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1. Introduction

In Finsler geometry, the Weyl theorem states that the projective and conformal prop-
erties of a Finsler space determine the metric properties uniquely [1,2]. Therefore, the
conformal property of Finsler geometry deserves in-depth study. Let F and F be two
Finsler metrics on a manifold M. The conformal transformation between F and F is defined
by L: F — F, F = ¢’F, where the conformal factor p := p(x) is a scalar function on M.
We call these two metrics F and F, and they are conformally related. A natural problem is
determining all Finsler metrics that are conformally related to the given one, given a Finsler
metric on a manifold M .

Bicsd-Cheng [3] characterized the conformal transformation that preserves the Rie-
mann curvature, the Ricci curvature, and the (mean) Landsberg curvature or the S-curvature,
respectively. Chen-Cheng-Zou [4] proved that if both conformally related («, §)-metrics
are Douglas metrics or of isotropic S-curvature, then the conformal transformation be-
tween them is a homothety. Later, Chen-Liu [5] characterized the conformal transfor-
mation between two almost regular («, f)-metrics that preserves the mean Landsberg
curvature. Shen [6] proved that the conformal transformation between non-Riemannian
Finsler manifolds, which preserves the S-curvature, must be a homothety. Recently, Zhang-
Feng [7] completely determined all Landsberg metrics which are conformally related to the
warped product metrics of the Landsberg type and obtained a class of nonregular unicorn
Finsler metrics.

In Finsler geometry, many non-Riemannian quantities are more colorful than those in
Riemannian geometry. When used together with Riemannian quantities, non-Riemannian
ones might lead to some global results. There are several important non-Riemannian
quantities, such as the Cartan torsion, the S-curvature, and the H-curvature. We have
another important quantity that is expressed in terms of the vertical derivatives of the
Riemann curvature. It is the so-called x-curvature defined by

Ty ok k
Xi= *E{ZR ik tR k.i}r
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where R K= ZG;k - Gij W+ ZGjGij = Gi]-G]k, and “-” denotes the vertical covariant
Xy vy vy
derivative. It can be expressed in several forms. The x-curvature has a great relationship
with the Ricci curvature. Recently, Shen [8] studied the x-curvature and showed some
relationships among the flag curvature, the x-curvature, and the S-curvature. Furthermore,
if a Finsler metric is of scalar flag curvature, then the x-curvature almost vanishes if
and only if the flag curvature is almost isotropic. Mo [9] proved that for a spherically
symmetric Finsler metric, the H-curvature vanishes if and only if the x-curvature vanishes.
Additionally, if F is R-quadratic, then it has a vanishing x-curvature. Chen-Liu [10] showed
that a Kropina metric is of almost vanishing x-curvature or of almost vanishing H-curvature
if and only if it is of isotropic S-curvature. Further, they proved that a Kropina metric is
a Douglas metric if and only if the conformally related metric is also a Douglas metric.
Cheng-Yuan [11] proved that, for a confomally flat polynomial (&, §)-metric, if F is of almost
vanishing x-curvature, then it must be Minkowskian. Recent research shows that the x-
curvature plays an important role in studies on spray geometry. Li-Shen [12] introduced
the new notion of the Ricci curvature tensor and discussed its relationships with the Ricci
curvature, the H-curvature, and the x-curvature. They had a better understanding of the
x-curvature. Further, they [13] studied sprays with isotropic curvatures and showed that
they are of isotropic curvature if and only if the x-curvature vanishes. Shen [14] showed
that the sprays obtained by a projective deformation using the S-curvature, always have a
vanishing x-curvature. Then, he established the Beltrami Theorem for sprays with x = 0.
The Randers metric was introduced by the physicist Randers in 1941 [15] in the
context of general relativity. Later, these metrics were used in Ingarden’s theory of electron
microscopy in 1957, and he first named them Randers metrics. Randers metrics represent
an important and ubiquitous class of Finsler metrics with a strong presence in the theory
and application of Finsler geometry, and the study of Randers metrics is an important step
in understanding the general Finsler metrics. Randers metrics are expressed in the form

F = a + B, where & =\ /a;;(x)y'y/ is a Riemannian metric and B = b;(x)y’ is a 1-form with

[1Bxlla := 4 /abi(x)bj(x) < 1.

In recent years, the x-curvature has become increasingly important in Finsler geometry.
Thus, we studied the conformal transformation that preserves the x-curvature of Randers
metrics. If the conformal transformation is a homothety, it must preserve the x-curvature
invariant. Hence, the homothetic transformation is trivial and is omitted here.

In this paper, we determine the necessary and sufficient conditions for the conformal
transformation that preserves the y-curvature of Randers metrics and obtain the following
results.

Theorem 1. Let F be a non-Riemannian Randers metric on a compact manifold M with dimensions
of n(> 3). Then, there is no nonhomothetic conformal transformation that preserves the x-
curvature.

2. Preliminaries

Let M be an n-dimensional smooth manifold and TM be the tangent bundle. If the
function F = F(x,y) : TM — [0,00) satisfies the following properties, (i) F is a C®
function on TM\{0}; (ii) F(x, Ay) = AF(x,y) for any A > 0; and (iii) The Hessian matrix
(&) == : (Fyzl.yj) is positive definite on TM\ {0}, then F = F(x,y) is called a Finsler metric
on M, and the tensor g = g;;(x, y)dx' @ dx/ is called the fundamental tensor of Finsler
metric F. If the Hessian ( gl-]-) is independent of y, F is called a Riemannian metric.

