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Abstract: This article presents a generalization of new classes of degenerated Apostol–Bernoulli,
Apostol–Euler, and Apostol–Genocchi Hermite polynomials of level m. We establish some algebraic
and differential properties for generalizations of new classes of degenerated Apostol–Bernoulli
polynomials. These results are shown using generating function methods for Apostol–Euler and
Apostol–Genocchi Hermite polynomials of level m.
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1. Introduction

In this document, the customary conventions of mathematical notation are employed,
where N := {1, 2, . . .}; N0 := {0, 1, 2, . . .}; Z refers to a set of integers; R refers to a set of
real numbers; and C refers to a set of complex numbers.

There have been numerous studies in the literature that have focused on Apostol–
Bernoulli, Apostol–Euler, and Apostol–Genocchi Hermite polynomials, as well as their
extensions and relatives. These studies include works in [1–15]. In recent years, several
researchers have explored degraded versions of well-known polynomials, such as Bernoulli,
Euler, falling factorial, and Bell polynomials, by utilizing generating functions, umbral
calculus, and p-adic integrals. Examples of such studies can be found in [16–18].

The generalization of two-variable Hermite polynomials introduced by Kampé de
Fériet is given by [19]:

Hω(ξ, η) = ω!
[ ω

2 ]

∑
ν=0

ηνξω−2ν

ν!(ω− 2ν)!
.

It is to be noted that [20]
Hω(2ξ,−1) = Hω(ξ).

These polynomials satisfy the following generating equation:

eξτ+ητ2
=

∞

∑
ω=0

Hω(ξ, η)
τω

ω!
. (1)
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Two-variable degenerate Hermite polynomials Hn(ξ, η; µ) ([21], p. 65) are defined by
means of the generating function

(1 + µτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

Hω(ξ, η; µ)
τω

ω!
. (2)

We note that
lim
µ→0

Hω(ξ, η; µ) = Hω(ξ, η).

The first and second kind of Stirling numbers are given, respectively, by (see [22]):

1
ν!
[ln(1 + τ)]ν =

∞

∑
ω=ν

S(ω, ν)
τω

ω!

and
1
ν!
(eτ − 1)ν =

∞

∑
ω=ν

S(ω, ν)
τω

ω!
.

The generalized falling factorial (ξ|µ)ω with increment µ is defined by (see [18],
Definition 2.3):

(ξ|µ)ω =
ω−1

∏
ν=0

(ξ − µν),

for positive integer ω, with the convention (ξ|µ)0 = 1. Furthermore,

(ξ|µ)ω =
ω

∑
ν=0

S(ω, ν)µω−νξν.

From the Binomial Theorem, we have

(1 + µτ)
ξ
µ =

∞

∑
ω=0

(ξ|mu)ω
τω

ω!
.

Khan [14] introduced degenerate Hermite–Bernoulli polynomials of the second kind,
defined by

log(1 + µτ)
1
µ

(1 + µτ)
1
µ − 1

(1 + µτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

HBω(ξ, η; µ)
τω

ω!
.

For λ, u ∈ C, and α ∈ N, with u 6= 1, the generalized degenerate Apostol-type Frobe-
nius Euler–Hermite polynomials of order α are given by a generating function (see [15],
p. 569):  1− u

λ(1 + µτ)
1
µ − u

α

(1 + µτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

Hhω(ξ, η; µ; λ; u)
τω

ω!
. (3)

Taking u = −1 and α = 1 in (3), the degenerate Hermite–Euler polynomials are
obtained (see [7], p. 3, Equation (17)):

2

λ(1 + µτ)
1
µ + 1

(1 + µτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

HEω(ξ, η; µ; λ)
τω

ω!
.
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Clemente et al. [23] introduced and studied new families of Apostol-type degenerated
polynomials by means of the following generating functions:

τmα[σ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ =

∞

∑
ω=0

B
[m−1,α]
ω (ξ; µ, b; λ)

τω

ω!
, (4)

2mα[ψ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ =

∞

∑
ω=0

E
[m−1,α]
ω (ξ; µ, b; λ)

τω

ω!
(5)

and

(2τ)mα[ψ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ =

∞

∑
ω=0

G
[m−1,α]
ω (ξ; µ, b; λ)

τω

ω!
(6)

where,

σ(λ; a, b; τ) =

(
λ(1 + µτ)

1
µ −

m−1

∑
l=0

(τ log b)l

l!

