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Abstract: We consider one system of partial derivative equations of the parabolic type as a model of
a simple 3D gene network in the presence of diffusion of its three components. Using discretization of
the phase portrait of this system, comparison theorems, and other methods of the qualitative theory
of differential equations, we show uniqueness of the equilibrium solution to this system and find
conditions of instability of this equilibrium. Then, we obtain sufficient conditions of existence of at
least one oscillating functioning regime of this gene network. An estimate of lower and upper bounds
for periods of these oscillations is given as well. In quite a similar way, these results on the existence
of cycles in 3D gene networks can be extended to higher-dimensional systems of parabolic or other
evolution equations in order to construct mathematical models of more complicated molecular–
genetic systems.

Keywords: gene network models; phase portraits; systems of non-linear differential equations;
reaction–diffusion equations; cycles; stability; invariant surfaces; invariant domains; Poincaré map;
fixed point theorem
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1. Introduction

We study a system of three nonlinear evolution equations of the parabolic type as a
model of interaction of three species that compete according to the “rock–paper–scissors”
scheme. At the same time, this system describes the functioning of some of the simplest
circular gene networks, called molecular repressilators (inhibitors) in the presence of
diffusion of their components in ambient space.

During the long period of our collaboration with biologists, as in [1–3], we were
especially interested in detecting equilibriums and oscillating regimes (cycles) of similar
models without diffusion. In these studies, we had one more geometric problem that
consists in localization of these cycles in the phase portraits of corresponding dynamical
systems [4,5]. This was quite useful in biological interpretations of numerical experiments
with these models.

For gene networks with diffusible components, we consider now their simplest case,
when the domain Ω of the geometric variables x1, x2, x3 coincides with R3. Surely, in more
realistic models, such a domain should have a compact support and should be endowed
with corresponding boundary conditions on ∂Ω. Such a boundary value problem was
studied in [6], where a two-dimensional system of parabolic equations with quadratic non-
linearity as a reaction–diffusion model of two competitive biological species in a compact
domain with the Neumann boundary conditions was considered; see also [7].

In any numerical experiment with these systems of differential equations, we should
fix the values of their parameters. In most interesting cases, the methods of the qualitative
theory of differential equations, such as comparison theorems [7], analysis of monotonicity
of solutions [8], etc., help to describe the behavior of solutions to these systems for a wide
range of values of these parameters. Here, in control of the behavior of these solutions to
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such problems, our main tool is decomposition of the phase portraits of the corresponding
dynamical systems to smaller domains. In each of these domains, a qualitative description
of these solutions is much simpler than in the whole phase portrait, even in the cases when
the parameters in the equations are not fixed. This is especially important for mathematical
modeling of biological processes, when one has to take into account synchronization
and bifurcations of solutions [9–11], noise [12–14], and various amplification and chaotic
phenomena [15–17].

Numerous applications of analogous evolution differential equations regarding prob-
lems of population dynamics, biochemical kinetics, and modeling of miscellaneous bio-
logical control systems and ensembles of corresponding oscillating processes have a very
long history; see for example [18–20]. Our short-term plan is to extend the results of this
paper to more complicated models of molecular–genetic systems, taking into account the
diffusion of their components.

2. Materials and Methods
2.1. Mathematical Model

Here, we study a model of the simplest molecular repressilators realized in the form
of the following system of reaction–diffusion parabolic equations:

∂u1

∂t
− c2

1∆u1 = k1 · ( f1(u3)− u1);

∂u2

∂t
− c2

2∆u2 = k2 · ( f2(u1)− u2);

∂u3

∂t
− c2

3∆u3 = k3 · ( f3(u2)− u3).

(1)

Non-negative concentrations of its three components are denoted by uj(t, x1, x2, x3),

and the Laplace operator ∆ =
∂2

∂x2
1
+

∂2

∂x2
2
+

∂2

∂x2
3

describes their diffusion in the space. Here

and below, j = 1, 2, 3, and j− 1 = 3 for j = 1; positive constants cj and k j characterize the
rates of diffusion and, respectively, the rates of natural degradations of these components.
The velocities of their synthesis are given by positive smooth monotonically decreasing
functions f j(uj−1) of non-negative arguments, f j(uj−1) → 0 for uj−1 → ∞; see [2,5]. Let
aj := f j(0) = max f j.