The Cartan tensor is defined by C := C[jkdxi ® dx) @ dxk, where

1
Cijk == 3 (gij)yk'

The mean Cartan torsion I, := Lidx’ : TyM — R is defined by
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I := ¢ Cijr.
The geodesics of F are locally characterized by a system of 2nd ODEs:

d>x! o dx
W +2G <x,dt> = O,

o' 2P - [P}

G' are known as the geodesic coefficients of F.
The volume form of F is expressed as

where

dVr = o(x)dx! - - dx".
For a nonzero vector y € TyM, the S-curvature S(y) is defined by

1

.k k
S(y) := G — AR
We say that F is of isotropic S-curvature if
S = (n+1)cF,

where ¢ = ¢(x) is a scalar function on M. If ¢ is constant, F is said to have a constant
S-curvature.

The non-Riemannian quantity x-curvature x := x,;dx' on the tangent bundle TM is
defined by

Xi = —%{ZRki,k+Rkk‘i}.

We say that F is of almost vanishing x-curvature if

X =—(n+1)F? (9> /
F yi

where 6 = 6;(x)y’ is a 1-form on M.
For a Randers metric F = « + 3, we have

iy . . . b2 .
g7 = %a” - % (b’y] + W) + “Fi?ﬂyly’, 1)

where b := al bj and b := ||B||« denotes the norm of B with respect to a. Additionally, the
mean Cartan tensor I = [;dx’ of F = « + f is given by

ntl Py
I = oF (bz‘—“z ’ 2
where y; 1= aijyf.
Let
_ Ll Loy U 0 S SR S
Hij =5 ilj t9ji ) Sij = 5\ Vil = Yjli )- Too = Ty Yy, S0 = avSiy,
ri = bryj, s;=Vsji, ro =1y, so = sy, r'o =alrj, s' =a’sj, r=1b'r;,
where “|” denotes the covariant derivative with respect to the Levi-Civita connection of a.
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Lemma 1 ([16]). For a Randers metric, F = « + P, the relationship between the spray coefficients
G' of F and G}, of « is given by
G' =Gy +Py+Q,
€00

where P := 5F S0 Q' = asy, ejj := rij + b;sj + bjs; and eqo := ei]'yiyj.

Lemma 2 ([16]). For a Randers metric F = « + B, the S-curvature is given by

b2
s:(n+1)<ez(£+r°1‘ib;()>.

For more details about Randers metrics, one can see [16].

3. The Conformal Transformation Preserving the x-Curvature of Randers Metrics

In [11], Cheng-Yuan obtained the formula of the conformal transformation that pre-
serves the x-curvature of Finsler metrics. In this section, we derive the formula of the
conformal transformation that preserves the x-curvature of Randers metrics.

Lemma 3 ([11]). Let F and F be two Finsler metrics on a manifold M. If F = ePF, then the
X-curvature and the x-curvature satisfy

Xi=Xi T+ BlH]]/] — BHi +2H/ (s.i.]‘ + B-ij)/

where p; := p,i, 0" = g’]p],B = F20'l;, H := lsz and “||" denotes the horizontal covariant
derivative with respect to the Chern connection of F.

For Randers metrics, by Lemma 3, we have the following result:

Proposition 1. Let F and F be two Randers metrics on a manifold M. If F = ePF, then the
X-curvature and the x-curvature satisfy

xi ={[(B— a)oxr oF + (a® +20%ap + B*)pis* ) — 2045 aBF] al +(1-0%) ipgo ®)
+ Zbkpk[l’oo + (,5 — DC)SO] ? + Pk\O + {[ (4— 3b2)06 + bzﬁ]roo + 2(0& — ﬁ)roF

+2[—(1—2b*)a+ (3 — ZbZ)ﬁ]aso}% + o [—b?a® + 2(—2 4 b*)ap — B?] a%

TR~ E 1 (1 )b - (- g - 2,
b2

1
& (poji — pito) + {ok[—2ar*0F + 2(1 — b*)a?s*y + 25 F] —;

k
—abt ;i + 2

—(1-1? iglo + 26% pje (10 — 2asg) az +{[(5 — 4b*)a + B]roo + 4argF

+2[~2(1 — 26%)a + 30 + Bso} £ + [(2 — 362)a? — 208 — 7] P"po

2.2
—(1- bz)% + (1 - )[(1 - 20%)a? — 20 — ﬁz]—o}bi
Ti0
+ [—2bfpaF —2(1 = 1)a] 5 21— b%)py + kakF] +api(r — )
2[b*oxa®F 4 (1 — bz)txzpo]ﬁ
+ [~[(2 = b?)a + Blroo — 2argF — 2(b*a® + 2aB + B%)so

+ (1= 1) (02 4+ 20B + B2)po + b py (42e® + 208 + B FI B,
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where |Vpl3 := a'p;p;.

Proof. By (1) and (2), we have

. . oo Q . b2 " ‘

o == oo = gamnt'+ (oot o= i) @)
i _ntl1 v —1)a+F

B = sz’Ii = > [bkpka — (F)PO} ) 5)

According to Lemma 3, we obtain

Xi = Xi + By — Bji +2H/(S.i,j + B.i,))

0B, 0B ;
= X;+ 57y —2G"By ~ o5 T 2H (S + B.ij)

ox/ 0
9B 0B ;
=Xxit ax]-l ¥ —2(Gy + Py + Q)B.ix — o T 2H (S + B.ij)
dB dB ;
=x;+ (axj]/] - 2G§B.k) . - 2@ - ZQkB.i.k +2H (S.,’.j + B.,‘.j)

=X+ (B‘jyj).i — 2B\i — ZQkB.i.k + ZHj(S.i.]' + B.,’.j).
Plugging (4) and (5) into the above equation yields (3). O

Using Proposition 1, we can obtain the necessary and sufficient conditions for a
conformal transformation to preserve the x-curvature of Randers metrics.

