tracking problem is studied
for nonlinear multi-agent systems (MASs) under directed graphs [34]. In stochastic systems such
as [35,36], there is no error graph, but the tracking graph cannot completely overlap. On the one
hand, the tracking error cannot completely converge to zero because of different systems. On the
other hand, the tracking error cannot completely converge to zero in finite time. Inspired by [34],
the following research will help the stochastic system tracking error converge to zero.

4. Simulation Results

To illustrate the effectiveness of the proposed control method, we choose the following
stochastic nonaffine nonlinear systems:

dx1 = [x2 − 0.1 sin(x1) + 0.1 sin(x2
1x2)]dt

+0.5 sin(x1) cos(x2)dω (84)

dx2 = [0.1x1 cos(x2) + 0.1 sin(x1x2
2) + φ1]dt

+0.5 sin(2x1x2
2)dω (85)

y1 = x1 (86)

where x1, x2 are the system states.
The command filter is devised as

ẋ2,cωn = α1 − x2,c (87)

We design the compensating signals as

dq1 = −k1q1 + c̄1(x2c − α1) + c̄1q2 (88)

dq2 = −k2q2 (89)

The virtual controllers α1, α2, and updating laws θ1, θ2 are designed as

α1 =
1
c̄1
(−k1e1 −

v3
1θ̂1PT

1 P1

2a2
1

+ ẏd −
3
4

v1 c̄−
4
3

1 − 3
4

v1) (90)

˙̂θ1 =
r1v6

1PT
1 P1

2a2
1
− σ1θ̂1 (91)

α2 =
1
c̄2
(−k2e2 −

v3
2θ̂2PT

2 P2

2a2
2

+ ẋ2,c −
3
4

v2 c̄−
4
3

2 − v2) (92)

˙̂θ2 =
r2v6

2PT
2 P2

2a2
2
− σ2θ̂2 (93)
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The event-triggered controller ζ(t) and actual controller u are designed as

ζ(t) = −(1 + Ξ)(α2 tanh
v3

2 c̄2α2

ε
+ m̄1 tanh

v3
2 c̄2m̄2

ε
) (94)

u = ζ(tk), k ∈ z+ (95)

and the event-triggered mechanism is as follows: tk+1 = inf{t ∈ R||$(t)| ≥ Ξ|u(t)| + d1}.
We choose the initial condition and main parameters as follows: φ1 = 0.01, x1 = 0.8,

x2 = 0.8, θ̂1 = 1, θ̂2 = 1, q1 = 0.5, q2 = 0.1, x2,c = 5. The reference yd = 0.85sin(t), k1 = 30,
k2 = 10, σ1 = 1, σ2 = 2, c̄1 = 2, c̄2 = 40, m̄1 = 18, a1 = 2, a2 = 20, Ξ = 0.01, ε = 6, d1 = 5,
r1 = 0.05, r2 = 0.05, µ1 = 5, π1 = 0.3, ψ1 = 0.005, ωn = 0.005.

The final simulation results are represented in Figures 1–5. The output of system
x1 can keep up with the desired trajectory yd within a very small error range, where
T = 20 s; Figure 1 expresses the tracking diagram for reference yd and output y, and the
error trajectory is shown in Figure 2. It can be clearly indicated that the tracking error e1 is
in a minimal neighborhood of zero. Figure 3 shows the triggered events. Figure 4 shows
that the adaptive parameters θ1 and θ2, and the control signal is shown in Figure 5.

0 5 10 15 20
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-0.5

0

0.5

1

1.5

Figure 1. System output x1 and reference signal yd.
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Figure 2. The trajectory of error e1.
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Figure 3. The trigger time interval.
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Figure 4. Adaptive parameters θ1 and θ2.
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Figure 5. Comparison between event-triggered control signal u and intermediate control signal $.

5. Conclusions

In this paper, a control scheme based on error compensation for command filtering
is proposed to solve the tracking control problem of stochastic nonaffine nonlinear sys-
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tems with event triggering and actuator hysteresis. Using ESN to approximate unknown
functions is simpler than using RBF neural networks or other methods. The “explosion of
complexity” is solved by command-filtering technology, and the error caused by command
filtering is solved by the compensation signal. By utilizing the event-triggered control,
the waste of communication resources is reduced. Considering the existence of hysteretic
nonlinearity, the proposed control scheme can ensure that the signals in the closed loop are
all bounded. Finally, the effectiveness of the method is proved by the simulation results.
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