Following [7,21], we describe the solutions to the systems of type (1) in terms of the
trajectories of dynamical systems or nonlinear semi-groups generated by the differential
operator of the second order 

−c2
1∆ 0 0

0 −c2
2∆ 0

0 0 −c2
3∆

.

Lemma 1. The domain D3 = [0, a1] × [0, a2] × [0, a3] ⊂ R3
+ contains exactly one point

P0 = (u0
1, u0

2, u0
3) such that

f1(u0
3) = u0

1, f2(u0
1) = u0

2, f3(u0
2) = u0

3, and u0
1 = f1( f3( f2(u0

1))). (2)

Proof of Lemma 1. The last equality follows immediately from the previous ones. In the
cases of some similar non-linear systems, it was noted in [4,5] that the left-hand side of the
last equality of (2) grows monotonically, and the right-hand side decreases monotonically
from f1( f3( f2(0))) to zero. Thus, the graphs of both sides have exactly one intersection
point that determines the first coordinate u0

1. The remaining coordinates of the sought
after equilibrium point P0 are determined uniquely from the second and third equations
of (2).
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Hence, the constant functions uj(t, x1, x2, x3) ≡ uj(t, X) ≡ u0
j describe an equilibrium

in the gene network model; here, ∆uj ≡ 0,
∂uj

∂t
≡ 0 for all j, X, t.

In contrast with [6,7,22], we are particularly interested in the cases when the equilib-
rium point P0 is not stable, since system (1) does not have oscillating solutions otherwise.

Thus, from now on, we assume that point P0 is unstable. From time to time, we
recall this assumption in the statements of our propositions. Some of them remain true
in the case when point P0 is stable as well. However, when trajectories are near such a
stable equilibrium point where all biochemical processes stop, their behavior does not have
substantial biological interpretation.

2.2. Combinatorial Structure of the Model

The main aim of this work is to describe the behavior of solutions of system (1) in the
domain D3. We start with one basic fact: if the initial data uj(0, x1, x2, x3) of this system are
contained in D3, then the corresponding solution to this system remains in this domain for
all positive t.

Lemma 2. If 0 ≤ uj(0, x1, x2, x3) ≤ aj, j = 1, 2, 3, then for all t > 0, solutions to system (1)
satisfy the inequalities 0 ≤ uj(t, x1, x2, x3) ≤ aj.

Proof of Lemma 2. 1. Let u1(t0, X∗) = 0 for some t0 > 0 and X∗ = (x∗1 , x∗2 , x∗3) ∈ R3,
and let us assume that for all t ≤ t0, the inequality u1(t0, X∗) ≥ 0 holds. Then, at each
such point X∗, we have ∆u1(t0, X∗) ≥ 0. Since f1(u3) > 0, at these points, we obtain
u̇1 = c2

1∆u1 + k1 f1(u3) > 0. Thus, the function u1 grows at these points. In a similar way,
one can verify that the functions u2(t, X) and u3(t, X) grow with t on the faces u2 = 0 and
u3 = 0 of the parallelepiped D3, respectively.

2. Let u1(t0, X∗) = a1 for some t0 > 0 and X∗ = (x∗1 , x∗2 , x∗3) ∈ R3, and let us assume
that for all t ≤ t0, the inequality u1(t0, X∗) ≤ a1 holds. Then, we have ∆u1(t0, X∗) ≤ 0 at
each such point X∗. In the right-hand side of the first equation of system (1), we obtain
f1(u3)− u1 = f1(u3)− a1 ≤ 0; here, the equality holds for u3 = 0 only. Then, for u3 > 0,

we have
∂u1

∂t
= c2

1∆u1 + k1( f1(u3)− a1) < 0; thus, the function u1 decreases here with t.

If u3 = 0, then on the edge {u1 = a1; u3 = 0} of the parallelepiped D3, the right-hand
side of the third equation of system (1) is strictly positive, and according to the first part of

this proof, ∆u3 ≥ 0. Hence, on {u1 = a1; u3 = 0}, we have
∂u3

∂t
> 0, and trajectories of

the points of this edge remain in D3 as well. In the same way, the functions u2(t, X) and
u3(t, X) decrease for the faces u2 = a2 and u3 = a3 of D3, respectively.