Proposition 2. Let F and F be two non-Riemannian Randers metrics on a manifold M. If F = P F,
then x = x if and only if the following equations hold

[Tsa* + IT3a? +T1; =0, (6)
ot + Tha® + Ty = 0, @)

where 115, Iy, 113, Iy, Iy and Iy are polynomials in y, listed in (A1)—(A6) in Appendix A.
Proof. Since ¥ = x, we have
a(a+B)* (X — x;) = 0.
Plugging (3) into the above equation yields
[T5a° + [ga* + I3 + I + a4 Ty = 0,
where I15, Iy, I13,11,,I1;, and Iy are polynomials in y. We obtain

H50¢4 + Hgvcz +1I; =0,
[Tyt + Iha? +I1y = 0.

O

Using Proposition 2, for a Randers metric F = « + 8, we can further optimize the
necessary and sufficient conditions for the conformal transformation to preserve the x-
curvature.
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Proposition 3. Let F and F be two non-Riemannian Randers metrics on a manifold M. If F = ePF,
then x = x if and only if the following equations hold

I3a% +T9 =0, 8)
(2 — B)T; + (1= b)[op|0 + 205" 0B + (250 + B + P prB)po )
— (1= SRy — i) =0,

2rg0 + 4soB — (1 — b%)Boo = c(a?® — B?), (10)

where ¢ = c(x) is a scalar function on M, and T3, TS and T; are polynomials in y, as listed in
(A7)—(A9) in Appendix A.

Proof. “Necessity”. If x = x, according to Proposition 2, we know that (6) and (7) hold.
According to (6) x B — (7), we have

(a® = B*)A; +2(1 — b*)[2rop + 450f — (1 — b*)Bpol Beo(yi — Bbi) =0, (11)

where

A; ={2Bb oy + 0% (pi0 — poji) + [20kr"0 — 2(1 — b?)pys”o + 4b* pgso
— 2015*B + (1 — 1%)| V| — (2 — 36%) b pipolb; + 26 pirio + 26 prsio
— 2Boxr*; 4 2Bpiski 4+ [—265 kB — 2(1 — b?)pgls; + [2r0 + 2bsg
— (24 0%)b i — b* (1 — b*)polp; o
+ B (0ijo — Poji) + [—26 k0B — 26 piroo + 2015 B — 267 pys(B — 2ropo
— 20 o0 +2(1 — 2b%)sopo — (1 = b%)| Vp 27 +2(2 — b*)b"piBpo
+6*(1 )3y
+ [—(5 — 4b%)roopo — 2(5 — 4b%)soBpo + b orBpo + (1 — b%) (3 — 2b%) Bogbi
+ [26% 1B+ 2(1 — b*)pol Bsio + [ro0 + 2508 — b i — (1 — b*) Bpo] Bp:-

Since a2 — B2 is irreducible and py # 0, it is easy to see from (11) that 2rgy + 4508
—(1 — b?)Bpy is divisible by a?> — B2. Thus, a scalar function ¢ = c(x) exists on M such that

270 + 4508 — (1 — b*)Bpg = c(a® — B?). (12)

According to (12), we obtain

1o = 5e(a® — §7) — 250 + 2 (1~ 2)Bpo, 13)
ro = — b%sg + %c(l —b)B+ 3(1 — b?)brorB + ibz(l — b%)po,
o = gerk = B+ [—so = 3B+ 4 (1 = P)polt + (1 - WP)pap (19
By substituting the above equations into (11) and (6), we obtain
Tia* + 1202 +T9 = 0, (15)
a2 4+T19 =0, (16)

where 1"‘11, 1"%, 1"(1], F% and Fg are polynomials in y, listed in (A7)—(A8) and (A10)—(A12) in
Appendix A.
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Then, (16) x (a2 + B2) + (15) x B yields
(0 — B2)T; + (1 — b?)[ rhogjo + 205" 0B + 25000 + cBpo + b orBpo
1
-(1- Ebz)Pg]ﬁz(%’ —bip) =0.

“Sufficiency”. If we assume that (8)—(10) hold, we can easily have (6) and (7). Based on
Proposition 2, we know that the conformal transformation preserves the x-curvature of
Randers metrics. This completes the proof. O

4. Proof of the Main Theorem

Now we can prove our characterization theorem for the conformal transformation
preserving the x-curvature of Randers metrics.

Theorem 2. Let F and F be two non-Riemannian Randers metrics on a manifold M. If F = eF,
then X = x if and only if one of the following cases holds:

(i) (b*px = 0) p(x) satisfies

po =2, (17)

and B = b;(x)y' satisfies
b*by; = —2sbj, (18)
Zskskaij — bzsi‘j —4sis; =0; (19)

(ii) (Vo # 0) p(x) satisfies
o=t Yok 0)

and B = b;(x)y' satisfies

217450171-‘]- =b? (21[)0 — bzbkka())lZ,'j + (bzbkpks() — 21/JO> b,'b]' + 2B (leib]' — bil[Jj) (21)
+ 2b280 (bl‘S]' - Zslb]) —2p? (/Ssl- + bZSi())S]' —2b? (21[)1y] — yllpj),

4bzskskaij :Zbil/J]‘ + Zl/Jib]' + 8bzsisj — szbkpksibj — b4bkpksi]‘ + 217451' (22)

|j7
where Yo = b?spsky + sgskB and p; = bsys*; + s55b;.

Proof. “Necessity”. If ¥ = x, based on Proposition 3, we have (9). Because a*> — p? are
relatively prime polynomials in y, there is a scalar function d = d(x) on M such that

1
pojo + 20x5°0B + 2s0p0 + cPpo + b oo — (1 — EbZ)P% =d(a® — B7).
Based on the above equation, we have
1
pojo =da® — 2pis 0B — 2s0p0 — dP* — cPpo — b piPpo + (1 — §b2)P%/
poji =2dy; — pijo — [20k8"0 + 2dB + cpo + b prpolb; — 2Bps’; — 2p0si

1
+[—2s9 — B — b +2(1 — §b2)Po]Pi-
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By substituting the above equations into (8), (9) and (15), by a direct computation, we

obtain
Tja* + 1302 +T9 =0,
[3a® +15 =0,
I2a?+T¢=0,

(23)
(24)
(25)

where l"fi, l"i, 1"2, 1"%, 1"8, l"% and l"g are polynomials in y, listed in (A13)-(A19) in Appendix A.