)−1

and

ψ(λ; µ, b; τ) =

(
λ(1 + µτ)

1
µ +

m−1

∑
l=0

(τ log b)l

l!

)−1

.

If ξ = 0, in (4)–(6), we obtain the Apostol-type degenerated numbers of order α and
level m:

τmα[σ(λ; µ, b; τ)]α =
∞

∑
ω=0

B
[m−1,α]
ω (ξ; µ, b; λ)

τω

ω!
,

2mα[ψ(λ; µ, b; τ)]α =
∞

∑
ω=0

E
[m−1,α]
ω (ξ; µ, b; λ)

τω

ω!
,

(2τ)mα[ψ(λ; µ, b; τ)]α =
∞

∑
ω=0

G
[m−1,α]
ω (ξ; µ, b; λ)

τω

ω!
.

The past few years have seen significant advancements in the generalizations of special
functions used in mathematical physics. These developments provide an analytical foun-
dation for many exact solutions to problems in mathematical physics and have practical
applications in various fields. One important area of development is the introduction of one-
and double-variable special functions, which have been recognized for their significance
in both pure mathematical and applied contexts. Multi-index and multi-variable special
functions are also necessary for solving problems in several branches of mathematics, such
as partial differential equations and abstract group theory. Hermite polynomials, devel-
oped by Hermite [24–27], are an example of such special functions, which are important
in combinatorics, numerical analysis, and physics. They are associated with the quantum
harmonic oscillator and are utilized in solving the Schrödinger equation for the oscillator.
This article aims to introduce new families of Hermite–Apostol-type degenerated polyno-
mials. Some algebraic properties and relations for these polynomials are derived. These
results extend certain relations and identities of the related polynomials.

2. Generalizations of New Classes of Degenerated Apostol–Bernoulli, Apostol–Euler,
and Apostol–Genocchi Hermite Polynomials of Level m

In this section, based on (2) and (4)–(6), we define new families of Hermite–Apostol-
type degenerated polynomials.

Definition 1. For arbitrary real or complex parameter α and for µ, b ∈ R+, the generalizations
degenerate the Apostol–Bernoulli Hermite polynomials HB

[m−1,α]
ω (ξ, η; µ, b; λ), the generalizations

degenerate Apostol–Euler Hermite polynomials HE
[m−1,α]
ω (ξ, η; µ, b; λ), and the generalizations

degenerate Apostol–Genocchi Hermite polynomials HG
[m−1,α]
ω (ξ, η; µ, b; λ), m ∈ N, λ ∈ C of
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order α and level m, are defined, in a suitable neighborhood of t = 0, by means of the generating
functions:

τmα[σ(λ; µ, b; τ)]α(1 + aτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
, (7)

2mα[ψ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
(8)

and

(2τ)mα[ψ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
, (9)

where

σ(λ; µ, b; τ) =

(
λ(1 + µτ)

1
µ −

m−1

∑
l=0

(τ log b)l

l!

)−1

and

ψ(λ; µ, b; τ) =

(
λ(1 + µτ)

1
µ +

m−1

∑
l=0

(τ log b)l

l!

)−1

.

Note that for α = 1, λ = 1, and b = e in (7), we have

∞

∑
ω=0

lim
µ→0

B
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
= lim

µ→0

 τm

λ(1 + µτ)
1
µ −

m−1
∑

l=0

(τ log b)l

l!


α

(1 + µτ)
ξ
µ (1 + µτ2)

η
µ

=

 τm

eτ −
m−1
∑

l=0

τl

l!

eξτ+ητ2

=
∞

∑
ω=0

B
[m−1]
ω (ξ, η)

τω

ω!
,

where B
[m−1]
ω (ξ) are called generalized Hermite–Bernoulli polynomials (see [28], Equation (6)).

