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Abstract: In this paper, from linear operator, semigroup and Sturm–Liouville problem theories, an
abstract system model for the convection–diffusion (C–D) equation is proposed. The state operator
for this abstract system model is here defined as given in the form of the Sturm–Liouville differential
operator (SLDO) plus an integral term of the same SLDO. Our aim is to achieve the trajectory tracking
task in the presence of external disturbances to the C–D equation invoking the regulator problem
theory, where the state from a finite-dimensional exosystem is the state to the feedback law. In this
context, the regulator (Francis) equations, established from the abstract system model for the C–D
equation, here are solved; i.e., the state feedback regulator problem (SFRP) for the C–D system has a
solution. Our proposal is validated via numerical simulation results.
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1. Introduction

Systems whose dynamics evolve in an infinite-dimensional Hilbert space are denom-
inated as infinite-dimensional systems modeled by partial differential equations (PDEs),
which are also termed as distributed parameter systems (DPSs), since it reflects the spatial
distribution of a physical quantity. The main goal when designing the control system for
these class of systems is satisfying stability in the presence of external disturbances.

Dynamical systems given either in the input–output equation form, modeled through
ordinary differential equations (ODEs), or in the state-space form can be transformed to the
transfer function (transfer matrix) form; this latter description is always rational with real
coefficients. Transfer functions from DPSs are non-rational functions which can be analytic
in the complex plane and having no poles, such as in the case of the transport equation,
namely, a first-order PDE, or having only zeros in their denominator, such as for the
diffusion equation with Neumann boundary conditions or for the wave equation [1]. From
classical control theory, classical controllers are designed from the knowledge of the transfer
function, i.e., from an output/input description of the system. From DPSs, if a closed-form
expression of their transfer function is provided, then the direct design of the controller may
be possible. This approach is referred to as direct controller design. The primary drawback
from this approach is the requirement of an explicit representation of the transfer function.
In addition, the controller design will be infinite-dimensional, so this must be approximated
by a finite-dimensional system. For some practical applications, when a transfer function
for a DPS is not available, then the indirect controller design approach is the most common
alternative to be employed. It consists of obtaining a finite-dimensional approximation of
the system from which the controller can be designed [2].

The design of a feedback law such that it guarantees the tracking of a reference signal
in the presence of an external disturbance, the latter generated through an exosystem, is the
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main objective when invoking the regulator problem theory [3]. Beyond finite-dimensional
systems, the regulator problem theory has been playing an interesting role in the control
of infinite-dimensional systems. In this work, we deal with the state feedback regulator
problem (SFRP) where the state of the feedback law is from a finite-dimensional exosystem.

From linear finite-dimensional systems, the regulator problem theory has been ex-
tended to infinite-dimensional systems also known as DPSs [4–8]. In [6,7], control systems
governed by a discrete spectral operator were introduced, where the so-called state operator
meets with the property of spectrum decomposition [9,10] from which a controllability
condition was determined implying the stabilizability of the control system through a
finite-dimensional controller. In [8], the regulator problem was extended to DPSs for
bounded input and output operators, with reference and disturbance signals generated
through a finite-dimensional exosystem, providing criteria for the solvability of the reg-
ulator equations. The linear regulator problem when considering bounded input and
output operators but also bounded disturbance operators entering along the entire interval
is shown in [11]. In this last work, the linear regulation problem was solved to the heat
equation, damped wave equation, harmonic tracking for a coupled wave equation, control
of a damped Rayleigh beam, vibration of a 2D plate, thermal control of a 2D fluid flow,
thermal regulation in a 3D room, and control of a linearized Stokes flow in 2D. Reviews
about the generalization of the regulator problem to infinite-dimensional systems can be
found in [12,13]. The output regulation problem for DPSs has been studied extensively
for different classes of PDEs systems; a summary is given in [14]. In [14,15], following
the methodology from [11] which is based on the derivation of the transfer function from
the system model representation in the state-space form to the solvability of the regulator
equations, the SFRP was solved for the R–D equation. An abstract model for the R–D
equation was derived where the state operator has the form given by the Sturm–Liouville
differential operator (SLDO) plus a parametric term. Simulation results validate their pro-
posal showing the achievement of the regulation tasks to a set-point as well as to harmonic
tracking under both set-point disturbance and harmonic disturbance rejection.