By calculating (24) x (a® + 2,32) +(23) x 2B+ (25) x 2,32, we obtain
T +T2=0,

where T g and T% are polynomials in y, listed in (A20)-(A21) in Appendix A.
Contracting (26) with b yields

202 +T98% =0,

where I'Z and I') are polynomials in y, listed in (A22)~(A23) in Appendix A.
Since a2 is irreducible, (27) is equivalent to I2=0and 1"9 = 0. That s,

szbkpkm —26%(1 — 2b%) 0xs%0 + 2(1 + b2)bF pysp — c(% — b?)br o
— 4db*(1 = b%)B — 26%04s"p — (1 — b7) (V" pr)?B
P 1) Vo2 — 201~ 2P)p — 307~ 90 Wrpp0 = 0,
— 2bF 0 + 2(1 — 267 pys’o — 46 pyso — %cbkpkﬁ
40— P)p + 205+ 2 (1~ )|V + so(4— 70%)p0
+%@—n#w%WO:a
By calculating (28) + (29) and (28) + (29) x b?, we obtain
— 26" pyo + 2(1 — 267 pys"o — 2bFpso — cb¥pip + 4d(1 — b*)B
— (BB + 2084 B + 5 (1~ 1) [Vpl2B + (2~ 3)po
+ g(l — bZ)bkpkpo =0,
ZWmm—%w%w—%ﬂmfﬁ+%w%m+ﬁwmm=0-

From (30), we obtain

bkpk|0 =(1—2b%)pis o — BXprsp — %cbkpk,ﬁ +2d(1 - b*)B

1 1 3
- E(kak)zﬁ +oxs"B + 1(1 —b%)|VplB+c(1 - Ebz)Po
9
+ 4 (1= b%)b oo,
1 1 1
Bon; =[—5cb o +24(1 = b%) — S (*01)* + pis” + 7 (1 = b7) [ Vpl3]b

3 9
+(1- 2b2)pkski — bkpksi +c(1— Ebz)Pi + 1(1 - 52)kakPi-

Based on (31), we divide the problem into two cases: (i) bkpk = 0; (ii) bkpk # 0.

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)



Mathematics 2023, 11, 1941 9 of 19

Case (i): bkpk = 0. Based on (31), we obtain %cb2p0 = 0. Thus, c = 0.
Furthermore, based on (14), 0 = (bkpk)‘i = bk|,»pk + bkpk‘i = pr(rk; + %) + bkpk‘i =
1
71— b*)|Vplz — prs"1bi + prs"; + b py;- Thus
; 1
by, = — 02 (1 = 1) Vpli + ous" (1 + 7). (34)
On the other hand, contracting (33) with b’ yields
b py; = 2db? (1 — b%) — (1 — 3b%)pys” + %bz(l — b} |Vpl2. (35)
Based on (34) and (35), we have
1 1
d= ﬁpksk - Z|VP|§- (36)

By contracting (24) with b’ and plugging bkpk =0,c =0, (32),(33) and (36) into it, we
can conclude that

1
(V*a® — /52)(552\VP|§ + 205" + (450 + b*po)po = 0.

Since b?a? — B2 is irreducible, pg = — %.
4
For pg = — %, we have
4sksk 16sksk 85ksk
st = = Vel = = d = =5 (37)
451‘\0 3 4SkSki 4skskbi
P =" Vo=
By plugging the above equations into (25), we get
{szskskyi - b4si‘0 + b2(1 — 2b%)spskob; + (1 — 3b%)sys* Bb; (38)
— b*Bsysk; — 4b?sps;}a? — (1 — b?) (bPss™o + s¢s*B) By = 0.
Contracting (38) with b’ yields
{(38 = 26%)bss" B — b5y g + bH (1 — 2b%)sis o Y — (1 — b?) (bPsis™o
+sis°B)p7 = 0.
Since a2 is irreducible, then we can easily have
bzsksko + skskﬁ =0. (39)
Plugging (39) into (38) yields
b?sijo = —4s0s; + 25,5k, (40)

which is (19).
Substituting (37), (39) and (40) into (24) and (12) yields

2
bsjp = sob; — Bsi,

bzi’oo = —ZSOﬁ.
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Hence
zbl"]’ ZSZb],
which is (18).
Case (ii): bkpk # 0. Based on (31), we obtain
1 X 1,1 5

== 2 — (42 . 41
so = 4 (c+2b%px) 4(bkpk+ )b%00 (41)

By contracting (24) with b’ and plugging in (32), (33), and (41) into it, we can conclude
that

{6db?(1 — b*)b*p) + (1 — b?) (4b2b* oy + cb?)|Vp? (42)
T (2 - 56%) (c + Bhog) (WF0)?}a? — 2a(1 — B2)bFpy B2

— (1= 1%)|Vp[ab*prB? + 3(c + Ppr) (b*pi) B2

+2(1 = %) (e + b o) b 0r oo — b*(1 — b%) (c + bor) o = 0.