Analogously,

∞

∑
ω=0

lim
µ→0

E
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
=

∞

∑
ω=0

E
[m−1]
ω (ξ, η)

τω

ω!
,

∞

∑
ω=0

lim
µ→0

G
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
=

∞

∑
ω=0

G
[m−1]
ω (ξ, η)

τω

ω!
.

where E
[m−1,α]
ω (ξ) and E

[m−1,α]
ω (ξ) are called generalized Hermite–Euler polynomials and generalized

Hermite–Genocchi polynomials, respectively.
If ξ = 0 and η = 0, in Definition 1, we obtain the generalizations of degenerate Apostol–

Bernoulli Hermite numbers, generalizations of degenerate Apostol–Euler Hermite numbers, and
generalizations of degenerate Apostol–Genocchi Hermite numbers of order α and level m.

τmα[σ(λ; µ, b; τ)]α =
∞

∑
ω=0

HB
[m−1,α]
ω (ξ; µ, b; λ)

τω

ω!
,

2mα[ψ(λ; µ, b; τ)]α =
∞

∑
ω=0

HE
[m−1,α]
ω (ξ; µ, b; λ)

τω

ω!
,

(2τ)mα[ψ(λ; µ, b; τ)]α =
∞

∑
ω=0

HG
[m−1,α]
ω (ξ; µ, b; λ)

τω

ω!
.
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Continuation will show the standard notation for several sub-classes of polynomials, with
parameters λ ∈ C, µ, b ∈ R+, order α ∈ N, and level m ∈ N (see [12,29–31] and the references
therein).

ω-th generalized Bernoulli polynomial of level m B[m−1]
ω (ξ) := lim

µ→0+
HB

[m−1,1]
ω (ξ, 0; µ, e; 1)

ω-th generalized Euler polynomial of level m E(α)
ω (ξ) := lim

µ→0+
HB

[m−1,1]
ω (ξ, 0; µ, e; 1)

ω-th generalized Genocchi polynomial of level m G(α)
ω (ξ) := lim

µ→0+
HG

[m−1,1]
ω (ξ, 0; µ, e; 1)

ω-th generalized Apostol–Genocchi Hermite polynomial G(α)ω (ξ; λ) := lim
µ→0+

HG
[0,α]
ω (ξ, 0; µ, b; λ)

ω-th Apostol–Bernoulli polynomial Bω(ξ; λ) := lim
µ→0+

HB
[0,1]
ω (ξ, 0; µ, b; λ)

ω-th Apostol–Euler polynomial Eω(ξ; λ) := lim
µ→0+

HE
[0,1]
ω (ξ, 0; µ, b; λ)

ω-th Apostol–Genocchi Hermite polynomial Gω(ξ; λ) := lim
µ→0+

HG
[0,1]
ω (ξ, 0; µ, b; λ)

ω-th generalized Bernoulli polynomial B(α)
ω (ξ) := lim

µ→0+
HB

[0,α]
ω (ξ, 0; µ, b; 1)

ω-th generalized Euler polynomial E(α)
ω (ξ) := lim

µ→0+
HE

[0,α]
ω (ξ, 0; µ, b; 1)

ω-th generalized Genocchi polynomial G(α)
ω (ξ) := limµ→0+ HG

[0,α]
ω (ξ, 0; µ, b; 1)

ω-th Bernoulli polynomial Bω(ξ) := lim
µ→0+

HB
[0,1]
ω (ξ, 0; µ, b; 1)

ω-th Euler polynomial Eω(ξ) := lim
µ→0+

HE
[0,1]
ω (ξ, 0; µ, b; 1)

ω-th Genocchi polynomial Gω(ξ) := lim
µ→0+

HG
[0,1]
ω (ξ, 0; µ, b; 1)

Theorem 1. For m ∈ N and the new families of Hermite–Apostol-type degenerated polynomials in invariable
x, with parameters λ ∈ C and µ ∈ Z, order α ∈ N0 and level m, the following relationship holds

HB
[m−1,α]
ω (ξ + γ, η + w; µ, b; λ) =

ω

∑
k=0

(
ω

k

)
HB

[m−1,α]
ω−k (ξ, η; µ, b; λ)Hk(γ, w; µ), (10)

