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Abstract: In this paper, we introduce the notion of the Cauchy exponential of a linear functional on
the linear space of polynomials in one variable with real or complex coefficients using a functional
equation by using the so-called moment equation. It seems that this notion hides several properties
and results. Our purpose is to explore some of these properties and to compute the Cauchy exponen-
tial of some special linear functionals. Finally, a new characterization of the positive-definiteness of a
linear functional is given.
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1. Introduction

We start with a brief overview of some basic notions and results about the linear
space of polynomials in one variable PK := K[x], where K = R or C. Let P′K be the algebraic
dual space of PK, i.e., the set of all linear functionals from PK to K. Here, 〈u, p〉 is the action
of u ∈ P′K on p ∈ PK. We denote by (u)n := 〈u, xn〉, n ≥ 0, the moment of order n of the
linear functional u ∈ P′K. In the sequel, we recall some useful operations in P′K and some
of their properties. For u and v in P′K, f (x) = ∑m

ν=0 aνxν in PK, a, b and c in K, with a 6= 0,
let Du = u′, f u, uv, (x− c)−1u, ha(u), tb(u) and σ(u) be the linear functionals defined by
duality [1–4].

- The derivative of a linear functional

〈u′, p〉 := −〈u, p′〉, p ∈ PK.

Its moments are (u′)n = −n(u)n−1, n ≥ 0, (u)−1 = 0.

- The left-multiplication of a linear functional by a polynomial f (x) = ∑m
k=0 akxk.

〈 f u, p〉 : = 〈u, f p〉, p ∈ PK.

The corresponding moments are ( f u)n = ∑m
ν=0 aν(u)n+ν, n ≥ 0.

- The Cauchy product of two linear functionals.

〈uv, p〉 := 〈u, vp〉, p ∈ PK,
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where the right-multiplication of v by p is a polynomial given by

(vp)(x) := 〈vy,
xp(x)− yp(y)

x− y
〉, p ∈ Pc.

Its moments are (uv)n = ∑n
ν=0(u)ν(v)n−ν, n ≥ 0.

- The Dirac delta linear functional at a point c.

Given c ∈ K, δc is the Dirac linear functional at point c, defined by

〈δc, p〉 := p(c), p ∈ PK.

In the sequel, we denote δ = δ0. Notice that δ is the unit element for the Cauchy
product of linear functionals.

- The division of a linear functional by a polynomial of first degree.

〈(x− c)−1u, p〉 := 〈u, θc(p)〉 = 〈u,
p(x)− p(c)

x− c
〉, p ∈ PK.

Its moments are
(
(x− c)−1u

)
n =

n−1

∑
ν=0

cν(u)n−1−ν, n ≥ 0.

- The dilation of a linear functional.

〈ha(u), p〉 := 〈u, ha(p)〉 = 〈u, p(ax)〉, p ∈ PK.

The corresponding moments are
(
ha(u)

)
n = an(u)n, n ≥ 0.

- The shift of a linear functional.

〈tb(u), p〉 := 〈u, t−b(p)〉 = 〈u, p(x + b)〉, p ∈ PK.

Its moments are (tb(u))n = ∑n
ν=0

(
n
ν

)
bν(u)n−ν, n ≥ 0.

- The σ-transformation of a linear functional.

〈σ(u), p〉 := 〈u, σ(p)〉 = 〈u, p(x2)〉, p ∈ PK.

Its moments are
(
σ(u)

)
n = (u)2n, n ≥ 0.

As usual, u(n) will denote the nth derivative of u ∈ P′K, with the convention u(0) = u.
By referring to [3], u ∈ P′K has an inverse for the Cauchy product, denoted by u−1, i.e.,
uu−1 = u−1u = δ, if and only if (u)0 6= 0.
Recall that u ∈ P′K is said to be symmetric if (u)2n+1 = 0, for all n ≥ 0. Moreover, u is
symmetric if and only if σ(xu) = 0, or, equivalently, h−1u = u.

Definition 1 ([5]). A linear functional u ∈ P′K is said to be weakly-regular if φu = 0, where
φ ∈ PK, then φ ≡ 0.

Definition 2 ([1,3]). A linear functional u ∈ P′K is said to be regular (quasi-definite, according
to [6]), if there exists a sequence of monic polynomials {Bn(x)}n≥0 in PK, deg Bn = n, n ≥ 0,
such that 〈u, BnBm〉 = rnδn.m, n, m ≥ 0, where rn ∈ K, rn 6= 0, n ≥ 0, (δn,m is the Kronecker
delta).

In this case, {Bn(x)}n≥0 is said to be a monic orthogonal polynomial sequence with
respect to u (in short, MOPS). Any regular linear functional on polynomials is weakly-
regular. The converse is not true; see [5].
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Definition 3 ([1,6,7]). A linear functional u ∈ P′R is said to be positive (resp. positive-definite),
if 〈u, p2〉 ≥ 0, (resp. 〈u, p2〉 > 0), for all p ∈ PR, p 6≡ 0.

Proposition 1 ([1,6,7]). Let u ∈ P′R. The following statements are equivalent.

(i) u is positive-definite.
(ii) There exists a MOPS {Bn(x)}n≥0 in PR such that 〈u, BnBm〉 = rnδn,m, for every n, m ≥ 0,

where rn > 0, for all n ≥ 0.

This contribution aims to introduce the analog of the exponential function in the
framework of linear functionals and then provide some of its properties. First of all, we
must specify that the Cauchy exponential of a linear functional is also a linear functional.
We will denote it as eu. On the other hand, it satisfies

eλδ = eλδ, λ ∈ PK.

eu+v = euev, u, v ∈ P′K.

Here, euev is the Cauchy product of eu and ev. The Cauchy exponential of a linear
functional on the linear space of polynomials can be defined in several equivalent ways.
The easiest one, which fits best with the theory of linear functionals on the linear space
of polynomials, is based on its moments. Indeed, the moments of eu can be defined in an
iterate way as follows:

(eu)0 = e(u)0 , n(eu)n =
n−1

∑
ν=0

(n− ν)(eu)ν(u)n−ν, n ≥ 1.

