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Abstract: A class of generalized Halanay inequalities is studied via the Banach fixed point method
and comparison principle. The conditions to ensure the boundedness and stability of the zero solution
are obtained in this study. This research provides a new approach to the study of the boundedness
and stability of Halanay inequality. Numerical examples and simulation results verify the validity
and superiority of the conclusions obtained in this study.
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1. Introduction

Dynamical systems are applied in a wide range of fields, such as medicine physics,
neural networks, biology, and mathematical finance. In the theory of dynamical systems,
boundedness and stability are the most extensively studied concepts. In the research of
natural science, social science, and engineering technology, the future state of systems
depends not only on the current state but also on the past state. Dynamical systems
with various delays are considered. Therefore, studies on the boundedness and stability
of delayed dynamical systems are extensive. Recently, as a generalization of dynamical
systems, many authors studied the stability of Halanay inequality systems. To analyze the
boundedness and stability of the following dynamical systems with delay τ,

dx(t)
dt

= [−ax(t) + bx(t− τ)], t ≥ t0,

Halanay proposed the Halanay inequalities (1) in [1].

D+x(t) ≤ −λx(t) + δ sup
t−τ(t)≤s≤t

x(s) (1)

Here, D+x(t) is the upper-right Dini derivative and is defined as

D+x(t) = lim sup
σ→0+

x(t + σ)− x(t)
σ

. (2)

Subsequently, Halanay obtained the following Lemma 1.
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Lemma 1 (Halanay’s inequality). Let λ > δ. If x(t) satisfies functional differential inequalities
(1), then there exist γ > 0 and k > 0 such that x(t) ≤ ke−γ(t−t0) for t ≥ t0.

The authors in [2–6] generalized the Halanay inequality as follows:

D+u(t) ≤ γ(t)− α(t)u(t) + β(t) sup
t−τ(t)≤s≤t

u(s), t ≥ t0 (3)

By means of (3), many studies have been conducted. In 2004, Tian [2] researched
the boundedness and exponential stability (ES) of dynamic systems with constant delays.
In 2008, L. Wen [3] obtained the dissipativity results of VFDEs by applying the generaliza-
tion of Halanay’s inequality. In 2011, based on [3], B. Liu [4] considered the boundedness
and ES of neural networks with unbounded delays. In 2015, L.V. Hien [5] considered
the boundedness and global generalized ES of nonlinear nonautonomous systems with
time delays. In 2019, D. Ruan [6] studied the boundedness and ES of (3) by integral in-
equalities. Furthermore, the authors in [7,8] used the inequality (3) to study stochastic
differential systems.

When studying the stability of dynamical systems, most studies (such as [9–16]) use
Lyapunov’s direct method. However, there are many problems that make this method
inappropriate. For example, Lyapunov’s direct method usually requires the boundedness
of delays. Recently, Burton and authors ([17–21]) studied the stability of various dynamical
systems using the fixed point method. The results show that the fixed point method can
overcome many problems in the study of the stability of dynamical systems.

Lemma 2 (Banach fixed point theorem). Let (X, d) be a nonempty complete metric space. Let
T : X → X be a compressed map on X. That is, there exists a non-negative real number q < 1,
such that for all x, y ∈ X, there are d(T(x), T(y)) ≤ q · d(x, y) Then, the mapping T has and has
only one immobile point x within X.

Based on the existing discussion, we also study the inequality (3) and derive new
generalized ES and boundedness conditions using the fixed point method. The obtained
results improve and generalize the conclusions of existing papers (see the examples in
Section 4).

The remaining part of this paper is organized as follows. In Section 2, we introduce
the generalized Halanay’s inequality system and provide the results of some of the existing
studies. In Section 3, the main theoretical results are proposed and proved. Examples with
numerical simulations are illustrated in Section 4. The conclusions are given in Section 5.