The phenomena described by a C–D equation exhibit diffusion and convection prop-
erties that are common in many scenarios. Diffusion is the mix of a substance through
the medium while convection is the movement of the substance by means of the medium,
e.g., when considering smoke rising from a chimney, the smoke particles are convected
upward with the air and diffuse within the air currents. It is possible for the convection
of the substance to contribute more of a movement in the substance than the diffusion
itself. In [16], an illustration about the solutions and behavior for diffusion problems when
including the convection term is given. A review of different diffusion models, namely,
the Maxwell–Stefan model, the generalized Fick’s law, the classical Fick’s law, and the
irreversible thermodynamic model, is given in [17]. The importance for an accurate mea-
suring and prediction of the diffusion coefficients as well as the importance of considering
the dragging effect is emphasized. So, an accurate method to approximate the gas–oil
mass transfer mechanism based on irreversible thermodynamics was proposed. In this
last work, molecular diffusion is only discussed since the system was assumed to be an
isothermal one. His proposal is validated through numerical examples and experimental
test cases when considering convection for some cases. A chemotaxis–diffusion–convection
coupling system which describes a form of buoyant convection in which the fluid develops
convection cells and plume patterns is studied in [18]. The pattern formation and hydrody-
namical stability of the system was investigated through the development of an upwind
finite element method based on a two-dimensional convective chemotaxis–fluid model.
Numerical results show the influence of the deterministic initial condition on the overall
behavior regarding the number of plumes and that the overall system was stabilized by
the chemotaxis. To the best of our knowledge, there is no work about the solvability of the
SFRP to a C–D system. In fact, there is not much in the literature about works related to the
control of a C–D system.



Mathematics 2023, 11, 1944 3 of 16

In this work, our proposal is related to solving the SFRP to the C–D equation. Our main
contribution is the definition of the state operator in terms of the SLDO plus an integral
term, giving rise to an abstract model for the C–D equation from which the regulator
equations have solutions.

The organization of the manuscript is as follows. A summary about the properties
of the modeling of DPSs through transfer functions, a brief description of the SFRP for
finite-dimensional and infinite-dimensional systems and its application to the R–D equation
are given in Section 1. In Section 2, we formulated the problem statement; the design of the
regulator is carried out in Section 3; in Section 4, we included simulation results; and the
conclusion is given at the end.

2. Problem Statement
2.1. Sturm–Liouville System

Typical problems of mathematical physics lead to Sturm–Liouville eigenvalue and
boundary value problems (BVPs). The method of separation of variables in initial BVPs for
PDEs lead to Sturm–Liouville eigenvalue and BVPs for ODEs [19]. Most of the problems
involve the wave equation or heat (diffusion) equation.

Let us consider the following differential equation

(p(x)y′(x))′ − q(x)y(x) + λr(x)y(x) = 0, a ≤ x ≤ b, (1)

subject to symmetric (separated) boundary conditions

α1y(a) + α2y′(a) = 0, β1y(b) + β2y′(b) = 0, (2)

with α1, α2, β1 and β2 constant values, p(x), q(x) and r(x) denoting some given functions,
and λ representing a separation constant, which is positive in typical applications whose
value represents real eigenvalues [20]. The function y(x) will be required to vanish at both
ends of the interval. Anyway, separated boundary conditions can be specified in such a
way that y(x) could vanish at one endpoint and its derivative could vanish at the other.
The boundary conditions can be interpreted as defining a Hilbert space Z . The boundary
conditions are satisfied in many problems in mathematical physics and are determined
by the physical application under study. The BVP given by (1)–(2) is the so-called Sturm–
Liouville boundary value problem (SLBVP) or Sturm–Liouville system (SLS) [20,21]. In this case,
the BVP is said to be regular.

