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Abstract: In this paper, we identify the sufficient and necessary conditions for conformally related
Randers metrics to have the same χ-curvature. Further, if s0 = 0 holds, we conclude that the
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1. Introduction

In Finsler geometry, the Weyl theorem states that the projective and conformal prop-
erties of a Finsler space determine the metric properties uniquely [1,2]. Therefore, the
conformal property of Finsler geometry deserves in-depth study. Let F and F̄ be two
Finsler metrics on a manifold M. The conformal transformation between F and F̄ is defined
by L: F → F̄, F̄ = eρF, where the conformal factor ρ := ρ(x) is a scalar function on M.
We call these two metrics F and F̄, and they are conformally related. A natural problem is
determining all Finsler metrics that are conformally related to the given one, given a Finsler
metric on a manifold M .

Bácsó-Cheng [3] characterized the conformal transformation that preserves the Rie-
mann curvature, the Ricci curvature, and the (mean) Landsberg curvature or the S-curvature,
respectively. Chen-Cheng-Zou [4] proved that if both conformally related (α, β)-metrics
are Douglas metrics or of isotropic S-curvature, then the conformal transformation be-
tween them is a homothety. Later, Chen-Liu [5] characterized the conformal transfor-
mation between two almost regular (α, β)-metrics that preserves the mean Landsberg
curvature. Shen [6] proved that the conformal transformation between non-Riemannian
Finsler manifolds, which preserves the S-curvature, must be a homothety. Recently, Zhang-
Feng [7] completely determined all Landsberg metrics which are conformally related to the
warped product metrics of the Landsberg type and obtained a class of nonregular unicorn
Finsler metrics.

In Finsler geometry, many non-Riemannian quantities are more colorful than those in
Riemannian geometry. When used together with Riemannian quantities, non-Riemannian
ones might lead to some global results. There are several important non-Riemannian
quantities, such as the Cartan torsion, the S-curvature, and the H-curvature. We have
another important quantity that is expressed in terms of the vertical derivatives of the
Riemann curvature. It is the so-called χ-curvature defined by

χi := −1
6

{
2Rk

i·k + Rk
k·i

}
,
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where Ri
k := 2Gi

xk − Gi
xjyk yj + 2GjGi

yjyk − Gi
yj G

j
yk , and “·” denotes the vertical covariant

derivative. It can be expressed in several forms. The χ-curvature has a great relationship
with the Ricci curvature. Recently, Shen [8] studied the χ-curvature and showed some
relationships among the flag curvature, the χ-curvature, and the S-curvature. Furthermore,
if a Finsler metric is of scalar flag curvature, then the χ-curvature almost vanishes if
and only if the flag curvature is almost isotropic. Mo [9] proved that for a spherically
symmetric Finsler metric, the H-curvature vanishes if and only if the χ-curvature vanishes.
Additionally, if F is R-quadratic, then it has a vanishing χ-curvature. Chen-Liu [10] showed
that a Kropina metric is of almost vanishing χ-curvature or of almost vanishing H-curvature
if and only if it is of isotropic S-curvature. Further, they proved that a Kropina metric is
a Douglas metric if and only if the conformally related metric is also a Douglas metric.
Cheng-Yuan [11] proved that, for a confomally flat polynomial (α, β)-metric, if F is of almost
vanishing χ-curvature, then it must be Minkowskian. Recent research shows that the χ-
curvature plays an important role in studies on spray geometry. Li-Shen [12] introduced
the new notion of the Ricci curvature tensor and discussed its relationships with the Ricci
curvature, the H-curvature, and the χ-curvature. They had a better understanding of the
χ-curvature. Further, they [13] studied sprays with isotropic curvatures and showed that
they are of isotropic curvature if and only if the χ-curvature vanishes. Shen [14] showed
that the sprays obtained by a projective deformation using the S-curvature, always have a
vanishing χ-curvature. Then, he established the Beltrami Theorem for sprays with χ = 0.

The Randers metric was introduced by the physicist Randers in 1941 [15] in the
context of general relativity. Later, these metrics were used in Ingarden’s theory of electron
microscopy in 1957, and he first named them Randers metrics. Randers metrics represent
an important and ubiquitous class of Finsler metrics with a strong presence in the theory
and application of Finsler geometry, and the study of Randers metrics is an important step
in understanding the general Finsler metrics. Randers metrics are expressed in the form

F = α + β, where α =
√

aij(x)yiyj is a Riemannian metric and β = bi(x)yi is a 1-form with

‖βx‖α :=
√

aijbi(x)bj(x) < 1.
In recent years, the χ-curvature has become increasingly important in Finsler geometry.

Thus, we studied the conformal transformation that preserves the χ-curvature of Randers
metrics. If the conformal transformation is a homothety, it must preserve the χ-curvature
invariant. Hence, the homothetic transformation is trivial and is omitted here.

In this paper, we determine the necessary and sufficient conditions for the conformal
transformation that preserves the χ-curvature of Randers metrics and obtain the following
results.

Theorem 1. Let F be a non-Riemannian Randers metric on a compact manifold M with dimensions
of n(≥ 3). Then, there is no nonhomothetic conformal transformation that preserves the χ-
curvature.

2. Preliminaries

Let M be an n-dimensional smooth manifold and TM be the tangent bundle. If the
function F = F(x, y) : TM → [0, ∞) satisfies the following properties, (i) F is a C∞

function on TM\{0}; (ii) F(x, λy) = λF(x, y) for any λ > 0; and (iii) The Hessian matrix(
gij
)

:= 1
2

(
F2

yiyj

)
is positive definite on TM\{0}, then F = F(x, y) is called a Finsler metric

on M, and the tensor g = gij(x, y)dxi ⊗ dxj is called the fundamental tensor of Finsler
metric F. If the Hessian

(
gij
)

is independent of y, F is called a Riemannian metric.
The Cartan tensor is defined by C := Cijkdxi ⊗ dxj ⊗ dxk, where

Cijk :=
1
2
(

gij
)

yk .

The mean Cartan torsion Iy := Iidxi : Tx M→ R is defined by
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Ii := gjkCijk.

The geodesics of F are locally characterized by a system of 2nd ODEs:

d2xi

dt2 + 2Gi
(

x,
dx
dt

)
= 0,

where

Gi :=
1
4

gij
{[

F2
]

xkyj
yk −

[
F2
]

xj

}
.

Gi are known as the geodesic coefficients of F.
The volume form of F is expressed as

dVF = σ(x)dx1 · · · dxn.

For a nonzero vector y ∈ Tp M, the S-curvature S(y) is defined by

S(y) := Gk
yk −

1
σ

ykσxk .

We say that F is of isotropic S-curvature if

S = (n + 1)cF,

where c = c(x) is a scalar function on M. If c is constant, F is said to have a constant
S-curvature.

The non-Riemannian quantity χ-curvature χ := χidxi on the tangent bundle TM is
defined by

χi := −1
6

{
2Rk

i·k + Rk
k·i

}
.