2. Preliminaries

Let R = (−∞,+∞), R+ = (0,+∞), C(A, Ω) be a continuous function from A to Ω.
Consider the generalized Halanay’s inequality with external perturbation{

D+x(t) ≤ θ(t)− λ(t)x(t) + δ(t) supt−τ(t)≤s≤t x(s), t ≥ t0,

x(t) = |φ(t)|, t ≤ t0.
(4)

Here, λ(t) ≥ 0, δ(t) ≥ 0 and θ(t) ≥ 0. τ(t) is a time delay function .
Many experts have studied the boundedness and exponential stability of the system

(4). See details in Lemmas 3–6.

Lemma 3 (L. Wen [3]). If x(t) ≥ 0 satisfies functional differential inequality (4), and when t ≥ t0,
the continuous functions θ(t) ≥ 0, δ(t) ≥ 0, λ(t) ≤ 0 and τ(t) ≥ 0 exist. If there is σ > 0
such that

−λ(t) + δ(t) ≤ −σ < 0 for t ≥ t0,
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then we have
x(t) ≤ θ∗

σ
+ Ge−ϕ∗(t−t0), t ≥ t0,

where G = supξ≤t0
|φ(ξ)| and θ∗ = supt≥t0

|θ(t)|. ϕ∗ ≥ 0 is defined as

ϕ∗ = inf
t≥t0
{ϕ(t) : ϕ(t)− λ(t) + δ(t)eϕ(t)τ(t) = 0}.

Furthermore, when t− τ(t)→ ∞ as t→ ∞, we have

x(t) ≤ θ∗

σ
+ G, t ≥ t0.

Based on [3], B. Liu ([4]) further studied the boundedness and stability of the system
(4) and obtained the following conclusion.

Lemma 4 (B. Liu [4]). If x(t) ≥ 0, t ∈ (−∞,+∞) satisfies the functional differential inequality
(4), and all conditions of Lemma 4 are satisfied, then we have

x(t) ≤ θ∗

σ
+ {sup

s≤t0

eϕ∗(s−t0)x(s)− θ∗

σ
} × e−ϕ∗(t−t0), t ≥ t0.

Furthermore, when t− τ(t)→ ∞ as t→ ∞, we have

x(t) ≤ max{ θ∗

σ
, G}, t ≥ t0.

L.V. Hien [5] considered the boundedness and global generalized ES of Halanay-type
nonautonomous functional differential inequalities and obtained the following conclusion.

Lemma 5 (L.V. Hien [5]). Let T∗ = inf{T ≥ τeν : supt≥T
δ(t)
λ(t) < 1}, where τeν := inf{τ ≥ t0 :

t− τ(t) ≥ t0, ∀t ≥ τ}; define $ = supt≥T∗
δ(t)
λ(t) , I(λ) = max{supt≥T∗

∫ t
t−τ(t) λ(s)ds} and β∗

is the unique positive solution of the scalar equation H(β) = β + $eβI(λ) − 1 = 0; the factor N was
given by N = exp

(
β∗
∫ T∗

t0
λ(s)ds

)
. Suppose the continuous function x(t) ≥ 0, t ∈ (−∞,+∞)

satisfies the inequality (4). If

(A.1)
lim

t→+∞
(t− τ(t)) = +∞;

(A.2)

lim
t→+∞

∫ t

t0

λ(s)ds = +∞; ;

(A.3)

sup
t≥t0

∫ t

t−τ(t)
λ(s)ds < +∞;

(A.4)

sup
t≥t0

δ(t)
λ(t)

< 1;

then, the following conclusion is derived.

x(t) ≤ N
(
‖φ‖∞ −

θλ

1− δ0
∞

)+

exp
(
−β∗

∫ t

t0

λ(s)ds
)
+

θλ

1− δ0
∞

, t ≥ t0,

where θλ = supt≥t0

θ(t)
λ(t) , δ0

∞ = supt≥t0

δ(t)
λ(t) .
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In addition, D Ruan [6] researched the boundedness and ES of inequality (4) by inte-
gral inequalities and obtained the following conclusion.