Corollary 1. The parallelepiped D3 is a positively invariant domain of system (1).

This means that trajectories (u1(t), u2(t), u3(t)) of the points of D3 remain in this
domain as t→ +∞. Below, we call this domain invariant. Following [4], consider decom-
position of the invariant domain D3 by three planes uj = u0

j , which contain the equilibrium
point P0. This decomposition consists of eight smaller parallelepipeds (blocks), which we
denote by binary multi-indices [ε1ε2ε3]; here, ε j = 0, if uj ≤ u0

j for all points of a block,

and ε j = 1, if uj ≥ u0
j for all its points.

As in [5], we denote by W1 the union of six blocks [001], [011], [010], [110], [100], [101].
It follows from Theorem 1 (see below) that the periodic trajectories (cycles) of system (1) are
contained in the domain W1 and do not intersect the remaining two blocks [000] and [111] of
this decomposition of domain D3. Thus, we do not consider these two blocks systematically.

For n-dimensional analogues of system (1), similar decompositions of the phase
portraits to 2n blocks can be described as well; see [23]. The main aim of these discretizations
is construction of smaller invariant domains that contain cycles of corresponding systems
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of equations. Usually, these smaller domains are composed of 2n blocks. Section 2.4 below
is devoted to such a construction in our 3D case.

2.3. Small Oscillations Near Equilibrium

Let us examine small oscillations of solutions to system (1) in a sufficiently small
neighborhood

Vδ(P0) := (u0
1 − δ, u0

1 + δ)× (u0
2 − δ, u0

2 + δ)× (u0
3 − δ, u0

3 + δ) ⊂ Q3

of its equilibrium solution uj(t, x1, x2, x3) ≡ u0
j , j = 1, 2, 3. The linearization matrix of

system (1) at point P0 has the form

J(P0) =


−k1 0 −k1 p1
−k2 p2 −k2 0

0 −k3 p3 −k3

; (3)

here, the parameters pj = −
d f j

duj−1
> 0 are calculated at the equilibrium point P0.

Let Uj(t, x1, x2, x3z) := uj(t, x1, x2, x3) − u0
j . Neglecting the second and the higher-

order terms in Taylor’s expansions of the right-hand sides of system (1) near point P0,
we obtain

f j(uj−1)− uj = f j(u0
j−1)− pj · (uj−1 − u0

j−1)− u0
j − (uj − u0

j ).

Consider first the particular case c1 = c2 = c3 = c. We assume also that the real
parts of the eigenvalues of matrix J(P0) do not vanish, i.e., that the equilibrium point P0 of
system (1) is a hyperbolic one. Under this standard assumption, according to the classical
Grobman–Hartman theorem [24,25], in some small neighborhood Vδ(P0), the system (1) is
topologically equivalent to its linearization

∂U1

∂t
− c2∆U1 = −p1k1U3 − k1U1;

∂U2

∂t
− c2∆U2 = −p2k2U1 − k2U2;

∂U3

∂t
− c2∆U3 = −p3k3U2 − k3U3.

(4)

If the values of the parameters of system (1) vary and the real parts of some of these
eigenvalues become zero, then variations of the phase portrait of this nonlinear system can
be described by the Andronov–Hopf bifurcation theorem (see [26]), where the conditions
of the birth of cycles are exposed.

Let S = S(t, x1, x2, x3) = λ1U1 + λ2U2 + λ3U3; the real coefficients λj are determined
below from (6) in order to obtain the following equation

∂S
∂t

= c2∆S− [U1(λ1k1+p2k2λ2) + U2(k2λ2 + p3k3λ3) + U3(λ1 p1k1 + λ3k3)] =

c2∆S− K(U1λ1 + U2λ2 + U3λ3).
(5)

Here, S = S(t, x1, x2, x3) −→
t→+∞

0 for any initial data, and the plane λ1U1 + λ2U2 +

λ3U3 = 0 is invariant for system (4) in the space of the variables U1, U2, U3.
Representation (5) follows from the proportionality conditions:

λ1k1 + p2k2λ2

λ1
=

λ2k2 + λ3 p3k3

λ2
=

λ3k3 + λ1k1 p1

λ3
= K. (6)
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Since these equations are homogeneous with respect to λj, we can restrict our consid-
erations to the case λ1 = 1. The structure of system (4) is symmetric with respect to the
cyclic permutations of the variables, and we can assume also that k3 ≥ k1, k3 ≥ k2.