We say that F is of almost vanishing χ-curvature if

χi = −(n + 1)F2
(

θ

F

)
yi

,

where θ = θi(x)yi is a 1-form on M.
For a Randers metric F = α + β, we have

gij =
α

F
aij − α

F2

(
biyj + bjyi

)
+

b2α + β

F3 yiyj, (1)

where bi := aijbj and b := ‖β‖α denotes the norm of β with respect to α. Additionally, the
mean Cartan tensor I = Iidxi of F = α + β is given by

Ii =
n + 1

2F

(
bi −

βyi
α2

)
, (2)

where yi := aijyj.
Let

rij =
1
2

(
bi|j + bj|i

)
, sij =

1
2

(
bi|j − bj|i

)
, r00 = rijyiyj, si

0 = aijsjkyk,

ri = bjrij, si = bjsji, r0 = riyi, s0 = siyi, ri
0 = aijrj0, si = aijsj, r = biri,

where “|′′ denotes the covariant derivative with respect to the Levi–Civita connection of α.
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Lemma 1 ([16]). For a Randers metric, F = α + β, the relationship between the spray coefficients
Gi of F and Gi

α of α is given by

Gi = Gi
α + Pyi + Qi,

where P :=
e00

2F
− s0, Qi := αsi

0, eij := rij + bisj + bjsi and e00 := eijyiyj.

Lemma 2 ([16]). For a Randers metric F = α + β, the S-curvature is given by

S = (n + 1)
(

e00

2F
+

r0 + b2s0

1− b2

)
.

For more details about Randers metrics, one can see [16].

3. The Conformal Transformation Preserving the χ-Curvature of Randers Metrics

In [11], Cheng-Yuan obtained the formula of the conformal transformation that pre-
serves the χ-curvature of Finsler metrics. In this section, we derive the formula of the
conformal transformation that preserves the χ-curvature of Randers metrics.

Lemma 3 ([11]). Let F̄ and F be two Finsler metrics on a manifold M. If F̄ = eρF, then the
χ-curvature and the χ-curvature satisfy

χ̄i = χi + B·i‖jy
j − B‖i + 2H j(S·i·j + B·i·j

)
,

where ρi := ρxi , ρi := gijρj, B := F2ρi Ii, Hi := 1
2 F2ρi, and “||′′ denotes the horizontal covariant

derivative with respect to the Chern connection of F.

For Randers metrics, by Lemma 3, we have the following result:

Proposition 1. Let F̄ and F be two Randers metrics on a manifold M. If F̄ = eρF, then the
χ-curvature and the χ-curvature satisfy

χ̄i − χi ={[(β− α)ρkrk
0F + (α2 + 2b2αβ + β2)ρksk

0 − 2ρkskαβF]
1

αF2 + (1− b2)
βρ0|0
αF2 (3)

+ 2bkρk[r00 + (β− α)s0]
1
F2 +

bkρk|0
α

+ {[(4− 3b2)α + b2β]r00 + 2(α− β)r0F

+ 2[−(1− 2b2)α + (3− 2b2)β]αs0}
ρ0

αF3 + bkρk[−b2α2 + 2(−2 + b2)αβ− β2]
ρ0

αF2

+ |∇ρ|2α(1− b2)
β

F
+ (1− b2)[−b2α2 − (3− b2)αβ− β2]

ρ0
2

αF3 }yi

− αbkρk|i +
b2α + β

F
(ρ0|i − ρi|0) + {ρk[−2αrk

0F + 2(1− b2)α2sk
0 + 2skα2F]

1
F2

− (1− b2)
αρ0|0

F2 + 2bkρk(r00 − 2αs0)
α

F2 + {[(5− 4b2)α + β]r00 + 4αr0F

+ 2[−2(1− 2b2)α2 + 3αβ + β2]s0}
ρ0

F3 + [(2− 3b2)α2 − 2αβ− β2]
bkρkρ0

F2

− (1− b2)
|∇ρ|2αα2

F
+ (1− b2)[(1− 2b2)α2 − 2αβ− β2]

ρ2
0

F3 }bi

+ [−2bkρkαF− 2(1− b2)α]
ri0
F2 − 2[(1− b2)ρ0 + bkρkF]

si0
F

+ αρk(rk
i − sk

i)

+ 2[bkρkα2F + (1− b2)α2ρ0]
si
F2

+ [−[(2− b2)α + β]r00 − 2αr0F− 2(b2α2 + 2αβ + β2)s0

+ (1− b2)(b2α2 + 2αβ + β2)ρ0 + bkρk(b2α2 + 2αβ + β2)F]
ρi
F2 ,
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where |∇ρ|2α := aijρiρj.

Proof. By (1) and (2), we have

ρi = gikρk =
α

F
aikρk −

α

F2 ρ0bi +

(
b2α

F3 ρ0 +
β

F3 ρ0 −
α

F2 bkρk

)
yi, (4)

B = F2ρi Ii =
n + 1

2

[
bkρkα− (b2 − 1)α + F

F
ρ0

]
. (5)

According to Lemma 3, we obtain

χ̄i = χi + B·i‖jy
j − B‖i + 2H j(S·i·j + B·i·j

)
= χi +

∂B·i
∂xj yj − 2GkB·i·k −

∂B
∂xi + 2H j(S·i·j + B·i·j

)
= χi +

∂B·i
∂xj yj − 2(Gk

α + Pyk + Qk)B·i·k −
∂B
∂xi + 2H j(S·i·j + B·i·j

)
= χi +

(
∂B
∂xj yj − 2Gk

αB·k

)
·i
− 2

∂B
∂xi − 2QkB·i·k + 2H j(S·i·j + B·i·j

)
= χi + (B|jy

j)·i − 2B|i − 2QkB·i·k + 2H j(S·i·j + B·i·j
)
.

Plugging (4) and (5) into the above equation yields (3).

Using Proposition 1, we can obtain the necessary and sufficient conditions for a
conformal transformation to preserve the χ-curvature of Randers metrics.

Proposition 2. Let F and F̄ be two non-Riemannian Randers metrics on a manifold M. If F̄ = eρF,
then χ̄ = χ if and only if the following equations hold

Π5α4 + Π3α2 + Π1 = 0, (6)

Π4α4 + Π2α2 + Π0 = 0, (7)

where Π5, Π4, Π3, Π2, Π1 and Π0 are polynomials in y, listed in (A1)–(A6) in Appendix A.

Proof. Since χ̄ = χ, we have

α(α + β)3(χ̄i − χi) = 0.

Plugging (3) into the above equation yields

Π5α5 + Π4α4 + Π3α3 + Π2α2 + Π1α + Π0 = 0,

where Π5, Π4, Π3, Π2, Π1, and Π0 are polynomials in y. We obtain

Π5α4 + Π3α2 + Π1 = 0,

Π4α4 + Π2α2 + Π0 = 0.

Using Proposition 2, for a Randers metric F = α + β, we can further optimize the
necessary and sufficient conditions for the conformal transformation to preserve the χ-
curvature.