Lemma 6 (D. Ruan [6]). Let x(t) ≥ 0, t ∈ (−∞,+∞) be a continuous functional satisfying
inequality (4). If the assumptions A.1–A.4 hold,

(A.1)

lim
t→+∞

∫ t

t0

λ(s)ds = +∞; ;

(A.2)
lim

t→+∞
(t− τ(t)) = +∞;

(A.3)

sup
t≥t0

δ(t)
λ(t)

:= δ < 1;

(A.4)

sup
t≥t0

∫ t

t−τ(t)
λ(s)ds := N < +∞;

(A.5) There exists a number ι ≥ 0 such that

∫ t

t0

e−
∫ t

s λ(u)duθ(s)ds ≤ ι;

then, there exists a constant θ ∈ (0, 1] such that

x(t) ≤ ‖φ‖∞ exp
{
−θ

∫ t

t0

λ(s)ds
}
+

ι

1− δ
, t ∈ (−∞,+∞).

Our aim here is to generalize the above Lemma and show that some of the conditions
for time delays and coefficients are unnecessary.

3. Main Results

We use the Banach fixed point method to study the boundedness of inequality (4) in
this study. Through the analysis, it can be observed that the conclusions of the Halanay
inequality in this study will improve the results of many related studies.

Theorem 1. Let the continuous function x(t) satisfy the inequality (4). There exists a continuous
function h(t) : [0,+∞)→ R+. If the following assumptions hold,

(H.1)

lim
t→+∞

∫ t

t0

h(s)ds = +∞;

(H.2) there exists a positive number β such that

|h(s)− λ(s)|+ eβ
∫ s

s−τ(s) h(µ)dµ|δ(s)| ≤ (1− β)h(s);

(H.3) there exists 0 < α < 1 such that

sup
t≥t0

∫ t

t0

e−
∫ t

s h(µ)dµ[|h(s)− λ(s)|+ |δ(s)|]ds ≤ α < 1;

(H.4) there exists ρ > 0 such that ∫ t

t0

e−
∫ t

s h(u)duθ(s)ds ≤ ρ;
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then,

x(t) ≤ ‖φ‖∞ exp
{
−β

∫ t

t0

h(s)ds
}
+

ρ

1− α
, t ≥ t0,

where ‖φ‖∞ = sups≤t0
|φ(s)|.

Proof. Define the following delay differential equations:
When t ≤ t0,x(t) = |φ(t)|. Moreover, when t ≥ t0

dx(t) = (θ(t)− λ(t)x(t) + δ(t) sup
t−τ(t)≤s≤t

x(s))dt. (5)

Considering the derivative of
∫ s

t0
x(s), we obtain

x(t) = φ(t0)e
−
∫ t

t0
h(s)ds

+
∫ t

t0

e−
∫ t

s h(u)duδ(s) sup
s−τ(s)≤u≤s

x(u)ds +
∫ t

t0

e−
∫ t

s h(u)duθ(s)ds, t ≥ t0.

Denote by S a complete metric space ‖C(R, R)‖∞ = {x(t) ∈ C(R, R)|‖x‖ = supt∈R
|x(t)| < +∞}.

Moreover, ψ(s) = |φ(s)| for s ∈ (−∞, t0]. Additionally, when t ≥ t0, we have

ψ(t) ≤ ‖φ‖∞ exp
{
−β

∫ t

t0

h(s)ds
}
+

ρ

1− α
. (6)

where ρ and α were introduced previously.
Define an operator Ψ : S → S by (πx)(t) = φ(s) for t ∈ (−∞, t0] and for t ≥ t0,

(Ψx)(t) = |φ(t0)|e
−
∫ t

t0
h(µ)dµ

+
∫ t

t0

e−
∫ t

s h(µ)dµθ(s)ds

+
∫ t

t0

e−
∫ t

s h(µ)dµ[h(s)− λ(s)]x(s)ds +
∫ t

t0

e−
∫ t

s h(µ)dµδ(s) sup
s−τ(s)≤ν≤s

x(ν)ds.
(7)

Ψ is continuous on (−∞,+∞). Furthermore, we show that Ψ(S) ⊂ S .
For any x(t) ∈ S and t ≥ t0 , from (H.1) to (H.4) and (6) , we have