Let us consider the SLDO [22] given by

L = − d
dx

p(x)
d

dx
+ q(x), (3)

if p(x) 6= 0 and both p(x) and q(x) are continuous on [a, b], then it is said that the SLDO (3)
is regular.

Considering the linear homogeneous differential operator

L[y(x)] = −(p(x)y′(x))′ + q(x)y(x) (4)

the Sturm–Liouville Equation (1) may be rewritten as

L[y(x)] = λr(x)y(x). (5)

Modeling involving linear second-order ODEs can always be put into the so-called
self-adjoint form, which for higher-order equations not always is possible. The way to
convert linear second-order ODEs into the self-adjoint form is summarized in the next
theorem.
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Theorem 1 ([23]). Assume that f (x) > 0, g(x) and h(x) are analytic real-valued functions in the
finite (or infinite) interval a < x < b; then, the existing functions p(x) > 0, q(x) and r(x) > 0
are similarly analytic and real valued in the same interval such that

1
r(x)

[
(p(x)y′)′ + q(x)y

]
= f (x)y′′ + g(x)y′ + h(x)y (6)

identically in y

Proof. See [23].

The expression from the right-hand side in (6) is referred to as the self-adjoint form,
which is also known as the Sturmian form. The Hilbert space definition of self-adjoint
not only depends from the shape of (3) but also from the boundary conditions and scalar
product for an unweighted integral from a to b that makes (4) a Hermitian operator [24].

The solutions (eigenfunctions) of the SLS have many properties in common, such
as the orthogonality property useful in eigenfunctions expansions in terms of Fourier
series, Chebyshev polynomials, Laguerre polynomials, Hermite polynomials, spherical
Bessel functions, and many others [14,21,25,26]. The most important property of the
eigenfunctions of an SLS is that they form a complete set.

The SLS is an infinite dimensional generalization of the finite dimensional matrix
eigenvalue problem

Mψ = λψ (7)

with M a n × n matrix and ψ a n-dimensional column vector. As in the matrix case,
the SLS will have solutions only for certain values of the eigenvalue λ. The solutions ψ
corresponding to this λ are the eigenfunctions. For the finite dimensional case with a n× n
matrix M, there can be at most n linearly independent eigenfunctions. In general, for the
SLBVP, there will be an infinite set of eigenvalues λ with corresponding eigenfunctions
ψ [26].

To the second order case,

L =
n

∑
i,j=1

∂

∂xj

(
aij(x)

∂

∂xi

)
− a(x) (8)

with a(x) ≥ 0 for all x ∈ Ω, Ω ∈ Rn is a bounded domain with piecewise smooth boundary,
aij(x) = aji(x), aij ∈ C∞(Ω), where Ω denotes the closure of Ω, and self-adjointness
is determined by the boundary conditions from the differential equation. If there exist
constants 0 < c1 < c2 < ∞, for all ξ ∈ Rn and x ∈ Ω, by uniform ellipticity, it implies that

c1‖ξ‖2 ≤
n

∑
i,j=1

aij(x)ξiξ j ≤ c2‖ξ‖2, (9)

where ‖ · ‖ represents the Euclidean norm in Rn.

2.2. Abstract Control Model

Consider the abstract evolution (differential) equation

zt(x, t) = Az(x, t), (10)

z(x, 0) = z0(x), (11)

where A is the state operator on Z , z0 means the state of the system defined at time zero,
z(x, t) means the state of the system at time t, and zt denotes the derivative dz(t)/dt.
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Definition 1. If positive constantsM and α exist and

‖z(·, t)‖ = ‖eAtz0‖ ≤ Me−αt‖z0‖ ∀ t ≥ 0, (12)

with z0 ∈ Z , is satisfied, so the system (10) and (11) is exponentially stable, which means that A is
(exponentially) stable, i.e., A generates an exponentially stable C0 semigroup in Z [27].

In other words, the uncontrolled state z(·, t) = eAtz0 converges exponentially fast to
zero as t→ ∞ [28].