Mathematics 2023, 11, 1941 6 of 19

Proposition 3. Let F and F̄ be two non-Riemannian Randers metrics on a manifold M. If F̄ = eρF,
then χ̄ = χ if and only if the following equations hold

Γ2
2α2 + Γ0

2 = 0, (8)

(α2 − β2)Γi + (1− b2)[ρ0|0 + 2ρksk
0β + (2s0 + cβ + bkρkβ)ρ0 (9)

− (1− 1
2

b2)ρ2
0]β

2(yi − βbi) = 0,

2r00 + 4s0β− (1− b2)βρ0 = c(α2 − β2), (10)

where c = c(x) is a scalar function on M, and Γ2
2, Γ0

2 and Γi are polynomials in y, as listed in
(A7)–(A9) in Appendix A.

Proof. “Necessity”. If χ̄ = χ, according to Proposition 2, we know that (6) and (7) hold.
According to (6) × β − (7), we have

(α2 − β2)Ai + 2(1− b2)[2r00 + 4s0β− (1− b2)βρ0]βρ0(yi − βbi) = 0, (11)

where

Ai ={2βbkρk|i + b2(ρi|0 − ρ0|i) + [2ρkrk
0 − 2(1− b2)ρksk

0 + 4bkρks0

− 2ρkskβ + (1− b2)|∇ρ|2αβ− (2− 3b2)bkρkρ0]bi + 2bkρkri0 + 2bkρksi0

− 2βρkrk
i + 2βρksk

i + [−2bkρkβ− 2(1− b2)ρ0]si + [2r0 + 2b2s0

− (2 + b2)bkρkβ− b2(1− b2)ρ0]ρi}α2

+ β2(ρi|0 − ρ0|i) + [−2bkρk|0β− 2bkρkr00 + 2ρkskβ2 − 2b2ρksk
0β− 2r0ρ0

− 2bkρks0β + 2(1− 2b2)s0ρ0 − (1− b2)|∇ρ|2αβ2 + 2(2− b2)bkρkβρ0

+ b2(1− b2)ρ2
0]yi

+ [−(5− 4b2)r00ρ0 − 2(5− 4b2)s0βρ0 + bkρkβ2ρ0 + (1− b2)(3− 2b2)βρ2
0]bi

+ [2bkρkβ + 2(1− b2)ρ0]βsi0 + [r00 + 2s0β− bkρkβ2 − (1− b2)βρ0]βρi.

Since α2 − β2 is irreducible and ρ0 6= 0, it is easy to see from (11) that 2r00 + 4s0β
−(1− b2)βρ0 is divisible by α2 − β2. Thus, a scalar function c = c(x) exists on M such that

2r00 + 4s0β− (1− b2)βρ0 = c(α2 − β2). (12)

According to (12), we obtain

r00 =
1
2

c(α2 − β2)− 2s0β +
1
2
(1− b2)βρ0, (13)

r0 =− b2s0 +
1
2

c(1− b2)β +
1
4
(1− b2)bkρkβ +

1
4

b2(1− b2)ρ0,

rk
0 =

1
2

cyk − βsk + [−s0 −
1
2

cβ +
1
4
(1− b2)ρ0]bk +

1
4
(1− b2)βaikρi. (14)

By substituting the above equations into (11) and (6), we obtain

Γ4
1α4 + Γ2

1α2 + Γ0
1 = 0, (15)

Γ2
2α2 + Γ0

2 = 0, (16)

where Γ4
1, Γ2

1, Γ0
1, Γ2

2 and Γ0
2 are polynomials in y, listed in (A7)–(A8) and (A10)–(A12) in

Appendix A.
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Then, (16) ×(α2 + β2) + (15) ×β yields

(α2 − β2)Γi + (1− b2)[ rho0|0 + 2ρksk
0β + 2s0ρ0 + cβρ0 + bkρkβρ0

− (1− 1
2

b2)ρ2
0]β

2(yi − biβ) = 0.

“Sufficiency”. If we assume that (8)–(10) hold, we can easily have (6) and (7). Based on
Proposition 2, we know that the conformal transformation preserves the χ-curvature of
Randers metrics. This completes the proof.

4. Proof of the Main Theorem

Now we can prove our characterization theorem for the conformal transformation
preserving the χ-curvature of Randers metrics.

Theorem 2. Let F and F̄ be two non-Riemannian Randers metrics on a manifold M. If F̄ = eρF,
then χ̄ = χ if and only if one of the following cases holds:

(i) (bkρk = 0) ρ(x) satisfies

ρ0 = −4s0

b2 , (17)

and β = bi(x)yi satisfies

b2bi|j = −2sibj, (18)

2skskaij − b2si|j − 4sisj = 0; (19)

(ii) (bkρk 6= 0) ρ(x) satisfies

ρ0 = −4s0

b2 +
bkρkβ

b2 , (20)

and β = bi(x)yi satisfies

2b4s0bi|j =b2
(

2ψ0 − b2bkρks0

)
aij +

(
b2bkρks0 − 2ψ0

)
bibj + 2β

(
2ψibj − biψj

)
(21)

+ 2b2s0
(
bisj − 2sibj

)
− 2b2

(
βsi + b2si0

)
sj − 2b2(2ψiyj − yiψj

)
,

4b2skskaij =2biψj + 2ψibj + 8b2sisj − 2b2bkρksibj − b4bkρksij + 2b4si|j, (22)

where ψ0 = b2sksk
0 + skskβ and ψi = b2sksk

i + skskbi.

Proof. “Necessity”. If χ̄ = χ, based on Proposition 3, we have (9). Because α2 − β2 are
relatively prime polynomials in y, there is a scalar function d = d(x) on M such that

ρ0|0 + 2ρksk
0β + 2s0ρ0 + cβρ0 + bkρkβρ0 − (1− 1

2
b2)ρ2

0 = d(α2 − β2).

Based on the above equation, we have

ρ0|0 =dα2 − 2ρksk
0β− 2s0ρ0 − dβ2 − cβρ0 − bkρkβρ0 + (1− 1

2
b2)ρ2

0,

ρ0|i =2dyi − ρi|0 − [2ρksk
0 + 2dβ + cρ0 + bkρkρ0]bi − 2βρksk

i − 2ρ0si

+ [−2s0 − cβ− bkρkβ + 2(1− 1
2

b2)ρ0]ρi.
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By substituting the above equations into (8), (9) and (15), by a direct computation, we
obtain

Γ4
4α4 + Γ2

4α2 + Γ0
4 = 0, (23)

Γ2
3α2 + Γ0

3 = 0, (24)

Γ2
5α2 + Γ0

5 = 0, (25)

where Γ4
4, Γ2

4, Γ0
4, Γ2

3, Γ0
3, Γ2

5 and Γ0
5 are polynomials in y, listed in (A13)–(A19) in Appendix A.