(πx)(t) = |φ(t0)|e
−
∫ t

t0
h(µ)dµ

+
∫ t

t0

e−
∫ t

s h(µ)dµθ(s)ds

+
∫ t

t0

e−
∫ t

s h(µ)dµ[h(s)− λ(s)]x(s)ds +
∫ t

t0

e−
∫ t

s h(µ)dµδ(s) sup
s−τ(s)≤ν≤s

x(ν)ds

≤ ρ + ‖φ‖∞e−
∫ t

t0
h(µ)dµ

+
∫ t

t0

e−
∫ t

s h(µ)dµ|h(s)− λ(s)|(‖φ‖∞e−β
∫ s

t0
h(µ)dµ

+
ρ

1− α
)ds

+
∫ t

t0

e−
∫ t

s h(µ)dµ|δ(s)|(‖φ‖∞e−β
∫ s−τ(s)

t0
h(µ)dµ

+
ρ

1− α
)ds

≤ ρ + ‖φ‖∞e−
∫ t

t0
h(µ)dµ

+
αρ

1− α

+ ‖φ‖∞

∫ t

t0

e−
∫ t

t0
h(µ)dµe

∫ s
t0

h(µ)dµ
(|h(s)− λ(s)|e−β

∫ s
t0

h(µ)dµ
+ |δ(s)|e−β

∫ s−τ(s)
t0

h(µ)dµ
)ds

≤ ρ + ‖φ‖∞e−
∫ t

t0
h(µ)dµ

+
αρ

1− α
+ ‖φ‖∞e−

∫ t
t0

h(µ)dµ
∫ t

t0

e(1−β)
∫ s

t0
h(µ)dµ

(1− β)h(s)ds

= ρ + ‖φ‖∞e−
∫ t

t0
h(µ)dµ

+
αρ

1− α
+ ‖φ‖∞e−

∫ t
t0

h(µ)dµ
(e(1−β)

∫ t
t0

h(µ)dµ − 1)

≤ ‖φ‖∞ exp
{
−β

∫ t

t0

h(s)ds
}
+

ρ

1− α
.
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Therefore, from the above analysis, we arrive at the conclusion that Ψ(S) ⊂ S .
In addition, we prove that the mapping Ψ is contractive. For ξ, η ∈ S , we can obtain

sup
t≥t0

|(Ψξ)(t)− (Ψη)(t)| ≤ sup
t≥t0

|((ξ)(t)− (η)(t))
∫ t

t0

e−
∫ t

s h(µ)dµ(|h(s)− λ(s)|+ |δ(s)|)ds

≤ α sup
t≥t0

|((ξ)(t)− (η)(t)).

which implies
sup
t≥t0

|(Ψξ)(t)− (Ψη)(t)| ≤ α sup
t≥t0

|((ξ)(t)− (η)(t)). (8)

As α ∈ (0, 1), we know that the mapping Ψ is a contractive by (8). As a result, based on
the contractive mapping principle, there exists a unique fixed point x(t) for Ψ, which is a so-
lution of inequality (4) with x(s) = |φ(s)| on s ∈ (−∞, t0] and
x(t) ≤ ‖φ‖∞ exp

{
−β
∫ t

t0
h(s)ds

}
+ ρ

1−α on t ∈ [t0,+∞). This completes the proof.

Remark 1. As can be seen from the proof of Theorem 1, the conclusion of this paper does not require
the time lag to be bounded, so it overcomes the difficulties encountered in Lyapunov’s direct method.

If we order h(s) ≡ λ(s) in Theorem 1, we obtain Theorem 2.

Theorem 2. Let x(t) ≥ 0 be a continuous function satisfying (4). If the assumptions H.1–H.4 hold.