Differentiating (42) with respect to i’ and contracting it with b’ yields

_|Volz ko 3ok K
d=— by (c+3b"px) 4b2 (c+ b py). (43)

By plugging (43) into (42), we have
(e + D p) {0 [(1 = 07| Vp[§ + (5 + b7) (b py) *Ja® (44)
+ 02 (1= 0%)|Vp[3 7+ 3(1+ %) (b0x)? B + 467 (1 — 1) b pe B
—2b*(1 - b*)p} = 0.
Based on (44), we divide the problem into two cases:
(i) ¢+ b = 0;
(ii-ii) — b?[b*(1 — b%)|Vp|2 + (5 + b?) (b pp)H]a® + b* (1 — b?) | V|28 (45)
+3(1+6%) (bp) 2% + 467 (1 — b%) b piBpo — 2b* (1 — 1) = 0.
Case (ii-i): By plugging ¢ = —b¥p; into (31) and (43), we obtain

4so | bpip

= 21l (47)
: 4s0 | borB :
Since pg = — 3 + e obtain
4s;  Vobi S
0i=—— , PkST = ——55kS
! b2 b2 p2k (48)

16
pkski bzsks + b PkSis |vp|a = Sks + 2 (bkpk) :
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Plugging c = —bkpk, (32), (33) and (47) into (25) yields

b?
Pijo = b4{ [8sis* + — (bkpk) Jyi + [—4(1 — 2b%)ss*o — 3bFpyeso (49)
+ 8sys* B + (kak) Blb; — b2bF prsio + 4PBsist;
+ (1650 — 56" i )si }-

By substituting ¢ = —bpy, (32), (33), (41), (46), (47), (48), and (49) into (24) and (12),
we obtain

— (skskbi + bzskski)az + (bzsksko + skskﬁ)yi + (s3 — skskoﬁ)bi (50)
— b?spsig + Bsks’; — soPsi = 0,
20%rg0 + 4sgp = Vi (B — bPa?). (51)
k
Based on p; = Zzszl b pibi ), (14) and (48), we obtain
pijo = [(—4s; + kakbi)\jb_z + (—4s; + b pii) (b72) ]y (52)
1T ok 2 8 2. k8 2\ ok
= 5 (V') i = 1\0"‘[ (L= b)sis’o — 75 (1= b)ses™p

1
Bowso + 3 (bkpk) Blbi b—zb"pksio — ab"ops:
Clearly, based on (49) and (52), we have
— 4bsis y; + 2bs;10 + 29ob; + (86%so — 2676 i B)s; — b*b pysio + 2B =0, (53)

where ¢y = b2spsky + skskﬁ and ¢; = b2sysk; + siskb;. Clearly, (53) is (22).
We claim that sy # 0. If sy = 0, we have s;5 = 0 based on (53). Based on (46), we obtain

k
po = b gzk p . Furthermore, we can obtain
k 2 (Vpp)?
pero =0, [Vply = "3 , b0 =0, 50 =0, 5o =0,
bk bk
r00 = Pk ( b2a? + [32) rio = Pk (—bzyi + ,Bb,‘), ro = 0.

202 202

Plugging the above equations into (7) yields
{B— (=020 + [(1 - 0%)* +1]%h; — [3 — (1 — b*)?|pBy;}a’
—[(1=0%)? +1]p%: = 0.

Contracting this with b’ yields

{B—(1-6)%a® —2(2 - b)p}b*a® — [(1 - b*)* +1]p* =0,

which is a contradiction.
For sg # 0, by (50) and (51), we can easily have

2b*sgby; = (b2bFpsob; — 2uob; + 4B; — 4b%sps; )bj + b (24 — b2V k50 ij

+ 207 (sob; — Bs; — b?sio)sj — 4b*yyy; + 2(b7y; — By,

ilj —

which is (21).
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Case (ii-ii): Differentiating (45) with respect to y' and y/ and contracting this with p’
and p/ yields

[("px)* = B[ VpIZ] (b7 (1 = 0)|VplZ + (14 b%) (bFpr)?] = 0. (54)
We claim that (54) cannot hold. If (b¥p;)? — b?|Vp|2 = 0, plugging it into (45) yields
(0*0x)?[~3b%a% +2(2+ 1) B) + 12 (1 — 17) (2b" o p — b po)po = 0.

Since —3b%a? 4 2(2 + b?)p? is irreducible, we obtain b*p; = 0,, which is a contradiction.
Similarly, if b?(1 — b%)|Vp|2 + (1 + b?)(b¥pi)? = 0, then plugging it into (45) yields

(B pr)2[-26%02 + (1 -+ 1)) + B(1 — 12) (26504 — BPpo)po = O.

Since —2b%a? + (1 + b?)B? is irreducible, we have b*p; = 0, which is also a contradiction.

“Sufficiency”. By substituting (17)—(19) or (20)—(22) into (6) and (7), respectively, we
can easily show that (6) and (7) hold. Based on Proposition 2, we know that the conformal
transformation preserves the x-curvature of Randers metrics. This completes the proof of
Theorem 2. [

Lemma 4 ([17]). 7o + 8o = 0 if and only if b* is a constant.

Lemma 5. Let F and F be two non-Riemannian Randers metrics on a manifold M. If F = ePF and
X = X, then b2 is a constant.

Proof. If the conformal transformation preserves the x-curvature of Randers metrics, based
on Theorem 2, we known that (18) or (21) hold.

If (18) holds, then we have b?ry + 259 B = 0. Differentiating this with respect to yi and
contracting with b’ yields

ro +sg = 0.

Similarly, if (21) holds, then we have 2b%rgg + 4sof = b o (B* — b*a?). Differentiating
this with respect to ' and contracting with b* yields

ro +sg = 0.
Above all, based on Lemma 4, we know that b? is a constant. [

5. Proofs of Other Results

Now, we are in the position to prove the other results. Firstly, assume that sy = 0.
Based on Theorem 2, we have the following result:

Theorem 3. Let F be a non-Riemannian Randers metric on a manifold M. Suppose that sy = 0.
Then, there is no nonhomothetic conformal transformation, which preserves the x-curvature.