Now, let us consider the abstract control model

zt = Az(t) + Binu(t) + Bdd(t), (13)

z(0) = z0, z0 ∈ Z , (14)

y(t) = Cz(t), (15)

where A refers to an unbounded densely defined operator, with domain D(A) in Z ,
u(t) ∈ U means the input, and y(t) ∈ Y means the output. U , Y ∈ Z may be either
finite- or infinite-dimensional. Bin denotes the input operator, Bd ∈ L(U ,Z) denotes the
disturbance operator, C ∈ L(Z ,Y) denotes the output operator, and d(t) refers to the
disturbance.

The operator C is a set of bounded output operators Ci given by

yi(t) = Ciz =
1
|Ωi|

∫
Ωi

z(x, t)dx (16)

for some Ωj of the domain Ω with Lebesgue measure

|Ωi| =
∫

Ωi

dx > 0

of the set Ωj ⊂ Ω.
More generally,

yi(t) = Ciz = 〈z, Ψi〉 =
∫

Ω
z(x, t)Ψi(x)dx

with

Ψi(x) =
1
|Ωi|

1Ωi (x) ∈ L2(Ω)

and indicator function

1Ωi (x) =

{
1, x ∈ Ωi

0, elsewhere.
(17)

So,

y = Cz = [C1(z) C2(z) · · · Cnc(z)]
T ,

with nc denoting the number of components in the mixture [17].
The input, output and disturbance operators are bounded operators acting in the

interior of the domain. The input to the system is spatially uniform over a small interval
about a fixed point xin = x0 ∈ (0, 1), where Binu = b(x)u with

b(x) =
1

2ν0
1[x0−ν0,x0+ν0](x) (18)
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and

1[a,b](x) =

{
1, x ∈ [a, b]
0, elsewhere.

The input operators Bin and Bd are given as

Binu(t) =
nin

∑
j=1

Bj
inuj(t), Bdd(t) =

nd

∑
j=1

Bj
ddj(t),

where uj(t) and dj(t) are scalar control inputs and disturbances, respectively. Bj
in and Bj

d(x)
are characteristic functions of a bounded subset of Ω, namely

Bj
in(x) =

1
|Ωj|

1Ωj(x).

To guarantee that Bj
in ∈ Z , here, it is assumed that |Ωj| > 0.

For linear infinite-dimensional systems in the form (13) and (14), it is required for A to
be an infinitesimal generator of a C0 semigroup. Conditions about the characterization of
infinitesimal generators are established in the following theorem.

Theorem 2. Hille–Yosida Theorem. A necessary and sufficient condition for a closed, densely
defined, linear operator A on a Hilbert space Z to be the infinitesimal generator of a C0 semigroup
is that there exist real numbersM, w such that for all real α > w, α ∈ ρ(A), the resolvent set of
A, and

‖R(α,A)r‖ ≤ M
(α− w)r ∀ r ≥ 1, (19)

where R(α,A) = (αI −A)−1 is the resolvent operator. In this case

‖T(t)‖ ≤ Mewt (20)

with T(t) a linear operator.

Proof. See [28].

Definition 2. A continuously differentiable function z : [0, ∞)→ Z is called a classical solution
of (10) and (11) if for all t ≥ 0, we have z(t) ∈ D(A) and (10) and (11) is satisfied.

Lemma 1. Let A be the infinitesimal generator of a strongly continuous semigroup T(t). If
z0 ∈ D(A), then the unique classical solution of (10) and (11) is given by

z(t) = T(t)z0. (21)

Proof. See [28].

It is worth noting that even when z0 does not belong to D(A), the function (21) is well
defined, so it is said that z : [0, ∞)→ Z is the mild solution of (10) and (11). From the above,
it is clear that the operator T(t) plays the role of eAt in finite-dimensional systems. The
strongly continuous semigroup theory on Z is a generalization of the concept of eAt for
unbounded operators A on abstract spaces.

Converse to Lemma 1, the next theorem, providing that A has a non-empty resolvent,
establishes the property for which the existence of unique classical solutions implies the
existence of a strongly continuous semigroup.