HE
[m−1,α]
ω (ξ + γ, η + w; µ, b; λ) =

ω

∑
k=0

(
ω

k

)
HE

[m−1,α]
ω−k (ξ, η; µ, b; λ)Hk(γ, w; µ), (11)

HG
[m−1,α]
ω (ξ + γ, η + w; µ, b; λ) =

ω

∑
k=0

(
ω

k

)
HG

[m−1,α]
ω−k (ξ, η; µ, b; λ)Hk(γ, w; µ). (12)

Proof. By (7) and (2), we have

∞

∑
ω=0

HB
[m−1,α]
ω (ξ + γ, η + w; µ, b; λ)

τω

ω!
= τmα[σ(λ; µ, b; τ)]α(1 + µτ)

ξ+γ
µ (1 + µτ2)

η+w
µ

= τmα[σ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
µ (1 + µτ)

γ
µ (1 + µτ2)

w
µ

=

(
∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!

)(
∞

∑
ω=0

Hω(γ, w; µ)
τω

ω!

)

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
HB

[m−1,α]
ω−ν (ξ, η; µ, b; λ)Hk(γ, w; µ)

)
τω

ω!
.

In view of the above equation, we get the result (10). The proofs of (11) and (12) are given
analogously.
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Theorem 2. For m ∈ N and the new families of Hermite–Apostol-type degenerated polynomials in invariable
x, with parameters λ ∈ C and µ ∈ Z, order α ∈ N0 and level m, the argument addition theorem holds

HB
[m−1,α+β]
ω (ξ + η, γ + w; µ, b; λ) =

ω

∑
ν=0

(
ω

ν

)
HB

[m−1,β]
ν (η, w; µ, b; λ) (13)

×HB
[m−1,α]
ω−k (ξ, γ; µ, b; λ),

HE
[m−1,α+β]
ω (ξ + η, γ + w; µ, b; λ) =

ω

∑
ν=0

(
ω

ν

)
HE

[m−1,β]
ν (η, w; µ, b; λ) (14)

×HE
[m−1,α]
ω−ν (ξ, γ; µ, b; λ),

HG
[m−1,α+β]
ω (ξ + η, γ + w; µ, bλ) =

ω

∑
ν=0

(
ω

ν

)
HG

[m−1,β]
ν (η, w; µ, b; λ) (15)

×HG
[m−1,α]
ω−ν (ξ, γ; µ, b; λ).

Proof. Observe that,

∞

∑
ω=0

HB
[m−1,α+β])
ω (ξ + η, γ + w; µ, b; λ)

τω

ω!
= (τmσ(λ; µ, b; τ))α+β(1 + µτ)

ξ+η
µ (1 + µτ2)

γ+w
µ

=

(
∞

∑
ω=0

HB
[m−1,α]
ω (ξ, γ; µ, b; λ)

τω

ω!

)

×
(

∞

∑
ω=0

HB
[m−1,β]
ω (η, w; µ, b; λ)

τω

ω!

)

=
∞

∑
ω=0

(
ω

∑
ν=0

(
ω

ν

)
HB

[m−1,α]
ω−ν (ξ, γ; µ, b; λ)

×HB
[m−1,β]
ν (η, w; µ, b; λ)

) τω

ω!
.

Therefore, by the above equation, we obtain result (13). The proofs of (14) and (15) are given
analogously.

Theorem 3. For m ∈ N and the new families of Hermite–Apostol-type degenerated polynomials in invariable
x, with parameters λ ∈ C and µ ∈ Z, order α ∈ N0 and level m, the following relationships are obeyed:

HB
[m−1,α]
ω (ξ, η; µ; λ) = HB

[m−1,α]
ω (ξ + µ, η; µ, b; λ)− µωHB

[m−1,α]
ω−1 (ξ, η; µ, b; λ), (16)

HE
[m−1,α]
ω (ξ, η; µ; λ) = HE

[m−1,α]
ω (ξ + µ, η; µ, b; λ)− µωHE

[m−1,α]
ω−1 (ξ, η; µ, b; λ), (17)

HG
[m−1,α]
ω (ξ, η; µ; λ) = HG

[m−1,α]
ω (ξ + µ, η; µ, b; λ)− µωHG

[m−1,α]
ω−1 (ξ, η; µ, b; λ). (18)

Proof. From generating function (8), we have

(τmσ(λ; µ, b; τ))α(1 + µτ)
ξ+µ

µ (1 + µτ2)
η
a = (1 + µτ)

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
∞

∑
ω=0

HE
[m−1,α]
ω (ξ + µ, η; µ, b; λ)

τω

ω!
=

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!