Proof. Based on Theorem 2, we divide the problem into two cases:
@i) bkpk = 0. Since sy = 0, based on (17), we obtain pg = 0. Thus, the conformal
transformation is a homethety.
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(ii) bkpk # 0. Plugging sy = 0 into (22) yields s;p = 0. Based on (20), we obtain

_ o

00 EE Furthermore, we have

(b*px)?
bZ

oo =0, |Vplz = , B0r0 =0, 50 =0, 50 =0,

bk bk
00 = szk(—bz“z +B%), rio = szk(_bzyi + Bbi), ro = 0.

Plugging the above equations into (7) yields
{B— (=00 + [(1 - 1%)? + 1] — [3— (1 - b*)?|pBy;}a’
(-8 4 U =0,
Contracting this with b’ yields
(B~ (1= PP ~2(2 - P)F}ba? — [(1 - P2 + 1] = 0,
which is a contradiction. [

If the dimensions of the manifold are n > 4, then Theorem 2 can be simplified as
follows:

Corollary 1. Let F and F be two non-Riemannian Randers metrics on a manifold M of dimensions
n(>4). If F = ePF, then x = x if and only if one of the following equations holds:

4s b
o= -0 L0, 55)
and B = b;(x)y' satisfies
20%b;; = —b*b* pray; + b pibib; — 4s;by, (56)
4skskal-]- = —bkpkbisj + 8s;s; — bkpksib]- + ZbZSiU. (57)

Proof. “Necessity”. Based on Theorem 2, we divide the problem into two cases:
(i) bkpk = 0. Based on case (i) of Theorem 2, it is easy to check that (55)-(57) hold.

k
(ii) bkpk # 0. Based on case (ii) of Theorem 2, we have pg = — %U —+ hb’;z"ﬁ

based on the proof of Theorem 2, (50) holds. Differentiating (50) with respect to y/ and
contracting it with 4 yields

. Meanwhile,

(n — 3) (sxs*o + sxs*B) = 0.
Thus
bzskski + skskbi =0.
By plugging it into (22) and (50), we obtain

so(b%sig — sob; + Psi) =0, (58)
— 4skskyi + 2b25i‘0 + 8sps; — Zbkpkﬁsi — bzbkpksio =0. (59)

If sy = 0, based on Theorem 3, we know the conformal transformation is a homethety.
Thus, based on (58), we have

b?si — sob; + Bs; = 0, (60)
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ie., sip = 0 (sob; — Bs;). By plugging it into (59), we obtain
—4ssky; + 2070 — bprsobi + 8sos; — boxpPs; =0, (61)
which is (57).
Based on 2b%rog + 459 = b¥pi(B? — b*a?) and (60), we can easily obtain
20%b;; = —4s;b; — b*bFpraij + rpibib, (62)
which is (56).
Qg 4so | boup .
Sufficiency”. Since pg = ——= + Y (61), and (62) hold, we obtain (6) and (7).

Based on Proposition 2, we know that the conformal transformation preserves the x-
curvature of Randers metrics. This completes the proof of Corollary 1. O

Corollary 2. Let F be a non-Riemannian Randers metric on a manifold M. Then, there is no
non-homothetic conformal transformation that preserves the vanishing x-curvature (x = x = 0).

To prove Corollary 2, we require the following lemmas.

Lemma 6 ([16]). For a Randers metric F = a + 3, S = (n+ 1)c(x)F if and only if rog + 2508 =
2¢' (x) (a? — B*), where ¢ = c(x) and ¢’ = ¢’ (x) are scalar functions on M.

Lemma 7 ([8]). Let F = a + B be a Randers metric. It is of isotropic S-curvature if and only if its
X-curvature almost vanishes. In particular, it is of constant S-curvature if and only if x = 0.

Proof. For a Randers metric F = « 4 8, based on Lemmas 6 and 7, its x-curvature vanishes
if and only if it is of constant S-curvature. This means that

roo + 2508 = 2¢ (zx2 - ﬁz), (63)

where ¢’ is a constant.
Meanwhile, when the conformal transformation preserves the x-curvature, based on
Proposition 3, we have

2rg0 + 4sop — (1 — b%)Bpo = c(a® — p?),

where ¢ = ¢(x) is a scalar function on M.
Plugging it into (63) yields

(1=0%)Bpo = (4c' — ) (a® — B?).

Because a? — B2 is irreducible, we obtain pg = 0. Thus, the conformal transformation
is a homothety. O

6. Proof of Theorem 1

Now we assume that the manifold is a compact space. Because the conformal transfor-
mation preserves the x-curvature of Randers metrics, we have a better rigidity result.

Proof. If the conformal transformation preserves the x-curvature of Randers metrics, based
on Theorem 2, (19) or (22) hold.

When (19) or (22) holds, differentiating (19) or (22) with respect to yj and contracting
them with a” yields

2(n—2)
k
s ‘k = b2 |Sk|l%¢’
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where |s;|2 = sisk. Based on the Divergence theorem, on the n-dimensional manifold M,
we have f M sk| kdx1 -+ -dx" = 0. Thus, based on the above equation, we obtain that

2
/M sk‘kdxl ceedx =2(n—2) /M |Sé<2|“dx1 <odx" =0,
which means that sy = 0. By Theorem 3, we know that the conformal transformation is
a homothety. O

7. Conclusions

The research presented in this paper is driven by two motivations. The first motivation
is that research on the x-curvature has become more and more important in recent years.
The second motivation comes from the following question: is there a nonhomothetic
conformal transformation in Finsler geometry that preserves the invariance of certain
curvature properties? Based on Theorem 1, we know that on a compact manifold M of
dimensions #(>3), there is no nonhomothetic conformal transformation that preserves the
x-curvature on the Randers metric. From Corollary 1, we obtain three characterization
equations for the conformal transformation preserving the x-curvature of Randers metrics
on a manifold M of dimensions n(>4).