Once defined, we highlight several formulas and properties satisfied by the Cauchy
exponential map as a function from P′K to P′K, and to compute the Cauchy exponential of
some classical linear functionals (see [6,8,9]).

e2δ′ = B(1/2) : Bessel linear functional with parameter α = 1/2.

e−(1/8)δ′′ = B[0] : Symmetric D−semiclassical linear functional of class 1.

eαδ−2 = t−1J (α,−1− α) : Shifted Jacobi linear functional.

Among others, the following formulas: are deduced.

ha(eu) = ehau,

δ−1
b tb(eu) = eδ−1

b tb(u),

σ(eu) = e
1
2 σ(u),

for every u in P′K and every a, b in K, where a 6= 0.

The manuscript is structured as follows. In Section 2, we first introduce the notion of
the Cauchy exponential of a linear functional on the linear space of polynomials. Second,
we establish several formulas and properties satisfied by the Cauchy exponential map.
In Section 3, we compute the Cauchy power of some special linear functionals by using
some properties of the Cauchy exponential map. In Section 4, we give necessary and
sufficient conditions on a given linear functional on the linear space of polynomials for
its Cauchy exponential will be weakly-regular. In Section 5, we establish a necessary and
sufficient condition on a given linear functional in the linear space of polynomials so that its
Cauchy exponential will be positive-definite. This enables us to give a new characterization
of the positive-definite of a linear functional on the linear space of polynomials. Finally,
some open problems concerning orthogonal polynomials associated with the Cauchy
exponential function of a linear functional are stated.
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2. The Cauchy Exponential of a Linear Functional on the Linear Space of Polynomials
2.1. Definition and Basic Properties

For any u ∈ P′K, letM(u) be the linear functional in P′K that is the solution of the
following functional equation:(

M(u)
)

0 = e(u)0 ,
(
xM(u)

)′
= (xu)′M(u). (1)

Equivalently, the sequence of moments {(M(u))n}n≥0 satisfies the following recur-
rence relation:

(
M(u)

)
0 = e(u)0 , n

(
M(u)

)
n =

n−1

∑
ν=0

(n− ν)
(
M(u)

)
ν
(u)n−ν, n ≥ 1. (2)

To list some properties ofM, we need the following formulas.

Lemma 1 ([2,3]). For any u, v in P′K, any f ∈ PK, and any a, c in K with a 6= 0, we have

(x− c)
(
(x− c)−1u

)
= u, (3)

(x− c)−1((x− c)u
)
= u− (u)0δc, (4)

uv = vu, δu = u, (5)

(uv)′ = u′v + uv′ + x−1(uv), (6)

( f u)′ = f u′ + f ′u, (7)

x−1(uv) = (x−1u)v = u(x−1v). (8)

Following (3), where c = 0, (1) is equivalent to(
M(u)

)
0 = e(u)0 , M(u)′ = −x−1M(u) + x−1(xu)′M(u). (9)

Proposition 2. For any u, v in P′K, any τ ∈ K, and any non-negative integer n, we have the
following properties

(i) M(τδ) = eτδ.
(ii) M(u + v) =M(u)M(v).
(iii)

(
M(u)

)n
=M(nu).

Proof. From (1) taken with u = τδ, where τ ∈ K, we get
(
M(τδ)

)
0 = eτ and

(
xM(τδ)

)′
=

0. Thus, xM(τδ) = 0. Then, M(τδ) =
(
M(τδ)

)
0δ = eτδ, according to (4) when c = 0.

Hence, (i) holds.
Let u, v in P′K. Putting v1 =M(u), v2 =M(v), w1 =M(u + v) and w2 = v1v2. From

(9), we have

(v1)0 = e(u)0 , v′1 = −x−1v1 + x−1(xu)′v1, (10)

(v2)0 = e(v)0 , v′2 = −x−1v2 + x−1(xv)′v2, (11)

(w1)0 = e(u+v)0 , w′1 = −x−1w1 + x−1(x(u + v)
)′w1. (12)

Clearly, (w2)0 = (v1v2)0 = (v1)0(v2)0 = e(u)0 e(v)0 = e(u+v)0 .
From (6), (8), (10) and (11), we obtain

w′2 = (v1v2)
′ = v′1v2 + v1v′2 + x−1(v1v2)

=
(
− x−1v1 + x−1(xu)′v1

)
v2 +

(
− x−1v2 + x−1(xv)′v2

)
v1 + x−1(v1v2)

= −x−1v1v2 + x−1
((

x(u + v)
)′v1v2

)
.
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Therefore,

(w2)0 = e(u+v)0 , w′2 = −x−1v1v2 + x−1
((

x(u + v)
)′v1v2

)
. (13)

From (12), (13), and by the definition of the operatorM, we infer that w1 = w2, i.e.,
M(u + v) =M(u)M(v). Hence, (ii) holds.

The property (iii) is a straightforward consequence of (i) and (ii).

In a natural way, it is convenient to use the following notation

eu :=M(u), for every u ∈ P′K. (14)

Definition 4. For any u ∈ P′K, the Cauchy exponential of u, that we denote by eu, is the unique
linear functional in P′K that satisfies(

eu)
0 = e(u)0 ,

(
xeu)′ = (xu)′eu.

By an iteration process, we deduce

(eu)1 = e(u)0(u)1,

(eu)2 = e(u)0
(1

2
(u)2

1 + (u)2
)
,(

eu)
3 = e(u)0

(1
6
(u)3

1 + (u)1(u)2 + (u)3
)
.

From Proposition 2 and Definition 4, the following formulas hold.

eτδ = eτδ, (15)

eu+v = euev, (16)

(eu)n = enu, (17)

for any u, v in P′K, any τ ∈ K and any non-negative integer n.

2.2. Some Properties of the Cauchy Exponential Map

The linear functional Cauchy exponential induces a map in the algebraic dual space
P′K as follows

ExpP′K : P′K −→ P′K
u 7−→ ExpP′K(u) = eu.