By calculating (24) × (α2 + 2β2) + (23) × 2β + (25) × 2β2, we obtain

Γ4
6α2 + Γ2

6 = 0, (26)

where Γ4
6 and Γ2

6 are polynomials in y, listed in (A20)–(A21) in Appendix A.
Contracting (26) with bi yields

Γ2
7α2 + Γ0

7β2 = 0, (27)

where Γ2
7 and Γ0

7 are polynomials in y, listed in (A22)–(A23) in Appendix A.
Since α2 is irreducible, (27) is equivalent to Γ2

7 = 0 and Γ0
7 = 0. That is,

2b2bkρk|0 − 2b2(1− 2b2)ρksk
0 + 2(1 + b2)bkρks0 − c(

1
2
− b2)bkρkβ (28)

− 4db2(1− b2)β− 2b2ρkskβ− (1− b2)(bkρk)
2β

− 1
2

b2(1− b2)|∇ρ|2αβ− 3
2

b2c(1− 2b2)ρ0 −
1
2

b2(7− 9b2)bkρkρ0 = 0,

− 2bkρk|0 + 2(1− 2b2)ρksk
0 − 4bkρks0 −

1
2

cbkρkβ (29)

+ 4d(1− b2)β + 2ρkskβ +
1
2
(1− b2)|∇ρ|2αβ +

1
2

c(4− 7b2)ρ0

+
1
2
(9− 11b2)bkρkρ0 = 0.

By calculating (28) + (29) and (28) + (29)×b2, we obtain

− 2bkρk|0 + 2(1− 2b2)ρksk
0 − 2bkρks0 − cbkρkβ + 4d(1− b2)β (30)

− (bkρk)
2β + 2ρkskβ +

1
2
(1− b2)|∇ρ|2αβ + c(2− 3b2)ρ0

+
9
2
(1− b2)bkρkρ0 = 0,

2bkρks0 −
1
2

cbkρkβ− (bkρk)
2β +

1
2

cb2ρ0 + b2bkρkρ0 = 0. (31)

From (30), we obtain

bkρk|0 =(1− 2b2)ρksk
0 − bkρks0 −

1
2

cbkρkβ + 2d(1− b2)β (32)

− 1
2
(bkρk)

2β + ρkskβ +
1
4
(1− b2)|∇ρ|2αβ + c(1− 3

2
b2)ρ0

+
9
4
(1− b2)bkρkρ0,

bkρk|i =[−1
2

cbkρk + 2d(1− b2)− 1
2
(bkρk)

2 + ρksk +
1
4
(1− b2)|∇ρ|2α]bi (33)

+ (1− 2b2)ρksk
i − bkρksi + c(1− 3

2
b2)ρi +

9
4
(1− b2)bkρkρi.

Based on (31), we divide the problem into two cases: (i) bkρk = 0; (ii) bkρk 6= 0.
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Case (i): bkρk = 0. Based on (31), we obtain
1
2

cb2ρ0 = 0. Thus, c = 0.

Furthermore, based on (14), 0 = (bkρk)|i = bk
|iρk + bkρk|i = ρk(rk

i + sk
i) + bkρk|i =

[
1
4
(1− b2)|∇ρ|2α − ρksk]bi + ρksk

i + bkρk|i. Thus

bibkρk|i = −
1
4

b2(1− b2)|∇ρ|2α + ρksk(1 + b2). (34)

On the other hand, contracting (33) with bi yields

bibkρk|i = 2db2(1− b2)− (1− 3b2)ρksk +
1
4

b2(1− b2)|∇ρ|2α. (35)

Based on (34) and (35), we have

d =
1
b2 ρksk − 1

4
|∇ρ|2α. (36)

By contracting (24) with bi and plugging bkρk = 0, c = 0, (32), (33) and (36) into it, we
can conclude that

(b2α2 − β2)(
1
2

b2|∇ρ|2α + 2ρksk) + (4s0 + b2ρ0)ρ0 = 0.

Since b2α2 − β2 is irreducible, ρ0 = −4s0

b2 .

For ρ0 = −4s0

b2 , we have

ρksk = −4sksk

b2 , |∇ρ|2α =
16sksk

b4 , d = −8sksk

b4 ,

ρi|0 = −
4si|0
b2 , bkρk|i =

4sksk
i

b2 − 4skskbi

b4 .

(37)

By plugging the above equations into (25), we get

{2b2skskyi − b4si|0 + b2(1− 2b2)sksk
0bi + (1− 3b2)skskβbi (38)

− b4βsksk
i − 4b2s0si}α2 − (1− b2)(b2sksk

0 + skskβ)βyi = 0.

Contracting (38) with bi yields

{(3− 2b2)b2skskβ− b4bksk|0 + b4(1− 2b2)sksk
0}α2 − (1− b2)(b2sksk

0

+ skskβ)β2 = 0.

Since α2 is irreducible, then we can easily have

b2sksk
0 + skskβ = 0. (39)

Plugging (39) into (38) yields

b2si|0 = −4s0si + 2skskyi, (40)

which is (19).
Substituting (37), (39) and (40) into (24) and (12) yields

b2si0 = s0bi − βsi,

b2r00 = −2s0β.
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Hence

b2bi|j = −2sibj,

which is (18).
Case (ii): bkρk 6= 0. Based on (31), we obtain

s0 =
1
4
(c + 2bkρk)β− 1

4
(

1
bkρk

+ 2)b2ρ0. (41)

By contracting (24) with bi and plugging in (32), (33), and (41) into it, we can conclude
that

{6db2(1− b2)bkρk + (1− b2)(4b2bkρk + cb2)|∇ρ|2α (42)

+ (2− 5b2)(c + bkρk)(bkρk)
2}α2 − 2d(1− b2)bkρkβ2

− (1− b2)|∇ρ|2αbkρkβ2 + 3(c + bkρk)(bkρk)
2β2

+ 2(1− b2)(c + bkρk)bkρkβρ0 − b2(1− b2)(c + bkρk)ρ
2
0 = 0.

Differentiating (42) with respect to yi and contracting it with bi yields

d = −|∇ρ|2α
4bkρk

(c + 3bkρk)−
3bkρk
4b2 (c + bkρk). (43)

By plugging (43) into (42), we have

(c + bkρk){−b2[b2(1− b2)|∇ρ|2α + (5 + b2)(bkρk)
2]α2 (44)

+ b2(1− b2)|∇ρ|2αβ2 + 3(1 + b2)(bkρk)
2β2 + 4b2(1− b2)bkρkβρ0

− 2b4(1− b2)ρ2
0} = 0.

Based on (44), we divide the problem into two cases:

(ii-i) c + bkρk = 0;

(ii-ii)− b2[b2(1− b2)|∇ρ|2α + (5 + b2)(bkρk)
2]α2 + b2(1− b2)|∇ρ|2αβ2 (45)

+ 3(1 + b2)(bkρk)
2β2 + 4b2(1− b2)bkρkβρ0 − 2b4(1− b2)ρ2

0 = 0.

Case (ii-i): By plugging c = −bkρk into (31) and (43), we obtain

ρ0 =− 4s0

b2 +
bkρkβ

b2 , (46)

d =− 1
2
|∇ρ|2α. (47)

Since ρ0 = −4s0

b2 +
bkρkβ

b2 , we obtain

ρi = −
4si
b2 +

bkρkbi
b2 , ρksk = − 4

b2 sksk,

ρksk
i = −

4
b2 sksk

i +
1
b2 bkρksi, |∇ρ|2α =

16
b4 sksk +

1
b2 (b

kρk)
2.