Author Contributions: Conceptualization, X.Y. and X.Z.; methodology, X.Y.; validation, X.Y.; formal
analysis, L.Z.; investigation, L.Z.; resources, X.Z.; writing—original draft preparation, X.Y.; writ-
ing—review and editing, X.Z.; visualization, L.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
Nos. 11961061, 11461064, 12071283).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In this appendix, we give some coefficients appearing in Sections 3 and 4.

Tls = — b pg; + [—(1 = 0%) | VI3 + 208" 1bi + pir®i — pis®s + 20" pisi + b6 pipi, (A1)
Ty = — 3B 0g; + 0% (00 — Pij0) + {—46"0ks0 — 20670 +2(1 — 17) pgs*o + 4pis*B

—2(1—b%)|Vp|2B + (2 — 36*) b prpo }bi
— 2b pyrig — 26 pysio + 3Bpxr™; — 3Bpks; + 2[26%oxB + (1 — b*)pos;
+ [=2r9 — 2b%sg + 2(1+ b%) Vo + b7 (1 — b7 polps, (A2)

I3 ={b"pyjo — o0 + pis"o — 26 prso — 208" B + (1 = b7)| Vp[2 B — b*B pipo by

+ (14 26)B(poji — pifo) — 3670 ok

+ {= (1= 6%)popo + 26" k700 — 4o 0 + 2(1 — 1) pis o + 4ropo — 46" ps0

— 4(1 = 26%)s0po + 204" B% — (1 = b*)|Vp 3% — 3676 piBpo + (1 — b) (1 — 2o } by

—2[26% 0B+ (1 — b2)po]rio — 2[36% 0B + (1 — b%)po]sio

+ 360k — 3%0xs"; + 2[b i + (1 — b) o] Bs;

+ [~ (2= b*)rop — 4roB — 2(2 + b*)sB + (5 + b?) bk o B2

+ (1= b*)(2+ %) Bpolps, (A3)
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Ty ={36"pyioB + 26 0xr00 — pir*o + (1 + 2b%)prs*oPB + 2ropo — 2(1 — 2b%)sopo
— 4ps" B +2(1 — 17| Vp 3> — (4 — b*) b piBpo — b (1 — b) 05}y
+ (2+ b*)B(poji — pijo) — BV oy
+{— (1= b*)pgoB + 26" pirooP + (5 — 4b%)raopo — 2010 + 4roPpo + 6s0Bpo
— 3 0xB%00 — 2(1 — b*) B }b;
— 2[b*0kB + (1 — b%)po] Brio — 2[8b" i +2(1 — b7)polBsio + B pxri — Boxs’s
+ [~ (3 = b*)rop — 2roP — 6s0p + 46" i B* + 3(1 — b%) Bpo] Bps,

TTy ={3b" B> + (1 — b%)pojo + 2b" piroo + (4 — 3b)ra0po + pir*oB?
+ (1+20%)pis"0B? + 20" piso B 4 2(3 — 2b%)s0Bpo — 2045 B + (1 — b%) |V 3 °
— (5 — 2b*)b* B0 — (3 — b7) (1 — b*) B }ys
+ B (poji — pio) + [roopo + 2s0p0B — b piB?p0 — (1 — b*)Bpj] Bb
—2[b" B+ (1= b%)po] Bsi0 + [—r00 — 2508 + b0x B + (1 — %) Bpol Bpi,

Tlo ={b*px0B” + (1 — b*)pjoB + b*roopo + pir*oB* + pis*0B> — 2roPpo — b orBeo0
— (1—-0%)Bp5} Byis

I3 =2Bb p; + b (pij0 — poji) + [—2(1 — b*)pxs*o — cb o — 208" B + (1 — b*)|Vp[2B
— (2 28200 — (1 — 26%) bk pgpolby + 26 0xsi0 + 200558 — 2B 0B+ (1 — B2)po]s;

2

31601 = 27)B 31+ Yo — 021~ oo,

9 =B(pi — Poji) + [~26"px0B — 267 pks* 0B + 26" pisoB + 2(1 — b%)sopo + cb*pp?

1 1
+ 205" % — (1= b%) [ Vpl3p* + c(1 = b%)Bpo + 5 (5 — b*)6orpo + 5 (1= b*)oflyi

+ %[Cﬁpo +2b 0 Boo + (1 — b%)0p] Bbi + 260k + (1 — b%) 0o Bsio
— S LB+ 2o+ (1 )0l B
T ={Bb"px; + 0% (pij0 — poji) + [—2(1 — b*)pys™o — %Cbkpkﬁ — oisB
+ 3= P)TpRB e~ 20%)p0 — (1 262)PFpyp0lby
+ 20" gsio + Bors’i — [0 kB +2(1 — b)pols;
+ [ — (5430200 — 2171~ Ppolpi}e?
+ [=D* k0B + (1 — 26%)pis"0B + b prso + 2(1 — b)sopo + %Cbkpkﬁz + s B?

1 3 1 1
= (L= D)) Vplip? + Se(1 = b)Bpo + (9 = 50%)b"piPpo + 567 (1 — b7)afy;

+ [=(1 = b*)pgjp — 2(1 — b*)pxs"0B — 2(1 — b*)sopo — c(1 — b%) Bpo
— (1= )W pefipo + (1 207)(1 — B2)o3] by,

T} = — b + [%Ckak + st — 2(1 — )| Vplalbi — pes®i + b pisi
+ %[—ZC(l — %) 4 (14367650 ]p;,

(A4)

(A5)

(A6)

(A7)

(A8)

(A9)