Mathematics 2023, 11, 1944 7 of 16

Theorem 3. Let A be a linear operator from D(A) ⊂ Z to Z with λI −A boundedly invertible
for some λ ∈ C, i.e., (λI − A)−1 ∈ L(Z). If for all z0 ∈ D(A), the abstract differential
Equations (10) and (11) possesses a unique classical solution, then A generates a C0 semigroup.

Proof. See [28].

2.3. SFRP

Consider a finite-dimensional neutrally stable exosystem, which generates both refer-
ence output yr(t) and disturbance d(t), given by

wt = Sw(t), (22)

yr(t) = Qw(t), (23)

d(t) = Pw(t), (24)

w(0) = w0, (25)

where W denotes the state space of the exosystem, S ∈ L(W), Q ∈ L(W ,Y) and
P ∈ L(W ,Z).

Let us define the error signal

e(t) = y(t)− yr(t), (26)

or, equivalently

e(t) = Cz(t)−Qw(t). (27)

The main task for the regulator consists of forcing the output of the system to track
a reference signal in the presence of a disturbance d(t), i.e., e(t)→ 0 as t→ ∞. Thus, the
problem is stated as follows.

Problem 1. The SFRP consists of finding a control law

u(t) = Γw(t) (28)

such that for the system

zt = Az(t) + (BdP + BinΓ)w(t), (29)

wt = Sw(t), (30)

with Γ ∈ L(W ,U ), given by interconnection of (13)–(15) with (22)–(25), the norm of the error

‖e(t)‖ = ‖Cz(t)−Qw(t)‖ (31)

satisfies

‖e(t)‖ → 0 as t→ ∞ (32)

for any z0 ∈ Z and w0 ∈ W .

In view of e(t) being a finite-dimensional vector, all lp norms in (32) are equivalent.
Since it has been assumed exponential stability for the system (10) and (11), a state feedback
control law is not required. In what follows, we state the solvability to the SFRP.
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Theorem 4. If there exist mappings Π ∈ L(W ,Z) and Γ ∈ L(W ,U ), with rank(Π) ⊂ D(A),
satisfying the regulator equations

ΠS = AΠ + BinΓ + BdP, (33)

CΠ = Q, (34)

the feedback control law that solves the SFRP is given by

u(t) = Γw(t). (35)

Proof. The proof can be carried out along the same lines as in [11].

From (12), and from the fact that the exosystem is neutrally stable, if (33) holds, then
e(t)→ 0 as t→ ∞ for all z0 ∈ Z and w0 ∈ W , if and only if [CΠ−Q] = 0.

3. Regulator Design

Let us consider the C–D system

zt(x, t) = Dzxx(x, t)−Bzx(x, t) + Binu + Bdd, (36)

z(0, t) = 0, (Dirichlet BC) (37)

zx(1, t) = 0, (Neumann BC) (38)

z(x, 0) = φ(x), (39)

y(t) = Cz(t), (40)

withDzxx(x, t) the diffusion term, with diffusion coefficientD > 0, and Bzx(x, t) the convection
term, with convection coefficient B > 0, zxx denotes the second partial derivative and zx
denotes the first partial derivative both with respect to space.

In our work, the system (36)–(40) is defined in the abstract form (13)–(15) in the Hilbert
state space Z = L2(0, 1). The maximal elliptic operator is given by L = d2/dx2 in (8)
belonging to D(L) = H2(0, 1), indicating the Sobolev space of functions in Z with a square
integrable second derivative.

So, from (8), here, the state operator is defined in the form of the SLDO as given by

A = A−
∫

A (41)

with
A = d2/dx2, (42)

this latter expression (operator) an infinitesimal generator of a C0 semigroup for abstract
differential equations related with parabolic PDEs as the heat (diffusion) equation [10,11].

Let us assume that the state operator (41) is a self-adjoint (Hermitian) operator in Z ,
i.e.,

A[ζ] = ζ ′′ − ζ ′

with
D(A) = {ζ ∈ H2(0, 1) | ζ(0) = 0, ζ ′(1) = 0} ⊂ Z , (43)

where, because for z0 ∈ D(A) the mild solution is a classical solution, the symmetric
boundary conditions (2) are part of the domain of A.