Proposition 3. For any u, v in P′K, the following properties hold.

(i) When K = C, then eu = ev if and only if there exists an integer k such that u = v + (2kπi)δ,
where i2 = −1.

(ii) When K = R, then eu = ev if and only u = v.
(iii) ExpP′R is an isomorphism of Abelian groups from (P′R,+) to (P′R

+, .), where P′R
+ = {v ∈

P′R|(v)0 > 0}.

Proof. Assume that u, v in P′C are such that eu = ev. Then,

(eu)0 = e(u)0 , (eu)′ = −x−1eu + x−1(xu)′eu,

(ev)0 = e(v)0 , (ev)′ = −x−1ev + x−1(xv)′ev.
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Since e(u)0 = e(v)0 in C, then there exists an integer k such that (u)0 = (v)0 + 2kπi, i2 = −1.

Moreover, we can see that x−1
((

x(u− v)
)′eu

)
= 0. Thus,

(
x(u− v)

)′eu = 0, according to

(3) for c = 0. However, since eu is invertible, (eu)0 6= 0, then
(
x(u− v)

)′
= 0. This requires

that, x(u− v) = 0. Thus, u− v =
(
(u)0 − (v)0

)
δ = (2kπi)δ, on account of (4) taken with

c = 0.
Conversely, assume that u and v are in P′C such that u = v + (2kπi)δ. From (15) and

(16), we get eu = ev+(2kπi)δ = eve(2kπi)δ = ev(e2kπiδ) = ev.
Hence, (i) holds.

The property (ii) is a straightforward consequence of (i).
For any v ∈ P′R

+, let u be the unique linear functional defined by

(u)0 = ln
(
(v)0

)
, n(u)n(v)0 = n(v)n −

n−1

∑
ν=1

(n− ν)(u)n−ν(v)ν, n ≥ 1. (18)

Equivalently,
(v)0 = e(u)0 , (xv)′ = (xu)′v. (19)

By Definition 4, we infer that v = eu. This concludes the proof of (iii).

Furthermore, we need the following formulas.

Lemma 2 ([2,3]). For any u, v in P′K, any f ∈ PK, and any a, c in K with a 6= 0, we have the
following formulas.

ha(u′) = a
(
ha(u)

)′, (20)

x−1ha(u) = a−1ha(x−1u), (21)

ha( f u) = f (a−1x)hau, (22)

ha(uv) = ha(u)ha(v), (23)

tb(u′) =
(
tb(u)

)′, (24)

tb( f u) = tb( f )tb(u), (25)

tb(uv) = tb(u)tb(v)δ−1
b , (26)

f (uv) = ( f u)v + x(uθ0 f )(x)v, (27)

σ
(

f (x2)u
)
= f (x)σ(u), (28)

σ(u′) = 2
(
σ(xu)

)′, (29)

2
(
σ(u)

)′
= σ

(
(xu)′

)
, (30)

σ(uv) = σ(u)σ(v), if either u or v is symmetric. (31)

Proposition 4. For any a, b in K, where a 6= 0, we have

(i) ExpP′K ◦ ha = ha ◦ ExpP′K .

(ii) tb(eu)δ−1
b = eδ−1

b tb(u), for all u ∈ P′K.
(iii) σ

(
eu) = eσ(u), for all symmetric u ∈ P′K.

(iv) eu is symmetric if and only if u is symmetric.

Proof. Let a ∈ K, with a 6= 0, and u in P′K. Putting w1 = eha(u), then

(w1)0 = e(ha(u))0 = e(u)0 , w′1 = −x−1w1 + x−1(xha(u)
)′w1. (32)
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Using (20)–(23) and (27), we can derive

ha−1 w′1 = a−1(ha−1 w1)
′,

ha−1(x−1w1) = a−1x−1ha−1 w1,

ha−1(xhau)′ = a−1(ha−1(xhau)
)′

= (xu)′,

ha−1
(
(xhau)′w1

)
= (xu)′ha−1 w1,

ha−1

(
x−1(xha(u)

)′w1

)
= a−1x−1ha−1

((
xha(u)

)′w1

)
= a−1x−1(xu)′ha−1 w1.

Applying the operator ha−1 in both sides of (32), it follows that

(ha−1 w1)0 = e(u)0 , (ha−1 w1)
′ = −x−1ha−1 w1 + x−1(xu)′ha−1 w1.

From the uniqueness of the solution of the last equation, we can say that ha−1 w1 = eu

and, then, w1 = ha(eu). Hence, (i) holds.
Assume that b ∈ K and u in P′K. Let first establish the following formula

tb(vδ−b) = tb(v)δ−1
b , v ∈ P′K. (33)

Indeed, by (26), tb(vδ−b) = tb(v)tb(δ−b)δ
−1
b . Since tb(δ−b) = δ, then we have tb(vδ−b) =

tb(v)δ−1
b . Setting w = tb(eu)δ−1

b . Clearly,
(
tb(u)δ−1

b
)

0 = (u)0 and (w)0 = (eu)0 = e(u)0 . On
the other hand, by (25), (33) and (27),

xw = x
(
tb(eu)δ−1

b
)

= xtb(euδ−b)

= tb

(
(x + b)

(
euδ−b

))
= tb

((
(x + b)δ−b

)
eu + x

(
δ−bθ0(x + b)

)
(x)eu

)
.

However, from (x + b)δ−b = 0 and
(
δ−bθ0(x + b)

)
(x) = 1, we get xw = tb(xeu). From

Definition 4, and while using (24), (26) and (33), we obtain

(xw)′ = tb

((
(xeu)′)

= tb
(
(xu)′eu)

= tb
(
(xu)′

)
tb
(
eu)δ−1

b = tb
(
(xu)′

)
w

=
(
tb(xu)

)′w.