(48)
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Plugging c = −bkρk, (32), (33) and (47) into (25) yields

ρi|0 =
1
b4 {−[8sksk +

b2

2
(bkρk)

2]yi + [−4(1− 2b2)sksk
0 − 3bkρks0 (49)

+ 8skskβ + (bkρk)
2β]bi − b2bkρksi0 + 4βsksk

i

+ (16s0 − 5bkρkβ)si}.

By substituting c = −bkρk, (32), (33), (41), (46), (47), (48), and (49) into (24) and (12),
we obtain

− (skskbi + b2sksk
i)α

2 + (b2sksk
0 + skskβ)yi + (s2

0 − sksk
0β)bi (50)

− b2s0si0 + β2sksk
i − s0βsi = 0,

2b2r00 + 4s0β = bkρk(β2 − b2α2). (51)

Based on ρi = −
4si
b2 +

bkρkbi
b2 , (13), (14) and (48), we obtain

ρi|0 = [(−4si + bkρkbi)|jb
−2 + (−4si + bkρkbi)(b−2)|j]y

j (52)

= − 1
2b2 (b

kρk)
2yi −

4
b2 si|0 + [− 8

b4 (1− b2)sksk
0 −

8
b6 (1− b2)skskβ

− 3
b4 bkρks0 +

1
b4 (b

kρk)
2β]bi +

1
b2 bkρksi0 −

1
b4 bkρkβsi.

Clearly, based on (49) and (52), we have

− 4b2skskyi + 2b4si|0 + 2ψ0bi + (8b2s0 − 2b2bkρkβ)si − b4bkρksi0 + 2βψi = 0, (53)

where ψ0 = b2sksk
0 + skskβ and ψi = b2sksk

i + skskbi. Clearly, (53) is (22).
We claim that s0 6= 0. If s0 = 0, we have si0 = 0 based on (53). Based on (46), we obtain

ρ0 =
bkρkβ

b2 . Furthermore, we can obtain

ρkrk
0 = 0, |∇ρ|2α =

(bkρk)
2

b2 , bkρk|0 = 0, si0 = 0, s0 = 0,

r00 =
bkρk
2b2 (−b2α2 + β2), ri0 =

bkρk
2b2 (−b2yi + βbi), r0 = 0.

Plugging the above equations into (7) yields

{[3− (1− b2)2]b2α2bi + [(1− b2)2 + 1]β2bi − [3− (1− b2)2]b2βyi}α2

− [(1− b2)2 + 1]β3yi = 0.

Contracting this with bi yields

{[3− (1− b2)2]α2 − 2(2− b2)β2}b4α2 − [(1− b2)2 + 1]β4 = 0,

which is a contradiction.
For s0 6= 0, by (50) and (51), we can easily have

2b4s0bi|j = (b2bkρks0bi − 2ψ0bi + 4βψi − 4b2s0si)bj + b2(2ψ0 − b2bkρks0)aij

+ 2b2(s0bi − βsi − b2si0)sj − 4b2ψiyj + 2(b2yi − βbi)ψj,

which is (21).
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Case (ii-ii): Differentiating (45) with respect to yi and yj and contracting this with ρi

and ρj yields

[(bkρk)
2 − b2|∇ρ|2α][b2(1− b2)|∇ρ|2α + (1 + b2)(bkρk)

2] = 0. (54)

We claim that (54) cannot hold. If (bkρk)
2 − b2|∇ρ|2α = 0, plugging it into (45) yields

(bkρk)
2[−3b2α2 + 2(2 + b2)β2] + b2(1− b2)(2bkρkβ− b2ρ0)ρ0 = 0.

Since −3b2α2 + 2(2 + b2)β2 is irreducible, we obtain bkρk = 0,, which is a contradiction.
Similarly, if b2(1− b2)|∇ρ|2α + (1 + b2)(bkρk)

2 = 0, then plugging it into (45) yields

(bkρk)
2[−2b2α2 + (1 + b2)β2] + b2(1− b2)(2bkρkβ− b2ρ0)ρ0 = 0.

Since −2b2α2 + (1 + b2)β2 is irreducible, we have bkρk = 0, which is also a contradiction.
“Sufficiency”. By substituting (17)–(19) or (20)–(22) into (6) and (7), respectively, we

can easily show that (6) and (7) hold. Based on Proposition 2, we know that the conformal
transformation preserves the χ-curvature of Randers metrics. This completes the proof of
Theorem 2.

Lemma 4 ([17]). r0 + s0 = 0 if and only if b2 is a constant.

Lemma 5. Let F and F̄ be two non-Riemannian Randers metrics on a manifold M. If F̄ = eρF and
χ̄ = χ, then b2 is a constant.

Proof. If the conformal transformation preserves the χ-curvature of Randers metrics, based
on Theorem 2, we known that (18) or (21) hold.

If (18) holds, then we have b2r00 + 2s0β = 0. Differentiating this with respect to yi and
contracting with bi yields

r0 + s0 = 0.

Similarly, if (21) holds, then we have 2b2r00 + 4s0β = bkρk(β2 − b2α2). Differentiating
this with respect to yi and contracting with bi yields

r0 + s0 = 0.

Above all, based on Lemma 4, we know that b2 is a constant.

5. Proofs of Other Results

Now, we are in the position to prove the other results. Firstly, assume that s0 = 0.
Based on Theorem 2, we have the following result:

Theorem 3. Let F be a non-Riemannian Randers metric on a manifold M. Suppose that s0 = 0.
Then, there is no nonhomothetic conformal transformation, which preserves the χ-curvature.

Proof. Based on Theorem 2, we divide the problem into two cases:
(i) bkρk = 0. Since s0 = 0, based on (17), we obtain ρ0 = 0. Thus, the conformal

transformation is a homethety.
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(ii) bkρk 6= 0. Plugging s0 = 0 into (22) yields si0 = 0. Based on (20), we obtain

ρ0 =
bkρkβ

b2 . Furthermore, we have

ρkrk
0 = 0, |∇ρ|2α =

(bkρk)
2

b2 , bkρk|0 = 0, si0 = 0, s0 = 0,

r00 =
bkρk
2b2 (−b2α2 + β2), ri0 =

bkρk
2b2 (−b2yi + βbi), r0 = 0.

Plugging the above equations into (7) yields

{[3− (1− b2)2]b2α2bi + [(1− b2)2 + 1]β2bi − [3− (1− b2)2]b2βyi}α2

− [(1− b2)2 + 1]β3yi = 0.

Contracting this with bi yields

{[3− (1− b2)2]α2 − 2(2− b2)β2}b4α2 − [(1− b2)2 + 1]β4 = 0,

which is a contradiction.