+µτ
∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
.

Then,

∞

∑
ω=0

HE
[m−1,α]
ω (ξ + µ, η; µ, b; λ)

τω

ω!
=

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!

+
∞

∑
ω=0

ω HE
[m−1,α]
ω−1 (ξ, η; µ, b; λ)

τµω

ω!
.
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Thus, we have

∞

∑
ω=0

HE
[m−1,α]
ω (ξ + µ, η; µ, b; λ)

τω

ω!
=

∞

∑
ω=0

[
HE

[m−1,α]
ω (ξ, η; µ, b; λ)

+µωHE
[m−1,α]
ω−1 (ξ, η; µ, b; λ)

] τω

ω!
.

In view of the above equation, the result is

HE
[m−1,α]
ω (ξ, η; µ, b; λ) = HE

[m−1,α]
ω (ξ + µ, η; µ, b; λ)− µωHE

[m−1,α]
ω−1 (ξ, η; µ, b; λ).

Therefore, we obtain (17). The proofs of (16) and (18) are analogous to the previous proce-
dure.

Theorem 4. For m ∈ N, the new families of Hermite–Apostol-type degenerated polynomials in invariable x,
with parameters λ ∈ C and µ ∈ Z, order α ∈ N0 and level m comply with the following relationships:

HB
[m−1,α]
ω (ξ, η; µ; λ) = HB

[m−1,α]
ω (ξ, η + µ; µ, b; λ)− µω(ω− 1)HB

[m−1,α]
ω−2 (ξ, η; µ, b; λ), (19)

HE
[m−1,α]
ω (ξ, η; µ; λ) = HE

[m−1,α]
ω (ξ, η + µ; µ, b; λ)− µω(ω− 1)HE

[m−1,α]
ω−2 (ξ, η; µ, b; λ), (20)

HG
[m−1,α]
ω (ξ, η; µ; λ) = HG

[m−1,α]
ω (ξ, η + µ; µ, b; λ)− µω(ω− 1)HG

[m−1,α]
ω−2 (ξ, η; µ, b; λ). (21)

Proof. From generating function (9), we have

((2τ)mσ(λ; µ, b; τ))α(1 + µτ)
ξ
µ (1 + µτ2)

η+µ
µ = (1 + µτ2)

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η + µ; µ, b; λ)

τω

ω!
=

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!

+µτ2
∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
.

Then,

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η + µ; µ, b; λ)

τω

ω!
=

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!

+
∞

∑
ω=0

HG
[m−1,α]
ω−2 (ξ, η; µ, b; λ)µω(ω− 1)

τω

ω!
.

Thus, we have

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η + µ; µ, b; λ)

τω

ω!
=

∞

∑
ω=0

[
HG

[m−1,α]
ω (ξ, η; µ, b; λ)

+µω(ω− 1)HG
[m−1,α]
ω−2 (ξ, η; µ, b; λ)

] τω

ω!
.

Comparing the coefficients of τω on both sides of the equation, we obtain the result (21). The
proofs of (19) and (20) are analogous to the previous procedure.