From (27), we have xu =
(
(x + b)δ−b

)
u + x

(
δ−bθ0(x + b)

)
u = (x + b)(uδ−b). By (25)

and (26), we deduce

tb(xu) = tb
(
(x + b)(δ−bu)

)
= xtb(δ−bu)

= xtb(δ−b)tb(u)δ−1
b

= xtb(u)δ−1
b .

Accordingly, we have (w)0 = e(tb(u)δ
−1
b )0 and (xw)′ =

(
x
(
tb(u)δ−1

b
))′w. From the

uniqueness of the solution of the last equation, we get w = etb(u)δ
−1
b and, as a consequence,

tb
(
eu)δ−1

b = etb(u)δ
−1
b . Hence, (ii) holds.
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Next, assume that u is a symmetric linear functional, i.e., σ(xu) = 0. If w2 = eu, then

(w2)0 = e(u)0 , (xw2)
′ = −(xu)′w2. (34)

Since u is symmetric, then (xu)′ is also symmetric. By (31), (29), and (28), it follows
that

σ
(
(xu)′w2

)
= σ

(
(xu)′

)
σ w2

= 2
(
σ(x2u)

)′
σ w2

= 2
(

xσ(u)
)′

σw2.

Therefore, if we apply the operator σ in both hand sides of (34), then

(σw2)0 = e(u)0 ,
(
xσ(w2)

)′
= −

(
xσ(u)

)′
σ(w2).

The uniqueness of the solution of the last equation yields σw2 = eσu.
Hence, (iii) holds.
Assume that u is symmetric, i.e., h−1u = u. By (i), taken with a = −1, we obtain

h−1(eu) = eh−1(u) = eu. Thus, eu is also symmetric.
Conversely, assume that eu is symmetric, i.e., h−1(eu) = eu. Again by (i), when a = −1,

we deduce eh−1(u) = eu. Notice that

(eu)0 = e(u)0 , (xeu)′ = (xu)′eu.

(eh−1(u))0 = e(u)0 , (xeu)′ = (xh−1(u))′eu.

This implies (xu)′eu = (xh−1(u))′eu. If we multiply both hand sides of the last equa-
tion by e−u, then (xu)′ = (xh−1(u))′, and so that xu = xh−1(u). Since (h−1u)0 = (u)0,
then h−1u = u, by (4) taken with c = 0. Hence, u is symmetric. Thus, the statement (iv) is
proved.

3. Cauchy Power of a Linear Functional

We start recalling the following formulas.

Lemma 3 ([2,3,10]). For any u, v in P′K, any f ∈ PK and any a, c in K where a 6= 0, we have

(u−1)′ = −u−2u′ − 2x−1u−1. (35)

For any u in P′K and any arbitrary non-negative integer number n, we can define the
Cauchy power of order n of u, denoted by un, as follows

un = u...u︸︷︷︸
n−times

, u0 = δ.

When (u)0 6= 0, recall that u is invertible. In such a case, we can extend the definition
of un to negative integer numbers n as follows un = u−1...u−1︸ ︷︷ ︸

(−n)−times

.

In [11], we have deduced that (u2)′ = 2uu′ + x−1u2. More generally, we have

Proposition 5. For any u ∈ P′K, the following properties hold.

(i) For every positive integer number n we have

(un)′ = nun−1u′ + (n− 1)x−1un.



Mathematics 2023, 11, 1895 9 of 18

(ii) If (u)0 6= 0, then for every integer number n,

(un)′ = nun−1u′ + (n− 1)x−1un.

Proof. We proceed by induction. If n = 1, then u′ = δu′. Therefore, the statement is true.
We assume that the statement is true for n = k, i.e., (uk)′ = kuk−1u′ + (k− 1)x−1uk. From
the previous Lemma, we get

(uk+1)′ = (uku)′

= (uk)′u + uku′ + x−1uk+1

=
(
kuk−1u′ + (k− 1)x−1uk)u + uku′ + x−1uk+1

= (k + 1)uku′ + (k)x−1uk+1.

Thus, if the statement is true for n = k, then it also holds for n = k + 1. Hence, (i)
holds.

Assume that (u)0 6= 0. Then u is invertible and uu−1 = u−1u = δ. Clearly, the state-
ment (ii) is true, for n = 0, it comes back to δ′ = −x−1δ. Let n be a negative integer number
n. By (i) and Lemma 3, we have

(un)′ =
(
(u−1)−n)′

= −n(u−1)−n−1(u−1)′ − (n + 1)x−1(u−1)−n

= −nun+1(u−1)′ − (n + 1)x−1un

= −nun+1(−u−2u′ − 2x−1u−1)− (n + 1)x−1un

= nun−1u′ + (n− 1)x−1un.

Hence, (ii) holds.

First application. Recall that the moments of the classical Bessel linear functional
B(1/2), with parameter α = 1

2 , are (B(1/2))n = (−2)n

n! , n ≥ 0. Equivalently, see [7–9],(
B(1/2)

)
0 = 1,

(
B(1/2)

)′ − (x + 2)B(1/2) = 0.

Proposition 6. For any integer number m and λ ∈ K, λ 6= 0, we have

(i) h− λ
2

e−2 δ′ = eλδ′ .

(ii)
(
B(1/2)

)m
= hm

(
B(1/2)

)
.

Proof. We start by showing that e−2 δ′ = B( 1
2 ). Indeed, observe that (xe−2 δ′)′+ δ′e−2 δ′ = 0.

If we compute the first moments of e−2 δ′ and multiply the last equation by x, after using
(27) and an easy computation, we find

(
e−2 δ′

)
0 = 1,

(
x2e−2 δ′

)′ − (x + 2)e−2 δ′ = 0. By the
uniqueness of the solution of the last equation, e−2 δ′ = B( 1

2 ). By Proposition 4, (i), we get

h− λ
2

e−2 δ′ = e
h− λ

2
(−2δ′)

. Since 〈h− λ
2
(−2δ′), p〉 = 〈−2δ′, p(− λ

2 x)〉 = −λp′(0), p ∈ PK, then

h− λ
2
(−2δ′) = λδ′. Thus, h− λ

2
(e−2 δ′) = eλδ′ . Hence, (i) holds.