If the dimensions of the manifold are n ≥ 4, then Theorem 2 can be simplified as
follows:

Corollary 1. Let F and F̄ be two non-Riemannian Randers metrics on a manifold M of dimensions
n(≥ 4). If F̄ = eρF, then χ̄ = χ if and only if one of the following equations holds:

ρ0 = −4s0

b2 +
bkρkβ

b2 , (55)

and β = bi(x)yi satisfies

2b2bi|j = −b2bkρkaij + bkρkbibj − 4sibj, (56)

4skskaij = −bkρkbisj + 8sisj − bkρksibj + 2b2si|j. (57)

Proof. “Necessity”. Based on Theorem 2, we divide the problem into two cases:
(i) bkρk = 0. Based on case (i) of Theorem 2, it is easy to check that (55)–(57) hold.

(ii) bkρk 6= 0. Based on case (ii) of Theorem 2, we have ρ0 = − 4s0
b2 + bkρk β

b2 . Meanwhile,
based on the proof of Theorem 2, (50) holds. Differentiating (50) with respect to yj and
contracting it with aij yields

(n− 3)(b2sksk
0 + skskβ) = 0.

Thus

b2sksk
i + skskbi = 0.

By plugging it into (22) and (50), we obtain

s0(b2si0 − s0bi + βsi) = 0, (58)

− 4skskyi + 2b2si|0 + 8s0si − 2bkρkβsi − b2bkρksi0 = 0. (59)

If s0 = 0, based on Theorem 3, we know the conformal transformation is a homethety.
Thus, based on (58), we have

b2si0 − s0bi + βsi = 0, (60)
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i.e., si0 =
1
b2 (s0bi − βsi). By plugging it into (59), we obtain

−4skskyi + 2b2si|0 − bkρks0bi + 8s0si − bkρkβsi = 0, (61)

which is (57).
Based on 2b2r00 + 4s0β = bkρk(β2 − b2α2) and (60), we can easily obtain

2b2bi|j = −4sibj − b2bkρkaij + bkρkbibj, (62)

which is (56).

“Sufficiency”. Since ρ0 = −4s0

b2 +
bkρkβ

b2 , (61), and (62) hold, we obtain (6) and (7).
Based on Proposition 2, we know that the conformal transformation preserves the χ-
curvature of Randers metrics. This completes the proof of Corollary 1.

Corollary 2. Let F be a non-Riemannian Randers metric on a manifold M. Then, there is no
non-homothetic conformal transformation that preserves the vanishing χ-curvature (χ = χ̄ = 0).

To prove Corollary 2, we require the following lemmas.

Lemma 6 ([16]). For a Randers metric F = α + β, S = (n + 1)c(x)F if and only if r00 + 2s0β =
2c′(x)

(
α2 − β2), where c = c(x) and c′ = c′(x) are scalar functions on M.

Lemma 7 ([8]). Let F = α + β be a Randers metric. It is of isotropic S-curvature if and only if its
χ-curvature almost vanishes. In particular, it is of constant S-curvature if and only if χ = 0.

Proof. For a Randers metric F = α + β, based on Lemmas 6 and 7, its χ-curvature vanishes
if and only if it is of constant S-curvature. This means that

r00 + 2s0β = 2c′
(

α2 − β2
)

, (63)

where c′ is a constant.
Meanwhile, when the conformal transformation preserves the χ-curvature, based on

Proposition 3, we have

2r00 + 4s0β− (1− b2)βρ0 = c(α2 − β2),

where c = c(x) is a scalar function on M.
Plugging it into (63) yields

(1− b2)βρ0 = (4c′ − c)(α2 − β2).

Because α2 − β2 is irreducible, we obtain ρ0 = 0. Thus, the conformal transformation
is a homothety.

6. Proof of Theorem 1

Now we assume that the manifold is a compact space. Because the conformal transfor-
mation preserves the χ-curvature of Randers metrics, we have a better rigidity result.

Proof. If the conformal transformation preserves the χ-curvature of Randers metrics, based
on Theorem 2, (19) or (22) hold.

When (19) or (22) holds, differentiating (19) or (22) with respect to yj and contracting
them with aij yields

sk
|k =

2(n− 2)
b2 |sk|2α,
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where |sk|2α = sksk. Based on the Divergence theorem, on the n-dimensional manifold M,
we have

∫
M sk

|kdx1 · · · dxn = 0. Thus, based on the above equation, we obtain that

∫
M

sk
|kdx1 · · · dxn = 2(n− 2)

∫
M

|sk|2α
b2 dx1 · · · dxn = 0,

which means that sk = 0. By Theorem 3, we know that the conformal transformation is
a homothety.

7. Conclusions

The research presented in this paper is driven by two motivations. The first motivation
is that research on the χ-curvature has become more and more important in recent years.
The second motivation comes from the following question: is there a nonhomothetic
conformal transformation in Finsler geometry that preserves the invariance of certain
curvature properties? Based on Theorem 1, we know that on a compact manifold M of
dimensions n(≥3), there is no nonhomothetic conformal transformation that preserves the
χ-curvature on the Randers metric. From Corollary 1, we obtain three characterization
equations for the conformal transformation preserving the χ-curvature of Randers metrics
on a manifold M of dimensions n(≥4).
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Appendix A

In this appendix, we give some coefficients appearing in Sections 3 and 4.

Π5 =− bkρk|i + [−(1− b2)|∇ρ|2α + 2ρksk]bi + ρkrk
i − ρksk

i + 2bkρksi + b2bkρkρi, (A1)

Π4 =− 3βbkρk|i + b2(ρ0|i − ρi|0) + {−4bkρks0 − 2ρkrk
0 + 2(1− b2)ρksk

0 + 4ρkskβ

− 2(1− b2)|∇ρ|2αβ + (2− 3b2)bkρkρ0}bi

− 2bkρkri0 − 2bkρksi0 + 3βρkrk
i − 3βρksk

i + 2[2bkρkβ + (1− b2)ρ0]si

+ [−2r0 − 2b2s0 + 2(1 + b2)bkρkβ + b2(1− b2)ρ0]ρi, (A2)

Π3 ={bkρk|0 − ρkrk
0 + ρksk

0 − 2bkρks0 − 2ρkskβ + (1− b2)|∇ρ|2αβ− b2bkρkρ0}yi

+ (1 + 2b2)β(ρ0|i − ρi|0)− 3β2bkρk|i

+ {−(1− b2)ρ0|0 + 2bkρkr00 − 4ρkrk
0β + 2(1− b2)ρksk

0β + 4r0ρ0 − 4bkρks0β

− 4(1− 2b2)s0ρ0 + 2ρkskβ2 − (1− b2)|∇ρ|2αβ2 − 3b2bkρkβρ0 + (1− b2)(1− 2b2)ρ2
0}bi

− 2[2bkρkβ + (1− b2)ρ0]ri0 − 2[3bkρkβ + (1− b2)ρ0]si0

+ 3β2ρkrk
i − 3β2ρksk

i + 2[bkρkβ + (1− b2)ρ0]βsi

+ [−(2− b2)r00 − 4r0β− 2(2 + b2)s0β + (5 + b2)bkρkβ2

+ (1− b2)(2 + b2)βρ0]ρi, (A3)
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Π2 ={3bkρk|0β + 2bkρkr00 − ρkrk
0β + (1 + 2b2)ρksk