The spectrum of A denoted by

σ(A) = {λk}∞
k=0,

where λk = −k2π2 is purely discrete with a set of orthonormal eigenvectors

ζk(x) =
√

2 cos (kπx), k = 1, 2, . . . ,
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and A is an infinitesimal generator in terms of the eigenfunction expansion

eAtζ =
∞

∑
j=0

eλjt〈ζ, ζ j〉ζ j,

which gives rise to an orthonormal basis for L2(0, 1).
The system (36)–(40) is a single-input/single-output system with scalar input Bin,

output C, and disturbance Bd. The output is the average transport reaction over a small
interval about a point xout = x1 ∈ (0, 1), i.e.,

Cφ =
∫ 1

0
c(x)φ(x)dx

with

c(x) =
1

2ν1
1[x1−ν1,x1+ν1]

(x). (44)

Since Cζ = 〈ζ, c〉, C is a bounded linear observation functional on Z . In our work,
d(t) = Ad sin (βt) ∈ R entering across the entire interval is considered, so Bd = 1.

3.1. Trajectory Tracking in Presence of a Constant Disturbance

In our proposal, the regulator (33) and (34) takes the form

ΠSw = AΠw + BinΓw + BdPw, (45)

CΠw = Qw = w1, (46)

with

Π = [Π1 Π2 Π3], w(t) =

w1
w2
w3

 =

Ar sin(αt)
Ar cos(αt)

Md

,

S =

 0 α 0
−α 0 0
0 0 0

, Q = [1 0 0], P = [0 0 1].

The block diagonal matrix S allows us to decouple the regulator equations. To achieve
this, when trying with the trajectory tracking, the regulator equations can be written as

ΠαSαwα = AΠαwα + BinΓαwα, CΠαwα = w1

with

Πα = [Π1, Π2], Sα =

[
0 α
−α 0

]
, wα =

[
w1
w2

]
=

[
Ar sin(αt)
Ar cos(αt)

]
.

Defining Pα = [0 0] and Qα = [1 0], then

yr(t) = Qαwα = Ar sin (αt).
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In this caseW = R2, so Πα = [Π1 Π2] and Γα = [Γ1 Γ2] ∈ R2 with Πj ∈ Z . The
regulator equations applied to the vector wα = [w1 w2]

T ∈ W are then given as

ΠSw = AΠw + BinΓw, (47)

CΠw = Qw. (48)

From these last equations, expanding the regulator equation results in

αΠ1w2 − αΠ2w1 = AΠ1w1 +AΠ2w2 + BinΓ1w1 + BinΓ2w2. (49)

Since (49) must be satisfied for all w, let us first consider the event for which w1 = 1
and w2 = 0 and then for w1 = 0 and w2 = 1 yielding

−αΠ2 −AΠ1 = BinΓ1, (50)

αΠ1 −AΠ2 = BinΓ2. (51)

Recalling that the exosystem (22)–(25) is neutrally stable, multiplying (51) by i, an
imaginary number, and adding the result to (50) results in

(iαI −A)Π1 + i(iαI −A)Π2 = BiniΓ2 + BinΓ1. (52)

Since iα 6∈ ρ(A), premultiplying both sides of (52) by (iαI −A)−1 yields

Π1 + iΠ2 = (iαI −A)−1Bin(Γ1 + iΓ2). (53)

Premultiplying by C both sides of (53) and from the identity CΠw = Qw, with
CΠ1 = 1 and CΠ2 = 0, then Q = [1 0]. Consequently,

1 = C(iαI −A)−1Bin(iΓ2 + Γ1) = G(iα)(Γ1 + iΓ2). (54)

From the identity G(iα) = Re(G(iα)) + iIm(G(iα)), (54) is rewritten as

1 = (Re(G(iα)) + iIm(G(iα)))(Γ1 + iΓ2).

From the above, matching real and imaginary parts,

1 = (Re(G(iα))Γ1 − Im(G(iα))Γ2,

0 = (Im(G(iα))Γ1 + Re(G(iα))Γ2.