Let m be a non-zero integer. By (17) and the last property (i), we get
(
B( 1

2 )
)m

=

(e−2 δ′)m = e−2m δ′ = hm
(
B( 1

2 )
)
. Hence, (ii) holds.
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Second application. Let first recall that the moments of the generalized Bessel linear
functional B[0] with parameter ν = 0, a symmetric D—semi-classical linear functional of
class one, see [8,9], are

(B[0])2n+1 = 0, (B[0])2n =
(−1)n

22nn!
, n ≥ 0.

Equivalently, B[0] satisfies the Pearson equation:

(
x3B[0]

)′ − (2x2 +
1
2
)B[0] = 0, where (B[0])0 = 1 and (B[0])1 = 0.

Proposition 7. For any integer number m and λ ∈ K, λ 6= 0, we have

(i) h2i
√

2λe
1
4 δ′′ = eλδ′′ .

(ii)
(
B[0]

)m
= h√m

(
B[0]

)
.

Proof. First, let us show that e−
1
8 δ′′ = B[0]. Indeed, we have (xe−

1
8 δ′′)′ − 1

4 δ′′e−
1
8 δ′′ =

0. If we compute the first moments of e−
1
8 δ′′ and then multiply the last equation by

x2, we get after using (27) and an easy computation,
(
x3e−

1
8 δ′′
)′ − (2x2 + 1

2 )e
− 1

8 δ′′ =

0, with (e
1
4 δ′′)0 = 1, and (e−

1
8 δ′′)1 = 0. By the uniqueness of the solution of this equation,

we get e−
1
8 δ′′ = B[0]. By Proposition 4, (i), we get h2i

√
2λ(e

− 1
8 δ′′) = e−

1
8h2i

√
2λ
(δ′′). However,

since h2i
√

2λ(δ
′′) = −8λδ′′, it follows that h2i

√
2λe−

1
8 δ′′ = eλδ′′ . Hence, (i) holds.

Let m be a non-zero integer number. By (17) and the last property (i), we get
(
B[0]

)m
=

(e−
1
8 δ′′)

m
= e−

m
2 δ′′ = h√m

(
B[0]

)
. Hence, (ii) holds.

Third application. Recall that the moments with respect to the sequence {(x− 1)n}n≥0
of the classical Jacobi linear functional J (α,−1 − α) with parameter α, a non-integer
number, are

(
J (α,−1− α)

)
n,1 = 〈J (α,−1− α), (x− 1)n〉 = (−2)n Γ(n− α)Γ(α)

Γ(−α)n!
, n ≥ 0.

Equivalently, (see [1,7,8])(
J (α,−1− α)

)
0 = 1,

(
(x2 − 1)J (α,−1− α)

)′
+ (−x + 2α + 1)J (α,−1− α) = 0.

Notice that the shifted linear functional w = t−1J (α,−1− α) satisfies

(w)0 = 1,
(

x(x + 2)w
)′
+ (−x + 2α)w = 0.

Proposition 8. For any non-zero complex number c and any positive integer number n, we have

(i) For any non-integer complex number α such nα is a non-integer number,
(
t−1J (α,−1−

α)
)n

= t−1J (nα,−1− nα). Equivalently,

(
J (α,−1− α)

)n
= J (nα,−1− nα) δn−1

1 .

(ii) For any pair of non-integer complex numbers (α, γ) such that α + γ is a non-integer number,(
t−1J (α,−1− α)

)(
t−1J (γ,−1− γ)

)
= t−1J (α + γ,−1− α− γ).

Equivalently, J (α,−1− α)J (γ,−1− γ) = J (α + γ,−1− α− γ) δ1.
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Proof. Let α be a fixed non-integer complex number. First, let’s show that eαδ−2 =
t−1J (α,−1− α). Indeed, if we put w = eαδ−2 , then (w)0 = 1, w′ − x−1(δ−2w) = x−1w.
Since, δ−2w = (w)0δ− 2(x + 2)−1w = δ− 2(x + 2)−1w, then (w)0 = 1, w′− x−1(w− 2(x +
2)−1w

)
= x−1w. If we multiply both hand sides of the last equation by x(x + 2), we get

x(x + 2)w′ +
(

x + 2(α + 1)
)
w = 0, i.e.,

(
x(x + 2)w

)′
+ (−x + 2α)w = 0. This implies that

w = t−1J (α,−1− α). By Proposition 4, (i), h− c
2
(eα δ−2) = e

α h− c
2

δ−2 . Since, h− c
2
(δ−2) = δc,

then h− c
2
(eα δ−2) = eα δc . Hence, the first statement in (i) holds.

Let n be a non-zero integer number and α be a non-integer complex number such that
nα is a non-integer number. From (17) and the previous property (i), we get

(
t−1J (α,−1−

α)
)n

= enα δ−2 = t−1J (nα,−1− nα). Therefore,
(
t−1J (α,−1− α)

)n
= t−1J (nα,−1− nα).

By applying the operator t1 and using (26), we get
(
J (α,−1− α)

)n
δ−n+1

1 = J (nα,−1−
nα). This yields

(
J (α,−1− α)

)n
= J (nα,−1− nα) δn−1

1 .
Hence, the second statement in (i) holds.

Let (α, γ) be a pair of non-integer complex numbers such that α + γ is a non-integer
number. We can write(

t−1J (α,−1− α)
)(
t−1J (γ,−1− γ)

)
= eα δ−2 eγ δ−2

= e(α+γ) δ−2

= t−1J (α + γ,−1− α− γ).

Finally, if we apply the operator t1 and we use (26), we find

J (α,−1− α)J (γ,−1− γ) = J (α + γ,−1− α− γ) δ1.

Hence, (ii) holds.

4. Weak-Regularity Property

We start with the following Lemma.

Lemma 4. For any u ∈ P′K, if (xu)′ is weakly-regular, then eu is also weakly-regular.