0β + 2r0ρ0 − 2(1− 2b2)s0ρ0

− 4ρkskβ2 + 2(1− b2)|∇ρ|2αβ2 − (4− b2)bkρkβρ0 − b2(1− b2)ρ2
0}yi

+ (2 + b2)β2(ρ0|i − ρi|0)− β3bkρk|i

+ {−(1− b2)ρ0|0β + 2bkρkr00β + (5− 4b2)r00ρ0 − 2ρkrk
0β2 + 4r0βρ0 + 6s0βρ0

− 3bkρkβ2ρ0 − 2(1− b2)βρ2
0}bi

− 2[bkρkβ + (1− b2)ρ0]βri0 − 2[3bkρkβ + 2(1− b2)ρ0]βsi0 + β3ρkrk
i − β3ρksk

i

+ [−(3− b2)r00 − 2r0β− 6s0β + 4bkρkβ2 + 3(1− b2)βρ0]βρi, (A4)

Π1 ={3bkρk|0β2 + (1− b2)ρ0|0β + 2bkρkr00β + (4− 3b2)r00ρ0 + ρkrk
0β2

+ (1 + 2b2)ρksk
0β2 + 2bkρks0β2 + 2(3− 2b2)s0βρ0 − 2ρkskβ3 + (1− b2)|∇ρ|2αβ3

− (5− 2b2)bkρkβ2ρ0 − (3− b2)(1− b2)βρ2
0}yi

+ β3(ρ0|i − ρi|0) + [r00ρ0 + 2s0ρ0β− bkρkβ2ρ0 − (1− b2)βρ2
0]βbi

− 2[bkρkβ + (1− b2)ρ0]β
2si0 + [−r00 − 2s0β + bkρkβ2 + (1− b2)βρ0]β

2ρi, (A5)

Π0 ={bkρk|0β2 + (1− b2)ρ0|0β + b2r00ρ0 + ρkrk
0β2 + ρksk

0β2 − 2r0βρ0 − bkρkβ2ρ0

− (1− b2)βρ2
0}βyi, (A6)

Γ2
2 =2βbkρk|i + b2(ρi|0 − ρ0|i) + [−2(1− b2)ρksk

0 − cbkρkβ− 2ρkskβ + (1− b2)|∇ρ|2αβ

− c(
3
2
− 2b2)ρ0 − (1− 2b2)bkρkρ0]bi + 2bkρksi0 + 2ρksk

iβ− 2[bkρkβ + (1− b2)ρ0]si

+
1
2
[c(11− 2b2)β− 3(1 + b2)bkρkβ− b2(1− b2)ρ0]ρi, (A7)

Γ0
2 =β2(ρi|0 − ρ0|i) + [−2bkρk|0β− 2b2ρksk

0β + 2bkρks0β + 2(1− b2)s0ρ0 + cbkρkβ2

+ 2ρkskβ2 − (1− b2)|∇ρ|2αβ2 + c(1− b2)βρ0 +
1
2
(5− b2)bkρkβρ0 +

1
2
(1− b2)ρ2

0]yi

+
1
2
[cβρ0 + 2bkρkβρ0 + (1− b2)ρ2

0]βbi + [2bkρkβ + (1− b2)ρ0]βsi0

− 1
2
[cβ + 2bkρkβ + (1− b2)ρ0]β

2ρi, (A8)

Γi ={βbkρk|i + b2(ρi|0 − ρ0|i) + [−2(1− b2)ρksk
0 −

1
2

cbkρkβ− ρkskβ

+
1
4
(1− b2)|∇ρ|2αβ− c(

3
2
− 2b2)ρ0 − (1− 2b2)bkρkρ0]bi

+ 2bkρksi0 + βρksk
i − [bkρkβ + 2(1− b2)ρ0]si

+ [−1
2

cb2β− 1
4
(5 + 3b2)bkρkβ− 1

2
b2(1− b2)ρ0]ρi}α2

+ [−bkρk|0β + (1− 2b2)ρksk
0β + bkρks0β + 2(1− b2)s0ρ0 +

1
2

cbkρkβ2 + ρkskβ2

− 1
4
(1− b2)|∇ρ|2αβ2 +

3
2

c(1− b2)βρ0 +
1
4
(9− 5b2)bkρkβρ0 +

1
2

b2(1− b2)ρ2
0]yi

+ [−(1− b2)ρ0|0 − 2(1− b2)ρksk
0β− 2(1− b2)s0ρ0 − c(1− b2)βρ0

− (1− b2)bkρkβρ0 + (1− 1
2

b2)(1− b2)ρ2
0]βbi, (A9)

Γ4
1 =− bkρk|i + [

1
2

cbkρk + ρksk − 3
4
(1− b2)|∇ρ|2α]bi − ρksk

i + bkρksi

+
1
4
[−2c(1− b2) + (1 + 3b2)bkρk]ρi, (A10)
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Γ2
1 =[bkρk|0 + ρksk

0 − bkρks0 −
1
2

cbkρkβ− ρkskβ +
3
4
(1− b2)|∇ρ|2αβ

+
1
2

c(1− b2)ρ0 −
1
4
(1 + 3b2)bkρkρ0]yi

− 3β2bkρk|i + (1 + 2b2)β(ρ0|i − ρi|0) + [−(1− b2)ρ0|0 + 2(1− b2)ρksk
0β

− 2(1− b2)s0ρ0 +
3
2

cbkρkβ2 + 3ρkskβ2 − 5
4
(1− b2)|∇ρ|2αβ2 + 3c(1− b2)βρ0

− 3b2bkρkβρ0 +
1
2
(1− b2)2ρ2

0]bi − 2[3bkρkβ + (1− b2)ρ0]si0 − 3β2ρksk
i

+ [3bkρkβ + 4(1− b2)ρ0]βsi

+
1
4
[6cb2β + 3(5 + 3b2)bkρkβ + 2(1− b2)(1 + 2b2)ρ0]βρi, (A11)

Γ0
1 =

1
4
[12bkρk|0β + 4(1− b2)ρ0|0 + 4(1 + 2b2)ρksk

0β− 6cbkρkβ2 − 12bkρks0β

− 8(1− b2)s0ρ0 − 12ρkskβ2 + 5(1− b2)|∇ρ|2αβ2 − 3(5− b2)bkρkβρ0

− 6(1− b2)βρ0 − 2(1− b2)(2 + b2)ρ2
0]βyi

+ β3(ρ0|i − ρi|0)− 2[bkρk + (1− b2)]β3si0 −
1
2
[cβρ0 + 2bkρkρ0β

+ (1− b2)ρ2
0]β

2bi +
1
2
[cβ + (1− b2)ρ0]β

3ρi, (A12)