Proportions (6) are reduced to the equation

P(λ3) := λ3
3 p2 p3k2k3 − λ2

3(k3 − k1)(k3 − k2)− λ3(2k3 − k1 − k2)p1k1 − p2
1k2

1 = 0.

Then, P(0) < 0, P ′(0) < 0, P ′′(0) < 0; thus, the polynomial P has exactly one

positive root λ3 = λ+, and λ2 =
k3 − k1

p2k2
+

p1

k2 p2λ+
is positive as well. Thus, all the

coefficients in the definition of the linear combination S(t, x1, x2, x3) are positive, and the
intersection of plane λ1U1 + λ2U2 + λ3U3 = 0 with the neighborhood Vδ(P0) is contained
in the domain W1.

Since we are interested in the instability of P0; in the case of arbitrary positive coef-
ficients k j, we can use various instability criteria formulated in [7,27] (see also references
therein) in the analysis of solutions to system (1) near the equilibrium. For example, it was
shown in [21], Chapter 3, Theorem 15.3, that the equilibrium solution to such a system is
not stable, if some eigenvalues of the corresponding matrix have a positive real part. In
our 3D case, this instability happens when there is a pair of eigenvalues λ1 = λ̄2 such that
Reλ1 = Reλ2 > 0. The remaining eigenvalue λ3 is negative.

Solutions to the linearized system (4) have very clear explicit representation in the
particular case k1 = k2 = k3 = k. Following the usual approach, we consider the functions
vj(t, q1, q2, q3) ≡ vj(t, Q) defined by the Fourier transform:

Uj(t, X) =
1

(
√

2π)3

∫
R3

e−Q·Xivj(t, Q)dQ, j = 1, 2, 3.

Then, system (4) is reduced to a linear system of ordinary differential equations

dv1

dt
+ (c2|Q|2 + k)v1 + kp1v3 = 0;

dv2

dt
+ (c2|Q|2 + k)v2 + kp2v1 = 0;

dv3

dt
+ (c2|Q|2 + k)v3 + kp3v2 = 0,

(7)

or in the matrix form,
dV
dt

= −AV, where A = (c2|Q|2 + k)E + M, E is the unit matrix and

M =

 0 0 kp1
kp2 0 0
0 kp3 0

, M2 =

 0 k2 p1 p3 0
0 0 k2 p1 p2

k2 p2 p3 0 0

,

M3 = k3 p1 p2 p3E.

(8)

Let b3 := p1 p2 p3, b > 0. Since the matrices E and M commute, the solution to
system (7) is expressed in the form

V(t, Q) = e−AtV(0, Q) = e−(c
2|Q|2+k)Ete−MtV(0, Q).

It follows from (8) that e−Mt = α
′′
(t)E− α

′
(t)M + α(t)M2, where

α(t) =
(

t2

2!
− t5b3k3

5!
+

t8b6k6

8!
− . . .

)
; α

′′′
(t) = −b3k3α(t);

α(0) = α
′
(0) = 0; α

′′
(0) = 1.
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Hence,

α(t) =
1
3

exp(−bkt) +
1
3

exp
(

bkt
2

)(
− cos

bk
√

3t
2

+ sin
bk
√

3t
2

)
.

Consequently, the inverse Fourier transform of the solution e−AtV(0, Q) contains

summands of the types exp(−k(b + 1)t) · B1(t, X) and exp
(

k(b− 2)t
2

)
· B2(t, X), where

B1, B2 are bounded functions. It is well known that if all eigenvalues of the matrix (−A)
are strictly negative, then the solutions to system (7) describe the damping oscillations near
the equilibrium P0.

Let B(r) be an open ball centered at the origin xj = 0 with radius r. Representation of
α(t) in the matrix exponent e−Mt above implies the following proposition.