Proof. Assume that u ∈ P′K is such that (xu)′ is weakly-regular. Suppose that there exists
φ ∈ PK, φ 6≡ 0 such that φeu = 0. Necessarily, deg(φ) ≥ 1. Indeed, if we suppose that
deg(φ) = 0, then 0 = (φeu)0 = φe(u)0 . This is a contradiction, because φ 6= 0 and e(u)0 6= 0.
From (7), (27) and the definition of Cauchy exponential of a linear functional, we obtain

0 = (φxeu)′

= φ′(xeu) + φ(xeu)′

= φ′(xeu) + φ
(
(xu)′eu)

= φ′(xeu) + (φeu)(xu)′ + x
(
euθ0φ

)
(x)(xu)′

= φ′(xeu) + x
(
euθ0φ

)
(x)(xu)′.

Multiplying both hand sides of the last equation by φ and assuming φeu = 0, we get
xφ(euθ0φ)(x)(xu)′ = 0. This is a contradiction, taking into account (xu)′ is weakly-regular
and the fact that deg(φ) ≥ 1, (eu)0 6= 0 and so that deg(euθ0φ) ≥ 0.

Proposition 9. For any u in P′K, the following statements are equivalent.

(i) eu is weakly-regular.
(ii) (xu)′ is weakly-regular. Otherwise, we must have

min{deg(A) | A ∈ PK, A 6≡ 0 and A(xu)′ = 0} ≥ 2.
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Proof. (i) ⇒ (ii). Assume that eu is weakly-regular. Suppose that (xu)′ is not weakly-
regular. Then there exists A ∈ PK, A 6≡ 0, with minimum degree, such that A(xu)′ = 0 and
deg A ≥ 2. We have to treat two cases.

First case: deg(A) = 0. In such a situation (xu)′ = 0, and then u = (u)0δ. In this case,
eu = e(u)0 eδ = e(u)0 δ and then xeu = 0. This contradicts the assumption eu is weakly-regular.

Second case: deg(A) = 1. Therefore, there exists c ∈ K such that (x− c)(xu)′ = 0. Thus,
(xu)′ = ((xu)′)0δ = 0 and so that u = (u)0δ. This is a contradiction.
Hence, min{deg(A) | A ∈ PK, A 6≡ 0 and A(xu)′ = 0} ≥ 2.

(ii)⇒ (i). By Lemma 4, if (xu)′ is weakly-regular, eu is also weakly-regular. Assume
that min{deg(A)| A ∈ PK, A 6≡ 0 and A(xu)′ = 0} ≥ 2. Then, there exists A ∈ PK,
deg(A) ≥ 2, with minimum degree that satisfies A(xu)′ = 0. We have

A(xeu)′ = A
(
(xu)′eu)

= A(xu)′eu + x
(
(xu)′θ0 A

)
eu

= x
(
(xu)′θ0 A

)
eu.

Equivalently,

(Axeu)′ −
(

A′(x) +
(
(xu)′θ0 A

)
(x)
)

xeu = 0.

The last equation can not be simplified. Otherwise, suppose that it can be simplified
by x− c, where A(c) = 0. Then,

(x− c)θc(A)
(
xeu)′ − [(xu)′θ0

(
(x− c)θc(A)

)
(x)
]
xeu = 0.

Notice that

(xu)′θ0
(
(x− c)θc(A)

)
(x) = 〈(yu)′,

(x− c)θc(A)(x)− (y− c)θc(A)(y)
x− y

〉

= 〈(yu)′, (x− c)
θc(A)(x)− θc(A)(y)

x− y
+ θc(A)(y)〉

= (x− c)〈(yu)′,
θc(A)(x)− θc(A)(y)

x− y
〉+ 〈(yu)′, θc(A)(y)〉.

Then, (x− c)
(

θc(A)
(
xeu)′− ((xu)′θ0θc(A)

)
xeu
)
−〈(yu)′, θc(A)(y)〉xeu = 0. The sim-

plification by (x− c) requires the two following conditions:{
〈θc(A)(xeu)′ −

(
(xu)′θ0θc(A)

)
(x)xeu, 1〉 = 0,

〈(yu)′, θc(A)(y)〉 = 0.

The simplification gives θc(A)
(
xeu)′ − ((xu)′θ0θc(A)

)
(xeu) = 0. By the definition of

the Cauchy exponential, θc(A)(xu)′eu − (xu)′θ0θc(A)(xeu) = 0. By (27), it follows that(
θc(A)(xu)′

)
eu = 0. If we multiply both hand sides of the last equation by e−u and we use

the property e−ueu = eue−u = δ, we get θc(A)(xu)′ = 0. This contradicts the fact that A is
of minimum degree such that A(xu)′ = 0.

If V = xeu, then it satisfies (AV)′ −
(

A′ +
(
(xu)′θ0 A

))
V = 0, where deg A ≥ 2, which

can not be simplified. Moreover, V 6= 0. Indeed, if V = 0, then eu = e(u)0 δ. This implies
(xu)′ = 0. This is a contradiction. For the sequel, notice that V is weakly-regular if and
only if eu is weakly-regular. Indeed, suppose that there exists a non-zero polynomial Φ
with a minimal degree such that ΦV = 0. Thus, we have

AV′ =
(
(xu)′θ0 A

)
V, (36)

ΦV′ = −Φ′V. (37)
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Since the pseudo-class (see [11]) of V is equal to deg(A), then A divides Φ. So, there
exists Q ∈ PK such that Φ = AQ. From (36) and (37), we have

QAV′ = −(QA)′V, (38)

Q
(
(xu)′θ0 A

)
V = −(QA)′V. (39)

So, BV = 0, where B = Q
(
(xu)′θ0 A

)
+ (QA)′. Since deg(A) ≥ 2, then deg(B) =

deg(Q) + deg(A)− 1 ≥ deg(Q) + 1. Moreover, deg(B) < deg(Φ). This contradicts the
fact that Φ is of minimal degree such that ΦV = 0. Thus, V is weakly-regular and then eu is
also weakly-regular.