Γ4
4 =− bkρk|i +

1
4
[2cbkρk − 4d(1− b2) + 4ρksk − 3(1− b2)|∇ρ|2α]bi

− ρksk
i + bkρksi +

1
4
[−2c(1− b2) + (1 + 3b2)bkρk]ρi, (A13)

Γ2
4 =[bkρk|0 + ρksk

0 − bkρks0 −
1
2

cbkρkβ + 3d(1 + b2)β− ρkskβ +
3
4
(1− b2)|∇ρ|2αβ

+
1
2

c(1− b2)ρ0 −
1
4
(1 + 3b2)bkρkρ0]yi − 3β2bkρk|i − 2(1 + 2b2)βρi|0

+ [2(1− 4b2)ρksk
0β +

3
2

cbkρkβ2 − d(1 + 5b2)β2 + 3ρkskβ2 − 5
4
(1− b2)|∇ρ|2αβ2

+ 3c(1− 2b2)βρ0 − 6b2bkρkβρ0 −
1
2
(1− b2)ρ2

0]bi

− 2[3bkρkβ + (1− b2)ρ0]si0 − (5 + 4b2)β2ρksk
i + [3bkρkβ + 2(1− 4b2)ρ0]βsi

+ [−2(1 + 2b2)s0 − c(1 +
1
2

b2)β +
1
4
(11 + b2)bkρkβ +

1
2
(5− 3b2)(1 + 2b2)ρ0]βρi, (A14)

Γ0
4 =[3bkρk|0β− (1− 4b2)ρksk

0β− 3bkρks0β− 4(1− b2)s0ρ0 +
5
4
(1− b2)|∇ρ|2αβ2

− 3
2

cbkρkβ2 + d(1 + b2)β2 − 2ρkskβ2 − 5
2

c(1− b2)βρ0 −
1
4
(19− 7b2)bkρkβρ0

+ b2ρ2
0]βyi

− 2β3ρi|0 + [−2ρksk
0β− 2dβ2 − 3

2
βρ0 − 2bkρkβρ0 +

1
2

ρ2
0]β

2bi

− [2bkρk + 2(1− b2)]β3si0 − 2β4ρksk
i − 2β3ρ0si

+ [−2s0 − cβ− bkρkβ +
1
2
(5− 3b2)ρ0]β

3ρi, (A15)
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Γ2
3 =− 2db2yi + 2βbkρk|i + 2b2ρi|0 + [−2(1− 2b2)ρksk

0 − cbkρkβ + 2db2β− 2ρkskβ

+ (1− b2)|∇ρ|2αβ− 3
2

c(1− 2b2)ρ0 − (1− 3b2)bkρkρ0]bi

+ 2bkρksi0 + 2(1 + b2)βρksk
i − 2[bkρkβ + (1− 2b2)ρ0]si

+ [2b2s0 +
11
2

cβ− 1
2
(3 + b2)bkρkβ− 1

2
b2(5− 3b2)ρ0]ρi, (A16)

Γ0
3 =[−2bkρk|0β− 2b2ρksk

0β + 2bkρks0β + 2(1− b2)s0ρ0 + cbkρkβ2 − 2dβ2 + 2ρkskβ2

− (1− b2)|∇ρ|2αβ2 + c(1− b2)βρ0 +
1
2
(5− b2)bkρkβρ0 +

1
2
(1− b2)ρ2

0]yi + 2β2ρi|0

+ [2ρksk
0β + 2dβ2 +

3
2

cβρ0 + 2bkρkβρ0 +
1
2
(1− b2)ρ2

0]βbi

+ [2bkρkβ + 2(1− b2)ρ0]βsi0 + 2β3ρksk
i + 2β2ρ0si

+ [2s0 +
1
2

cβ− 3
2
(1− b2)ρ0]β

2ρi, (A17)

Γ2
5 =− 2b2dyi + βbkρk|i + 2b2ρi|0 + [−2(1− 2b2)ρksk

0 −
1
2

cbkρkβ− (1− 3b2)dβ

− ρkskβ +
1
4
(1− b2)|∇ρ|2αβ− (1− 3b2)bkρkρ0 −

3
2

c(1− 2b2)ρ0]bi

+ 2bkρksi0 + (1 + 2b2)βρksk
i − [bkρkβ + 2(1− 2b2)ρ0]si

+ [2b2s0 +
1
2

cb2β− 1
4
(5− b2)bkρkβ− 1

2
b2(5− 3b2)ρ0]ρi, (A18)

Γ0
5 =[−bkρk|0β + (1− 2b2)ρksk

0β + bkρks0β + 2(1− b2)s0ρ0 +
1
2

cbkρkβ2

+ d(1− b2)β2 + ρkskβ2 − 1
4
(1− b2)|∇ρ|2αβ2 +

3
2

c(1− b2)βρ0

+
1
4
(9− 5b2)bkρkβρ0 +

1
2

b2(1− b2)ρ2
0]yi, (A19)

Γ4
6 =− 2b2dyi + 2b2ρi|0 + [−2d(1− 2b2)β− 2(1− 2b2)ρksk

0 −
1
2
(1− b2)|∇ρ|2αβ

− 3
2

c(1− 2b2)ρ0 − (1− 3b2)bkρkρ0]bi

+ 2bkρksi0 + 2b2βρksk
i − 2(1− 2b2)ρ0si

+ [2b2s0 − c(
1
2
− b2)β− (1− b2)bkρkβ− 1

2
b2(5− 3b2)ρ0]ρi, (A20)

Γ2
6 =− 2β2ρi|0 + [2(1− b2)ρksk

0β + 2(1− b2)s0ρ0 + 2(2− b2)dβ2

+
1
2
(1− b2)|∇ρ|2αβ2 + 2c(1− b2)βρ0 + 2(1− b2)bkρkβρ0 +

1
2

b2(1− b2)ρ2
0]yi

+ [−2ρksk
0β− 2dβ2 − 3

2
cβρ0 − 2bkρkβρ0 −

1
2
(1− b2)ρ2

0]βbi

− 2[bkρkβ + (1− b2)ρ0]βsi0 − 2β3ρksk
i − 2β2ρ0si

+ [−2s0 −
1
2

cβ +
1
2
(5− 3b2)ρ0]β

2ρi, (A21)

Γ2
7 =2b2bkρk|0 − 2b2(1− 2b2)ρksk

0 + 2(1 + b2)bkρks0 − c(
1
2
− b2)bkρkβ

− 4db2(1− b2)β− 2b2ρkskβ− (1− b2)(bkρk)
2β− 1

2
b2(1− b2)|∇ρ|2αβ

− 3
2

cb2(1− 2b2)ρ0 −
1
2

b2(7− 9b2)bkρkρ0, (A22)
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Γ0
7 =− 2bkρk|0 + 2(1− 2b2)ρksk

0 − 4bkρks0 −
1
2

cbkρkβ + 4d(1− b2)β + 2ρkskβ

+
1
2
(1− b2)|∇ρ|2αβ +

1
2

c(4− 7b2)ρ0 +
1
2
(9− 11b2)bkρkρ0. (A23)
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