(H.1)

lim
t→+∞

∫ t

t0

λ(s)ds = +∞;

(H.2) there exists a positive number β such that

eβ
∫ s

s−τ(s) λ(µ)dµ|δ(s)| ≤ (1− β)λ(s);

(H.3) there exists 0 < α < 1 such that

sup
t≥t0

∫ t

t0

e−
∫ t

s λ(µ)dµ|δ(s)|ds ≤ α < 1;

(H.4) there exists ρ > 0 such that

∫ t

t0

e−
∫ t

s λ(u)duθ(s)ds ≤ ρ;

then,

x(t) ≤ ‖φ‖∞ exp
{
−β

∫ t

t0

λ(s)ds
}
+

ρ

1− α
, t ≥ t0,

where ‖φ‖∞ = sups≤t0
|φ(s)|.

Remark 2. If we let θ(t) = 0, we obtain exponential stability.

Remark 3. We do not require the boundedness of the time delay τ(t). In addition, we also do not
require t− τ(t)→ ∞, as t→ ∞, which improves the result of many previous studies. For example,
Refs. [3–6].

Remark 4. In Theorem 1, we do not require λ(t) > δ(t). This considerably improves the conclu-
sions of the Refs. [1,3,4,6]. We do not require the external perturbation θ(t) to be bounded, which



Mathematics 2023, 11, 1940 7 of 11

improves the conclusion of previously published Refs. [3,4]. Moreover, we do not require δ(t)
λ(t) and

θ(t)
λ(t) to have an upper bound, which improves the results of the Refs. [5,6].

4. Examples

In this section, some examples and simulations are given to illustrate our main results.

Example 1. Consider a delay differential system

dx(t) = [t + 1− 2tx(t) + 0.8e−1.2tx(t− 1
2 + t

)]dt, t ≥ 0. (9)

When t ∈ [−2, 0], x(t) = 10. Let h(t) ≡ λ(t) = 2t, δ(t) = 0.8e−1.2t, and θ(t) = t + 1. Let
β = 0.6; then,

e
0.6
∫ s

s− 1
2+s

2µdµ
(0.8e−1.2s) = e

0.6[ 2s
2+s−

1
(2+s)2

]
(0.8e−1.2s) ≤ (1− 0.6)λ(s) = 0.8s.

Because

sup
t≥0

∫ t

0
e−
∫ t

s 2µdµ|0.8e−1.2s|ds ≤ 0.4e−1.2 < 1.

So, α = 0.4e−1.2.
In addition,

∫ t

0
e−
∫ t

s h(u)duθ(s)ds =
∫ t

0
e−t2+s2

(s + 1)ds = e−t2
(

et2

2
+

√
πer f i(t)

2
− 1

2
), t ≥ 0.

where the function erfi(t) is a imaginary error function. Figure 1 is the graph of function f (x) =

e−x2
( ex2

2 +
√

πerfi(x)
2 − 1

2 ).

Figure 1. The graph of function f (x) = e−x2
( ex2

2 +
√

πerfi(x)
2 − 1

2 ).

Additionally, f (t) = e−t2
( et2

2 +
√

πer f i(t)
2 − 1

2 ) ≤ 0.9. For

∫ t

0
e−
∫ t

s h(u)duθ(s)ds = e−t2
(

et2

2
+

√
πer f i(t)

2
− 1

2
) ≤ 0.9, t ≥ 0.

So, ρ = 0.9. By Theorem 1, we have

x(t) ≤ 10e−0.6t2
+

0.9
1− 0.4e−1.2
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The simulation result presented in Figure 2 shows the validity of our theoretical results.
Figure 2 is the graph of function x(t) and y(t) = 10e−0.6t2

+ 0.9
1−0.4e−1.2 .

Figure 2. The graph of function x(t) and y(t) (Example 1).

Remark 5. The Refs. [3,4] required that−λ(t) + δ(t) ≤ −ϑ < 0 (t ≥ 0, ϑ is a positive constant)
and θ(t) > 0 is bounded. The Ref. [5] asked for supt≥0

θ(t)
λ(t) < +∞. Obviously, in Example 1,

λ(0) + δ(0) = 0, limt→+∞ θ(t) = +∞ and supt≥0
θ(t)
λ(t) = +∞. Thus, the Refs. [3–5] are invalid

for Example 1.