5. A Du-Laguerre–Hahn Property

In what follows, let P′K
? = {u ∈ P′K | (u)0 6= −n, for all integer n ≥ 1}. For any u

in P′K
?, the non-singular lowering operator Du on the linear space of polynomials is defined

by [10,11]

Du(p)(x) := p′(x) + uθ0 p(x) = p′(x) + 〈uy,
p(x)− p(y)

x− y
〉, p ∈ PK. (40)

Let us give some fundamental properties satisfied by the non-singular lowering
operator Du.

Linearity: Du(αp + βq) = αDu(p) + βDu(q), p, q ∈ PK, α, β ∈ K.

Lowering of degrees:

Du(xn)(x) =
(
n + (u)0

)
xn−1 +

n−2

∑
ν=0

(u)n−ν−1xν, n ≥ 1, (
−1

∑
ν=0

= 0),

Du(1) = 0.

Under the condition (u)0 6= −n, for all integer n ≥ 1, we can see that deg(Du(p)) =
deg(p)− 1, for all p ∈ PK.

Symmetry:
When u is symmetric, i.e., (u)2n+1 = 0, n ≥ 0, and the MPS {Bn(x)}n≥0 is symmetric,

then the polynomial sequence {Qn(x)}n≥0 defined by Qn(x) = Du(Bn+1)(x), n ≥ 0, is
also symmetric.

The product rule:

Du( f g) = Du( f )g + f Du(g) + uθ0( f g)− (uθ0 f )g− (uθ0g) f , f , g ∈ PK. (41)

In particular, we have

Du(x f )(x) = xDu( f )(x) + f (x) + 〈u, f 〉, f ∈ PK. (42)

By transposition of the operator Du, we obtain

〈tDu(w), p〉 = 〈w, Du(p)〉
= 〈w, p′ + uθ0 p〉
= 〈−w′ + x−1wu, p〉, p ∈ PK, w ∈ P′K.

Then, tDu(w) = −w′ + x−1(wu), w ∈ P′K. If we set Du := −tDu, we have

Du(w) = w′ − x−1(uw), w ∈ P′K, (43)

and we can write
〈Du(w), p〉 = −〈w, Du(p)〉, p ∈ PK. (44)
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The following product rule is a straightforward consequence of the previous defini-
tions and formulas

Du( f w) = Du( f )w + f Duw + (wθ0 f )u− (uθ0 f )w, f ∈ PK, w ∈ P′K. (45)

For any u ∈ P′K
?, let S = S(u) be the unique linear functional defined by [2]{

(S)0 = 1,
Du(S) = −

(
(u)0 + 1

)
x−1S.

(46)

Equivalently, {
(S)0 = 1,

S′ − x−1(uS) = −
(
(u)0 + 1

)
x−1S.

(47)

i.e., {
(S)0 = 1,

(xS)′ −
(
u− (u)0δ

)
S = 0.

(48)

Let {en(x; u)}n≥0 be the sequence of monic polynomials defined by

en := en(x; u) = S−1xn, n ≥ 0, (49)

where S is given by (46). Observe that

Du(en) = (n + (u)0)en−1, n ≥ 0. (50)

Clearly, {en(x; u)}n≥0 is an Appell sequence with respect to Du. In addition, the poly-
nomial sequence {en(x)}n≥0 can be characterized by

e0(x) = 1, en+1(x) = xen(x) + (S−1)n+1, n ≥ 0. (51)

Proposition 10. For any v ∈ P′K, we have

D(xv)′(e
v) = −x−1ev. (52)

Proof. Assume that v ∈ P′K and recall that ev is defined by

(ev)0 = e(v)0 , (xev)′ = (xv)′ev. (53)

Observe that (xv)′ ∈ P′K
?, because

(
(xv)′

)
0 = 0 6= −n, n ≥ 1. From (48) taken with

u = (xv)′, we have(
S
(
(xv)′

))
0 = 1,

(
xS
(
(xv)′

))′ − (xv)′S
(
(xv)′

)
= 0. (54)

By the uniqueness of the solution of each of (53) and (54), we deduce

ev = e(v)0 S
(
(xv)′

)
. (55)

This yields the desired result, according to (46), where u = (xv)′.
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Setting ẽn(x) = en
(
x; (xv)′

)
= S

(
(xv)′

)−1xn, n ≥ 0. According to (49) and (50), we
can say that

ẽn(x) = e(v)0 e−vxn, n ≥ 0. (56)

Du(ẽn) = nẽn−1, n ≥ 0. (57)

ẽ0(x) = 1, ẽn+1(x) = xẽn(x) + e(v)0(e−v)n+1, n ≥ 0. (58)

From (56), observe that

〈ev, ẽn〉 = e(v)0 δn,0, n ≥ 0. (59)

Lemma 5. For any v ∈ P′K, the monic polynomial sequence {ẽn(x)}n≥0 defined by ẽn(x) =

e(v)0 e−vxn, n ≥ 0, satisfies

xẽ′n(x) + (xv)′ ẽn(x) = nẽn(x), n ≥ 0. (60)

Proof. Assume that v ∈ P′K. Notice that (57) can be rewritten as ẽ′n(x) + (xv)′θ0 ẽn(x) =
nẽn−1(x), n ≥ 0. If we multiply both hand sides of the last equation by x and we use (58),
then we obtain

xẽ′n(x) + x
(
(xv)′θ0 ẽn(x)

)
(x) = n

(
ẽn − e(v)0(e−v)n

)
, n ≥ 0. (61)

However, from (ye−v)′ = −(yv)′e−v and while taking into account (56), we get

x
(
(xv)′θ0 ẽn

)
(x) = 〈(yv)′,

xẽn(x)− yẽn(y)
x− y

− ẽn(y)〉

= (xv)′ ẽn(x)− 〈(yv)′, ẽn(y)〉

= (xv)′ ẽn(x)− e(v)0〈(yv)′e−v, yn〉

= (xv)′ ẽn(x) + e(v)0〈(ye−v)′, yn〉

= (xv)′ ẽn(x)− ne(v)0
(
e−v)n, n ≥ 0.