Theorem 5. For m ∈ N, for the new families of Hermite–Apostol-type degenerated polynomials in invariable
x, with parameters λ ∈ C and µ ∈ Z, order α ∈ N0 and level m, the following properties are maintained:

∂HB
[m−1,α]
ω (ξ, η; µ, b; λ)

∂ξ,
=

ω−1

∑
k=0

ω(−1)kµk k!
k + 1

(
ω− 1

k

)
HB

[m−1,α]
ω−1−k (ξ, η; µ, b; λ), (22)

∂HE
[m−1,α]
ω (ξ, η; µ, b; λ)

∂ξ,
=

ω−1

∑
k=0

ω(−1)kµk k!
k + 1

(
ω− 1

k

)
HE

[m−1,α]
ω−1−k (ξ, η; µ, b; λ), (23)
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∂HG
[m−1,α]
ω (ξ, η; µ, b; λ)

∂ξ,
=

ω−1

∑
k=0

ω(−1)kµk k!
k + 1

(
ω− 1

k

)
HG

[m−1,α]
ω−1−k (ξ, η; µ, b; λ). (24)

Proof. Partially differentiating (7) with respect to ξ, we have

∞

∑
ω=0

∂

∂ξ HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
= τmα[σ(λ; µ, b; τ)]α

∂

∂ξ
(1 + µτ)

ξ
µ (1 + µτ2)

η
µ ,

= τmα[σ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
µ ln(1 + µτ)

1
µ

=

(
∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!

)

×
(

∞

∑
ω=0

(−1)ω

ω + 1
µω+1τω+1 1

µ

)

=
∞

∑
ω=0

ω

∑
k=0

HB
[m−1,α]
ω−k (ξ, η; µ, b; λ)

×(−1)kµk
(

ω

k

)
k!

k + 1
τω+1

ω!
.

Thus, we have

∞

∑
ω=0

∂

∂ξ HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
=

∞

∑
ω=0

ω−1

∑
k=0

HB
[m−1,α]
ω−1−k (ξ, η; µ, b; λ)

×(−1)kµkω

(
ω− 1

k

)
k!

k + 1
τω

ω!
.

Comparing the coefficients of τω on both sides of the equation, the result is

∂HB
[m−1,α]
ω (ξ, η; µ, b; λ)

∂ξ
=

ω−1

∑
k=0

ω(−1)kµk k!
k + 1

(
ω− 1

k

)
HB

[m−1,α]
ω−1−k (ξ, η; µ, b; λ).

The proofs of (23) and (24) are analogous to (22).

Theorem 6. For m ∈ N, for the new families of Hermite–Apostol-type degenerated polynomials in invariable
x, with parameters λ ∈ C and µ ∈ Z, order α ∈ N0 and level m, the following properties are maintained:

∂HB
[m−1,α]
ω (ξ, η; µ, b; λ)

∂η
=

ω−k

∑
k=0

ω(ω− 1)(−1)kµk 2k!
k + 1

(
ω− 2

2k

)
HB

[m−1,α]
ω−2k−2(ξ, η; µ, b; λ), (25)

∂HE
[m−1,α]
ω (ξ, η; µ, b; λ)

∂η
=

ω−k

∑
k=0

ω(ω− 1)(−1)kak 2k!
k + 1

(
ω− 2

2k

)
HE

[m−1,α]
ω−2k−2(ξ, η; µ, b; λ), (26)

∂HG
[m−1,α]
ω (ξ, η; µ, b; λ)

∂η
=

ω−k

∑
k=0

ω(ω− 1)(−1)kak 2k!
k + 1

(
ω− 2

2k

)
HG

[m−1,α]
ω−2k−2(ξ, η; µ, b; λ). (27)
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Proof. Partially differentiating (7) with respect to η, we have

∞

∑
ω=0

∂

∂η HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
= τmα[σ(λ; µ, b; τ)]α(1 + µτ)

ξ
µ

∂

∂η
(1 + µτ2)

η
µ

= τmα[σ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
µ ln(1 + µτ2)

1
µ

=

(
∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!

)(
∞

∑
ω=0

(−1)ω

ω + 1
µω+1τ2n+2 1

µ

)

=
∞

∑
ω=0

ω

∑
k=0

HB
[m−1,α]
ω−k (ξ, η; µ, b; λ)

(−1)k

k + 1
µk τω+k+2

(ω− k)!
.

Thus, we have

∞

∑
ω=0

∂

∂η HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
=

∞

∑
ω=0

ω−k

∑
k=0

HB
[m−1,α]
ω−2−2k(ξ, η; µ, b; λ)

×(−1)kµkω(ω− 1)
(

ω− 2
2k

)
2k!

k + 1
τω

ω!
.