Lemma 3. If c1 = c2 = c3, k1 = k2 = k3, q1q2q3 > 8 and the support of the initial data vj(0, Q)

satisfies the condition supp vj ⊂ B
(√

k(b− 2)
2c2

)
, then system (7) has unbounded solutions and

point P0 is unstable.

In terms of the initial system (1), this means that these solutions leave the small
neighborhood Vδ(P0) and do not return there as t→ ∞. Before this moment, trajectories
of all points of this neighborhood pass from block to block according to the arrows of the
following State Transition Diagram (STD); see [4,5].

[001] −−−−→ [011] −−−−→ [010]x y
[101] ←−−−− [100] ←−−−− [110]

(9)

This expressive term was introduced in [23] in the modeling of some other biological
control systems by piecewise linear ordinary differential equations.

In the general case of arbitrary positive coefficients k j, the Vyshnegradskii criterion [28]
implies that the characteristic polynomial

λ3 + λ2(k1 + k2 + k3) + λ(k1k2 + k1k3 + k2k3) + k1k2k3(1 + p1 p2 p3)

of the linearization matrix (3) has eigenvalues with positive real parts if and only if

k1k2k3(1 + p1 p2 p3) > (k1 + k2 + k3) · (k1k2 + k1k3 + k2k3);

or after some reductions, if and only if

p1 p2 p3 > 8 +

(√
k1

k2
−

√
k2

k1

)2

+

(√
k1

k3
−

√
k3

k1

)2

+

(√
k3

k2
−

√
k2

k3

)2

. (10)

Thus, the more deviations
∣∣∣∣ k j

ki
− 1
∣∣∣∣, the stronger the instability conditions should be,

and we obtain the following proposition.

Lemma 4. For arbitrary values of the coefficients cj, k j, inequality (10) is equivalent to instability
of the equilibrium point P0.

2.4. Construction of a Smaller Invariant Domain

The main result of this paper is based on the following technical proposition, which
actually has a combinatorial nature.
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Theorem 1. If point P0 is unstable, then the union W1 of the six blocks listed in (9) is a positive
invariant domain of system (1).

Proof of Theorem 1. The proof of this theorem follows from Lemmas 5–10. Each of these
Lemmas describes the behavior of the trajectories, respectively, in blocks [001], [011], [010],
[110], [100], [101] according to the arrows of STD (9).

Lemma 5. If point P0 is unstable and the initial data uj(0, X) of system (1) satisfy the conditions

u0
3 ≤ u3(0, x1, x2, x3) ≤ a3; 0 ≤ u1(0, x1, x2, x3) ≤ u0

1; 0 ≤ u2(0, x1, x2, x3) ≤ u0
2,

then there exists t∗ = t∗(x1, x2, x3) > 0 such that solution {uj(t∗, x1, x2, x3)} to this system
satisfies the inequalities

u0
3 ≤ u3(t∗, x1, x2, x3) ≤ a3; 0 ≤ u1(t∗, x1, x2, x3) ≤ u0

1; u0
2 ≤ u2(t∗, x1, x2, x3) ≤ a2. (11)

Thus, if the initial data are in block [001], then the solution {u1(t∗, X), u2(t∗, X),
u3(t∗, X)} eventually arrives at block [011].

Proof of Lemma 5. The first two pairs of inequalities (11) are proved exactly in the same
way as the corresponding inequalities in Lemma 2.

Let Γ1 = [101] ∩ [001] = {u1 = u0
1; 0 ≤ u2 ≤ u0

2; u0
3 ≤ u3 ≤ a3} be a face of block

[001]. The δ-neighborhood Vδ(Γ1) of this face in [001] consists of the neighborhood Vδ(P0)
of point P0 and three domains:

Γ12 := (u0
1 − δ; u0

1]× [0; u0
2 − δ]× [u0

3; u0
3 + δ),

Γ13 := (u0
1 − δ; u0

1]× (u0
2 − δ; u0

2]× [u0
3 + δ; a3],

Γ10 := (u0
1 − δ; u0

1]× [0; u0
2 − δ]× [u0

3 + δ; a3].

Let [001) := [001] \Vδ(Γ1). In the neighborhood Vδ(P0), trajectories of all points pass
from block to block according to the arrows of STD (9).