Thus,

Γ1 =
Re(G(iα))
|G(iα)|2 , Γ2 = −Im(G(iα))

|G(iα)|2 .

Accordingly, from the definition

G(iα)−1 =
1

G(iα)
=

G(iα)
|G(iα)|2 =

Re(G(iα))− iIm(G(iα))
|G(iα)|2 ,

the control gains are given by

Γα = [Γ1 Γ2] = [Re(G(iα)−1) Im(G(iα)−1)]. (55)

Here, the system has been assumed to be real, i.e., G(s) = G(s) for all s 6∈ ρ(A).
It is worthwhile to mention that G(iα) must differ from zero as well as be invertible for
solvability.
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Trying now with the rejection of a constant disturbance, the regulator equations are
given as

0 = AΠ3w3 + Bdw3 + BinΓ3w3, CΠ3w3 = Q3w3 = 0,

where Q3 = 0 and P3 = 1. Thus, the regulator equations become

0 = AΠ3 + Bd + BinΓ3,

CΠ3 = 0.

Solving for Γ, the last system of equations then

Π3 = −A−1(Bd + BinΓ3),

0 = C(−A)−1Bd + C(−A)−1BinΓ3.

So,

Γ3 = − C(−A)−1Bd
C(−A)−1Bin

= −
GBd(0)
G(0)

. (56)

Again, assuming G(0) 6= 0 and using the following definition

GBd(s) = C(sI −A)−1Bd,

consequently, combining (55) and (56) results in

Γ = [Γα, Γ3] = [Γ1, Γ2, Γ3] = [Re(G(iα)−1), Im(G(iα)−1), G(0)−1(CA−1Bd)].

3.2. Trajectory Tracking in Presence of Harmonic Disturbance

Along the same lines as that for the trajectory tracking control problem with rejection
of a constant disturbance but now trying with the rejection of a harmonic disturbance,
from (45) and (46) with

Π = [Π1 Π2 Π3 Π4], w(t) =


w1
w2
w3
w4

 =


Ar sin(αt)
Ar cos(αt)
Ad sin(βt)
Ad cos(βt)

,

S =


0 α 0 0
−α 0 0 0
0 0 0 β
0 0 −β 0

, Q = [1 0 0 0], P = [0 0 1 0],

and, from the block diagonal matrix S, decoupling the regulator equations when consider-
ing the case of trajectory tracking with rejection of a harmonic disturbance

ΠαSαwα = AΠαwα + BinΓαwα, CΠαwα = w1,

with

Πα = [Π1, Π2], Sα =

[
0 α
−α 0

]
, wα =

[
w1
w2

]
, Qα = [1, 0], Pα = [0, 0],

thus, the solution is given by (55). In addition, referring us to the blocks in S to try with the
rejection of harmonic disturbance, where d = Ad sin(βt), then

ΠβSβwβ = AΠβwβ + BdPβwβ + BinΓβwβ, CΠβwβ = 0,
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where

Πβ = [Π3, Π4], Sβ =

[
0 β
−β 0

]
, wβ =

[
w3
w4

]
, Qβ = [0, 0], Pβ = [1, 0].

Again, to this case W = R2 so, looking for Π = [Π3 Π4], where Πj ∈ Z , and
Γ = [Γ3 Γ4] ∈ R2, the regulator equations applied to the vector w = [w3 w4]

T ∈ W
result in the system

ΠSw = AΠw + BdPw + BinΓw, (57)

CΠw = 0. (58)

Expanding (57) yields

βΠ3w4 − βΠ4w3 = AΠ3w3 +AΠ4w4 + Bdw3 + BinΓ3w3 + BinΓ4w4. (59)

Since (59) must be satisfied for w, first consider the event for w3 = 1 and w4 = 0 to
then consider the episode for w3 = 0 and w4 = 1, thus

−βΠ4 −AΠ3 = Bd + BinΓ3, (60)

βΠ3 −AΠ4 = BinΓ4. (61)

Multiplying (61) by the imaginary number i and then adding the result to (60) yields