Comparing the coefficients of τω on both sides of the equation, the result is

∂HB
[m−1,α]
ω (ξ, η; µ, b; λ)

∂η
=

ω−k

∑
k=0

ω(ω− 1)(−1)kµk 2k!
k + 1

(
ω− 2

2k

)
HB

[m−1,α]
ω−2k−2(ξ, η; µ, b; λ).

The proofs of (26) and (27) are analogous to (25).

Theorem 7. For m ∈ N, the new families of Hermite–Apostol-type degenerated polynomials in invariable x,
with parameters λ ∈ C and µ ∈ Z, order α ∈ N0 and level m comply with the following relationships:

ω

∑
k=0

HB
[m−1,α]
ω−k (ξ, η; µ, b; λ)HB

[m−1,α]
k (ξ, η; µ, b; λ) =

ω

∑
k=0

(
ω

k

)
HB

[m−1,α]
ω−k (µ, b; λ) (28)

×HB
[m−1,α]
k (2ξ, 2η; µ, b; λ),

ω

∑
k=0

HE
[m−1,α]
ω−k (ξ, η; µ, b; λ)HE

[m−1,α]
k (ξ, η; µ, b; λ) =

ω

∑
k=0

(
ω

k

)
HE

[m−1,α]
ω−k (µ, b; λ) (29)

×HE
[m−1,α]
k (2ξ, 2η; µ, b; λ),

ω

∑
k=0

HG
[m−1,α]
ω−k (ξ, η; µ, b; λ)HG

[m−1,α]
k (ξ, η; µ, b; λ) =

ω

∑
k=0

(
ω

k

)
HG

[m−1,α]
ω−k (µ, b; λ) (30)

×HG
[m−1,α]
k (2ξ, 2η; µ, b; λ).

Proof. Consider the following expressions:

τmα[σ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
(31)

and

τmα[σ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
r=0

HB
[m−1,α]
r (ξ, η; µ, b; λ)

τω

ω!
. (32)
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From (31) and (32), we have

[τmα[σ(λ; µ, b; τ)]]2α(1 + µτ)
2ξ
µ (1 + µτ2)

2η
µ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!

∞

∑
r=0

HB
[m−1,α]
r (ξ, η; µ, b; λ)

τω

ω!

∞

∑
ω=0

HB
[m−1,α]
ω (µ, b; λ)

τω

ω!

∞

∑
r=0

HB
[m−1,α]
r (2ξ, 2η; µ, b; λ)

τω

ω!
=

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!

∞

∑
r=0

HB
[m−1,α]
r (ξ, η; µ, b; λ)

τω

ω!

∞

∑
ω=0

ω

∑
k=0

(
ω

k

)
HB

[m−1,α]
ω−k (µ, b; λ)HB

[m−1,α]
k (2ξ, 2η, µ, b; λ)

τω

ω!
=

∞

∑
ω=0

ω

∑
k=0

(
ω

k

)
HB

[m−1,α]
ω−k (ξ, η; µ, b; λ)HB

[m−1,α]
k (ξ, η; µ, b; λ)

τω

ω!
.

Hence, we get contention (28).

The proofs of (29) and (30) are comparable to (28).

Theorem 8. For m ∈ N, the new families of Hermite–Apostol-type degenerated polynomials in invariable x,
with parameters λ ∈ C and µ ∈ Z, order α ∈ N0 and level m comply with the following relationships:

HB
[m−1,α]
ω (ξ, η; µ, b;−λ) =

(−1)αω!
(2)mα(ω−mα)! HE

[m−1,α]
ω−mα (ξ, η; µ, b; λ), (33)

HE
[m−1,α]
ω (ξ, η; µ, b;−λ) =

(−2)mαω!
(n + mα)! HB

[m−1,α]
n+mα (ξ, η; µ, b; λ). (34)

Proof. Proof of (33). Considering the generating function (7):

τmα[σ(−λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b;−λ)

τω

ω!