(A10)
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I3 =[050y0 + prsto — Pouso — 5cbhoep — pistB + o (1— 1) Vpl2p
¥ 3e(1 = P)po — (14 30)6 pupoly
— 3B 0; + (14 26%)B(pogj; — pij0) + [—(1 = b*)pgjo +2(1 — b7)pys o B
—2(1 = b*)sopo + %Cbkpkﬁz + 305" B* — Z(l —b%)|Vp[3p% +3c(1 —b?)Bpo
~ 302 pufipo + 5 (1~ 2)23]b: — 23650 + (1~ P)polsio — 365"
+ 3650k + 4(1 — b%)po Bs;
- i[6cb2/3 +3(5 4 30%)b* B+ 2(1 — b?) (1 + 2b%) po) Boi,
r :i [126% 0408 + 4(1 — b)) + 4(1 + 267 ps¥op — 6cb*pip* — 1265 prsop
—8(1 = b%)sopo — 12048"B* + 5(1 — %) |Vp[ 38> — 3(5 — b*)b 0 Bpo
—6(1 = b%)Bpo — 2(1 — 1) (2 + 1)o3] By
+ (00— o) — 20050 + (1 — 12))Bs10 — cBoo + 2D pxpop
(1)) + S[ep+ (1 Yol
T = — gy + 5 [2eb0i — 4d(1 — ) + dpss —3(1— 02) [Vpl2lh
— ks’ + b oesi + i[—Zc(l — %) + (1+30")6 ooy,
T3 =[b"ox0 + k5" — Ppxrso — %Cbkpkﬁ +3d(1+b%)B — prs*B + 2(1 — )| Vplp
321 =)0 — 3 (143026 pypolys — 328 pyy; — 21+ 26%) iy
201~ 4P)pukop + Scbkouf? — d(1 + 5P + 3B — - (1 - 1) Vplap?
+30(1 - 20%) fipo — 62 pefipo — 5 (1~ 1)l
—2[36% 01 + (1 — b*)po]sio — (5 + 4b%) B2 pxs"; + [3b i + 2(1 — 46%)po s
2004 282)50 — (1 + 2B+ 3 (11 )6 pef + 2(5— 362)(1+ 262)po B,

5
T =[36"0y0B — (1 — 4b*)prs 0 — 36 prsoB — 4(1 — b)sopo + (1= b*)|Vpl3 87

—_

- gcbkpkﬁz +d(1+b*)p* - 2pkskﬁ2 - gc(l —b?)Bpg — ~(19 — 7b2)bkpkﬁpo
+b?05) By

~2B%py0 + [~2pysop — 2487 — B0 — W pefipo + 503

— [26" i +2(1 = b%)]Bsio — 2B*oxs"s — 28%posi

1
+ 250 — cB— b+ 56— 36%)pol Bpi.

4

(Al1)

(A12)

(A13)

(A14)

(A15)
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I3 = — 2db%y; + 2B py; + 2670110 + [—2(1 — 2b%)pgs®o — cb* i + 2db? B — 205" B

(1= )| Vo6~ 2e(1 —~ 202)p0 — (1~ 37)pypolby

+ 26 psio + 2(1 + b7) Bors®; — 2[b¥prB + (1 — 2b%)polsi

+ [2b%so + 1710[3 - %(3 + )b 0B — %52(5 —3b%)poloi, (A16)
T9 =[—2b"pg 0B — 26%pxs" 0B + 265 psoB + 2(1 — b*)sopo + cbp B> — 2dB* + 2p4s* B

— (1= )| VpRE +c(1— 1)Bpo + 5 (5 — B2)50Bpo + 2 (1 — P)pdlyi + 26%,0

+ [2018%0 + 2457 + gCﬁpo + 26" o Bpo + %(1 — b%)05] B

+ 260k B + 2(1 — b%)po Bsio + 2B°0xs’i + 2B%00si

+ 250+ 3¢~ 5 (1 - P)oolpr (A17)

—
SN}
I

1
— 2b%dy; + PbFpy; + 26700 + [—2(1 — 207)pys’o — Ecb"pkﬁ — (1-3b%)dp

1 3
— ps B+ 5 (1= 1) |Vp[Rp — (1= 30%)b prpo — Sc(1—267)poby

+ 26k pgsio + (1 + 26%) Bogs®; — [b* B+ 2(1 — 2b%)pols;
1
4

1
T2 =[—b 0B + (1 — 2b)pis 0B + b prsop + 2(1 — b*)sopo + Ecbkpkﬁz

20 4 et (5 BIPpef — S12(5— 307)polor (AlS)

FA( =PI+ st — (1= P [VpRE + el ~ ¥)Bo

+ 30 506 0cppo + 211 — )3y, (A19)
Tf = — 20dy; + 200y + [~24(1 — 202) — 2(1 ~ 202)pysko — (1~ 1) Vplap

- gC(l —2b%)po — (1= 30*)6"0kpo by

+ 20 pisio + 267 s’ — 2(1 — 2b7) pos;

+ 2050 — (5~ P)B — (1~ )i — 512(5— 302)pol, (A20)
Tg = —2B%0i0 + [2(1 — b%)pis"0B + 2(1 — b )sopo + 2(2 — b%)d B>

3 (1= 07)|Vp[2B +26(1 — )0 +2(1 — 12)Phoboo + 101~ 1)y

+ [—2045%0B — 2% — %Cﬁpo — 2b¥ o B0 — %(1 — b%)05] Bbi

— 2[b*0xB + (1 —b%)pol Bsio — 2B pksy — 2B7posi

+[—2s0 — %cﬁ + %(5 — 3b%)po] Bpi, (A21)
% =200 0,0 — 207(1 — 27)pisho + 201+ P)Whpeso — (5 — )b pif

—4dP(1— 1)~ W — (1~ 1) (B0 — 5121 — 1) [Vpl2p

3 1
— Ecbz(1 —2b%)pp — §b2(7 — 962\ b prpo, (A22)
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1
9 = — 26"y +2(1 — 26%)pys*o — 46 pysp — Ecbkpk/s +4d(1 — b?)B + 205" B

45 (1= D) VpRB+ 2e(d—T1)p0 + 5 (9 — 110 Wrpypo. (423)
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