Then, (61) gives xẽ′n + (xv)′ ẽn − ne(v)0
(
e−v)n = n

(
ẽn − e(v)0(e−v)n

)
= nẽn, n ≥ 0.

Hence, the desired result.

6. A New Characterization of Positive-Definiteness

We start with the two following technical Lemmas.

Lemma 6 ([5]). For any w ∈ PR
′, the following statements are equivalent.

(i) w is positive-definite.
(ii) w is weakly-regular and positive.

Lemma 7. For any g ∈ PK, there exists p ∈ PK, with deg(p) = deg(g), such that

g(x)− e−(v)0〈ev, g〉 = xp′(x) +
(
(xv)′p

)
(x). (62)
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Proof. Assume that g ∈ PK. We always have g = ∑N
ν=0 θν ẽν, where θν ∈ K, 0 ≤ ν ≤ N.

From (59) and (60), we have

g(x)− e−(v)0〈ev, g〉 =
N

∑
ν=0

θν

(
ẽν(x)− e−(v)0〈ev, ẽν〉

)
=

N

∑
ν=0

θν

(
ẽν(x)− e−(v)0 e(v)0 δν,0

)
=

N

∑
ν=1

θν ẽν(x)

=
N

∑
ν=1

θν

ν

(
xẽ′ν(x) + (xv)′ ẽν(x)

)
= xp′(x) +

(
(xv)′p

)
(x),

where p(x) = ∑N
ν=1

θν
ν ẽν(x).

Theorem 1. For any linear functional v ∈ PR
′ such that ev is weakly-regular, the following

statements are equivalent.

(i) ev is positive-definite.
(ii) For any p ∈ PR, deg(p) = 2l, l ≥ 1, the polynomial xp′(x) +

(
(xv)′p

)
(x) has at least one

real zero.

Proof. (i) ⇒ (ii). Let v ∈ PR
′ such that ev is positive-definite. Suppose that there exists

p ∈ PR, deg(p) = 2l, l ≥ 1, and such that xp′(x) +
(
(xv)′p

)
(x) has not real zeros. Clearly,

deg
(

xp′ + (xv)′p
)
= 2l. Without loss of generality, we can suppose that the leading

coefficient of p is positive. Then xp′(x) +
(
(xv)′p

)
(x) is a positive polynomial. Under the

assumption ev is positive-definite, then we get 〈ev, xp′+ (xv)′p〉 > 0. This is a contradiction,
because 〈ev, xp′ + (xv)′p〉 = 〈−(xev)′ + (xv)′ev, p〉 = 0, by the definition of ev. Thus,
xp′(x) +

(
(xv)′p

)
(x) must have at least one real zero.

(ii)⇒ (i). Let g ∈ PR, p 6≡ 0 and g ≥ 0. Let deg(g) = 2l, l ≥ 0.
If l = 0, i.e., g(x) = m > 0, then we have 〈ev, g〉 = me(v)0 > 0.
If l ≥ 1, there exists p ∈ PR, deg(p) = 2l, such that g(x)− e−(v)0〈ev, g〉 = xp′(x) +(

(xv)′p
)
(x), by virtue of Lemma 7. By the assumption, there exists c ∈ R, such that

g(c)− e−(v)0〈ev, g〉 = 0. Then, 〈ev, g〉 = e(v)0 g(c) ≥ 0. Thus, ev is a positive linear functional.
Since ev is weakly-regular, it follows that ev is positive-definite, according to Lemma 6.

Corollary 1. For any weakly-regular linear functional w ∈ P′R
+, the following statements

are equivalent.

(i) w is positive-definite.
(ii) For any p ∈ PR, deg(p) = 2l, l ≥ 1, the polynomial w−1x(wp)′(x) has at least one real

zero.

Proof. Let w ∈ P′R
+. By Proposition 3, (iii), there exists a unique v ∈ PR

′ such that w = ev.
By Lemma 7, Theorem 1, and under the assumption w is weakly-regular, we infer that
w is positive-definite, if and only if xp′(x) +

(
(xv)′p

)
(x) has at least one real zero, for all

p ∈ PR, where deg(p) = 2l, l ≥ 1. Let p ∈ PR, deg(p) = 2l, l ≥ 1. We always have
p(x) = ∑2l

ν=0 θν ẽν(x), where ẽn(x) = e(v)0 e−vxn, n ≥ 0. Then,
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xp′(x) +
(
(xv)′p

)
(x) =

2l

∑
ν=0

θν

(
xẽ′ν(x) + (xv)′ ẽν(x)

)
=

2l

∑
ν=0

νθν ẽν(x)

= e(v)0 e−v
2l

∑
ν=0

νθνxν

= e(v)0 e−vx
( 2l

∑
ν=0

θνe−(v)0 evxν
)′

= w−1x
(
w

2l

∑
ν=0

θνxν
)′

= w−1x(wp)′(x).

This concludes the proof.

7. Concluding Remarks

In this contribution, the Cauchy exponential of a linear functional in the linear space
of polynomials with either real or complex coefficients has been introduced. Some analytic
and algebraic properties are studied. The Cauchy power of a linear functional is defined.
Some illustrative examples of Jacobi and Bessel’s classical linear functionals are discussed.
A characterization of the weak regularity of the Cauchy exponential of a linear functional is
given. A characterization of the positive definiteness of the Cauchy exponential of a linear
functional is presented.

As further work, we are dealing with the following problems.

(i) Given a regular linear functional u such that its Cauchy exponential eu is also a
regular linear functional there exists a connection formula between the corresponding
sequences of orthogonal polynomials?

(ii) Assuming u is a D—semiclassical linear functional, see [3], is eu a D−semiclassical
linear functional?

(iii) Can do you define other analytic functions of linear functionals in a natural way, by
using the corresponding Taylor expansions?
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