(−1)α2mα

2mα
τmα[ψ(λ; µ, b; τ)]α(1 + µτ)

ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b;−λ)

τω

ω!
,

we have

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b;−λ)

τω

ω!
=

(−1)α

2mα

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b; λ)

τn+mα

ω!
∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b;−λ)

τω

ω!
=

(−1)α

2mα

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

(ω−mα)!
.

Therefore, by the above equation, we obtain the result.

Proof. Proof of (34). Considering the generating function (8):

2mα[ψ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!

(−1)α2mα

τmα
τmα[σ(λ; µ, b; τ)]α(1 + µτ)

ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b;−λ)

τω

ω!
,
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we have

∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b;−λ)

τω

ω!
= (−2)mα

∞

∑
ω=0

B
[m−1,α]
ω (ξ, η; µ, b; λ)

τ(ω−mα)

ω!
∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b;−λ)

τω

ω!
= (−2)mα

∞

∑
ω=0

HB
[m−1,α]
n+mα (ξ, η; µ, b; λ)

τω

(n + mα)!
.

In view of the above equation, we obtain the result.

Theorem 9. For m ∈ N, the new families of Hermite–Apostol-type degenerated polynomials in invariable x,
with parameters λ ∈ C and µ ∈ Z, order α ∈ N0 and level m comply with the following relationships:

HG
[m−1,α]
ω (ξ, η; µ, b;−λ) = (−2)mα

HB
[m−1,α]
ω (ξ, η; µ, b; λ), (35)

HG
[m−1,α]
ω (ξ, η; µ, b; λ) =

ω!
(ω−mα)! HE

[m−1,α]
ω−mα (ξ, η; µ, b; λ). (36)

Proof. Proof of (35). Taking into account the generating function (7), we can observe that

τmα[σ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
µ =

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!

2mατmα[ψ(−λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
a = (−2m)α

∞

∑
ω=0

HB
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
. (37)

Therefore, from (9) and (37), we obtain

∞

∑
ω=0

HG
[m−1,α]
ω (x; µ, b;−λ)

τω

ω!
=

∞

∑
ω=0

(−2)mα
HB

[m−1,α]
ω (x; µ, b; λ)

τω

ω!
.

In view of the above equation, we obtain the result.

Proof. Proof of (36). From (9), we have:

2mατmα[ψ(λ; µ, b; τ)]α(1 + µτ)
ξ
µ (1 + µτ2)

η
a =

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
∞

∑
ω=0

HE
[m−1,α]
ω (ξ, η; µ, b; λ)

τn+mα

ω!
=

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
,

then,

∞

∑
ω=0

HE
[m−1,α]
ω−mα (ξ, η; µ, b; λ)

τω

(ω−mα)!
=

∞

∑
ω=0

HG
[m−1,α]
ω (ξ, η; µ, b; λ)

τω

ω!
.

Therefore, by the above equation, we obtain the result.

3. Conclusions
In recent years, Apostol-type polynomials have become the subject of intensive research due

to their diverse range of applications, while Bernoulli, Euler, Genocchi, and Hermite polynomials
are well-known families of polynomials with many applications in areas such as numerical analysis,
asymptotic approximation, and special function theory, which have led to a wide range of uses in
engineering and applied sciences [20]. Due to the importance of these application areas, many exten-
sions of Apostol-type polynomials have been studied, such as degenerate Apostol-type polynomials
in [19], Hermite-based Apostol-type polynomials in [2], Laguerre-based Apostol-type polynomials
in [3,24,32], and truncated-exponential-based Apostol-type polynomials, especially in the last decade.
In the literature, extensions of several structures are considered essential if the extension unifies
existing structures. Unification focuses researchers on investigating advanced properties rather than
just studying modified families that have similar properties to the existing area.

The objective of this paper is to examine new families of Hermite–Apostol-type degenerated
polynomials, specifically the Apostol–Bernoulli, Apostol–Euler, and Apostol–Genocchi Hermite
polynomials of level m. These polynomials have significant applications in the areas of applied
mathematics, physics, and engineering. The properties of these polynomials are established based on
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classical special functions. The theorems presented in this study demonstrate the usefulness of the
series rearrangement technique for the treatment of special functions theory.
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