(iβI −A)Π3 + i(iβI −A)Π4 = Bd + BiniΓ4 + BinΓ3. (62)

Noting that iβ 6∈ ρ(A), premultiplying (62) by (iβI −A)−1, it becomes

Π3 + iΠ4 = (iβI −A)−1Bd + (iβI −A)−1Bin(iΓ4 + Γ3). (63)

Thus, premultiplying by C both sides of (63) and from the fact that (58) implies

CΠ3 = 0, CΠ4 = 0,

so, results

0 = C(iβI −A)−1Bd + C(iβI −A)−1Bin(iΓ4 + Γ3),

= GBd(iβ) + G(iβ)(iΓ4 + Γ3),

where the definition

GBd(s) = C(sI −A)−1Bd

was used. At last, solving for Γ yields

Γ3 = −Re(G(iβ)−1)Re(GBd(iβ)) + Im(G(iβ)−1)Im(GBd(iβ)),

Γ4 = −Re(G(iβ)−1)Im(GBd(iβ))− Im(G(iβ)−1)Re(GBd(iβ)),

where

Γ = [Γ3 Γ4]. (64)

Hence, combining (55) and (64) yields

Γ = [Γα Γβ] = [Γ1 Γ2 Γ3 Γ4]



Mathematics 2023, 11, 1944 13 of 16

with

Γα = [Γ1, Γ2] = [Re(G(iα)−1), Im(G(iα)−1)],

Γβ = [Γ3, Γ4] = [−Re(G(iβ)−1)Re(GBd(iβ)) + Im(G(iβ)−1)Im(GBd(iβ)),

−Re(G(iβ)−1)Im(GBd(iβ))− Im(G(iβ)−1)Re(GBd(iβ))].

4. Simulation Results

In order to validate our proposal via numerical simulation, for the case of trajectory
tracking under the influence of a constant disturbance, we have set Md = 10, Ar = 3, α = 8,
x0 = 0.75, x1 = 0.25, and ν0 = ν1 = 0.5. Figure 1a shows the tracking of the reference signal
yr(t) by the output y(t) from the initial condition ϕ(x) = 4 cos (πx). Figure 1b shows the
error signal e(t) between the controlled output y(t) and the reference signal yr(t) from
which it can be seen that e(t)→ 0 as t→ ∞. The solution surface is shown in Figure 2.
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Figure 1. Regulator performance with Γ = [4.9348, 8,−10]: (a) Comparison of the output y(t) and
the reference yr(t), (b) Error between y(t) and yr(t).

Figure 2. Spatial distribution of the solution surface corresponding to the rejection of constant
disturbance.

To the case of trajectory tracking under the influence of harmonic disturbance, we set
Md = 1, Ar = 3, Ad = 3, α = 12, β = 12, x0 = 0.75, x1 = 0.25 and ν0 = ν1 = 0.5. Figure 3a
shows the tracking of the reference signal yr(t) by the controlled output y(t) for the initial
condition ϕ(x) = 4 cos (πx). Figure 3b exhibits that e(t)→ 0 as t→ ∞. The corresponding
solution surface is shown in Figure 4.
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So, the regulator performs well under the presence of external disturbances for both
cases, i.e., in the presence of either a constant disturbance or harmonic disturbance.
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Figure 3. Regulator performance with Γ = [4.9348, 12,−1, 0]: (a) Comparison of the output y(t) and
the reference signal yr(t), (b) Error between y(t) and yr(t).

Figure 4. Spatial distribution of the solution surface related with the rejection of harmonic
disturbance.

5. Conclusions

In our work, the SFRP approach is focused on the trajectory tracking control with
the rejection of external disturbances to the C–D equation. The C–D system is modeled
through a state operator given in the form of the SLDO plus an integral term involved in an
abstract control system model from which the regulator equations are derived and solved.
From the simulation results, it is concluded that our proposal performs well since when
considering both constant and harmonic disturbances, the regulator is capable of tracking
the reference trajectory, showing the rejection of external disturbances. As future work, we
are focused on extend our proposal to multiple-input/multiple-output systems.
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