Remark 6. Let h(t) = 3t; then, h(t)− λ(t) = t. Let β = 0.4; then,

e
0.4
∫ s

s− 1
2+s

3µdµ
(0.8e−1.2s) + s ≤ (1− 0.4)h(s) = 1.8s,

and supt≥0{
∫ t

0 e−
∫ t

s 3µdµ|0.8e−1.2s|ds} ≤ 4
15 e−1.2 = α. In addition, when t≈ 0.994085,

sup
t≥0

{∫ t

0
e−
∫ t

s h(u)duθ(s)ds
}

= max{0.333333 + 0.723601e−1.5t2
er f i(1.22474t)− 0.333333e−1.5t2} = 0.668644 = ρ.

So, ρ = 0.668644. By Theorem 1, we have.

x(t) ≤ 10e−0.4t2
+

0.668644
1− 4

15 e−1.2

The simulation result presented in Figure 3 shows the validity of our theoretical
result. Figure 3 is the graph of function x(t), y(t) = 10e−0.6t2

+ 0.9
1−0.4e−1.2 and z(t) =

10e−0.4t2
+ 0.668644

1− 4
15 e−1.2 .
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Figure 3. The graph of function x(t), y(t) and z(t) (Example 1).

From Figure 3, it can be observed that the result of Theorem 1 is better than that of
the Ref. [6], owing to the choice of an appropriate h(t) function. In fact, in Theorem 1,
the flexibility to choose the h(t) function makes the study easier and the results better.

Example 2. Consider a delay differential system

dx(t) = (
1
t
− 1

t
x(t) + 0.8e−0.2 ln 2 1

t
x(t− t

2
))dt, t ≥ 1. (10)

When t ∈ [0, 1],x(t) = 10, let h(t) ≡ λ(t) = 1
t , δ(t) = 0.8e−0.2 ln 2 1

t and θ(t) = 1
t .

Obviously, β = 0.2.

For supt≥2
∫ t

t0
e−
∫ t

s
1
µ dµ

(0.8e−0.2 ln 2)ds ≤ 0.8e−0.2 ln 2 < 1, so α = 0.8e−0.2 ln 2.
In addition, when t ≥ 1,∫ t

1
e−
∫ t

s λ(u)duθ(s)ds =
∫ t

1
e−
∫ t

s
1
u du 1

s
ds = 1− 1

t
< 1 = ρ.

Hence, by Theorem 1, we have

x(t) ≤ 10e−0.2 ln t +
1

1− 0.8e−0.2 ln 2 .

Figure 4 is the graph of function x(t) and y(t) = 10e−0.2 ln t + 1
1−0.8e−0.2 ln 2 .

Figure 4. The graph of function x(t) and y(t) (Example 2).
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Remark 7. The Ref. [2] is invalid because τ(t) = t
2 is unbounded.

5. Conclusions

We used the fixed point method to study new types of generalized Halanay inequalities
and obtained some sufficient conditions. The contributions of this study are as follows:

1. It proposes a novel approach to study the boundedness and stability of the Halanay
inequality by using the fixed point method, as well as to verify the main conclusions of a
paper using a numerical simulation. Simultaneously, the research of this paper extends the
methods and ideas of the Halanay inequality.

2. This study relaxes the requirements of time delays and coefficients. For example,
we do not require the boundedness of the time delay τ(t). In addition, it is not necessary
that t− τ(t)→ ∞, as t→ ∞. Moreover, λ(t) > δ(t) is not required.

3. The fixed point method is used to improve and extend the results of many previous
studies; for example, [1–6] (See Remarks 2, 3 and 5–7 for more details).

4. Unlike most of the previously published papers, this paper verifies the reliability
of the conclusion and the superiority of related studies through examples and numeri-
cal simulation.

5. Because it is not always easy to find the h(s) that satisfies the condition of Theorem 1,
there is room for more optimization of the conclusions of this paper. In addition, this study
can be extended to the study of stochastic dynamical systems, which is also the direction of
the group’s future research.
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