In the domain Γ10 ∪ Γ13, we have k1( f1(u3)− u1) < −k1δ
p1

2
; thus, for some m > 0,

the inequality
∂u1

∂t
< −m2 < 0 holds in this domain. Similarly, in Γ12, we have k3( f3(u2)−

u3) > k3δ
p3

2
, and in this domain, we obtain

∂u3

∂t
> m2 > 0. Thus, trajectories of all points

of the domain Γ12 pass to the domain Γ10 ∪ [001), and trajectories of all points of Γ10 ∪ Γ13
pass to the domain [001).

Now, for trajectories of points of the remaining part [001) of block [001], we obtain
estimates

k2a2 >
∂u2

∂t
− c2

2∆u2 = k2( f2(u1)− u2) > k2δ
p2

2
. (12)

For t > 0, solutions to the equations
∂U−2

∂t
− c2

2∆U−2 = k2δ
p2

2
and

∂U+
2

∂t
− c2

2∆U+
2 =

k2a2 have the forms

U−2 (t, X) = k2δ
p2

2
t +
(

2c2
√

πt
)−3 ∫

R3
U−2 (0, ξ) · exp

[
−|X− ξ|2

4c2
2t

]
dξ, (13)

respectively,

U+
2 (t, X) = k2a2t +

(
2c2
√

πt
)−3 ∫

R3
U+

2 (0, ξ) · exp

[
−|X− ξ|2

4c2
2t

]
dξ, (14)

and hence eventually grow monotonically with respect to t with positive velocity bounded
from zero, here ξ ∈ R3.
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Let u2(0, X) = U−2 (0, X) = U+
2 (0, X). Then, the comparison theorems [29] imply that

U+
2 (t, X) ≥ u2(t, X) ≥ U−2 (t, X) for positive t.

Thus, trajectories of all points of [001) eventually arrive at the face Γ2 = [001] ∩ [011]
where u2 = u0

2, and 0 ≤ u1 ≤ u0
1; u0

3 ≤ u3 ≤ a3. Hence, the Lemma is proved.

Let Γ̂1 = Γ1 \ (Γ1 ∩ Vδ(P0)) and Γ̂2 = Γ2 \ (Γ2 ∩ Vδ(P0)) be truncated faces of block
[001] described above. The following topological proposition will be used in Theorem 2,
Section 3.

Remark 1. These truncated faces Γ̂1, Γ̂2, and their analogues Γ̂j described below are compact and
homeomorphic to a closed two-dimensional disk.

Corollary 2. Trajectory of each point of Γ̂1 arrives at the face Γ̂2 in a time t1 such that

u0
2

k2a2
≤ t1 ≤

2u0
2

k2δp2
.

Let ψ1 : Γ̂1 → Γ̂2 be the corresponding shift along the trajectories of points of Γ̂1.
The proofs of Lemmas 6–10 are quite analogous to that of Lemma 5. They are based

on estimates and representations similar to (12)–(14) and on comparison theorems for
solutions to parabolic equations; see [29]. The proofs of Lemmas 7 and 9 differ from that
of Lemma 5 just by cyclic permutations of multi-indices in notations of the blocks and by
cyclic permutations u1(t, x1, x2, x3)→ u2(t, x1, x2, x3)→ u3(t, x1, x2, x3)→ u1(t, x1, x2, x3)
of the functions uj.

Lemma 6. If point P0 is unstable and the initial data uj(0, X) of system (1) satisfy the conditions

0 ≤ u1(0, x1, x2, x3) ≤ u0
1; u0

2 ≤ u2(0, x1, x2, x3) ≤ a2; u0
3 ≤ u3(0, x1, x2, x3) ≤ a3,

then there exists t∗ = t∗(x1, x2, x3) > 0, such that the solution to this system satisfies the
inequalities

0 ≤ u1(t∗, x1, x2, x3) ≤ u0
1; u0

2 ≤ u2(t∗, x1, x2, x3) ≤ a2; 0 ≤ u3(t∗, x1, x2, x3) ≤ u0
3.

Or if the initial data are in block [011], then the solution {u1(t∗, X), u2(t∗, X), u3(t∗, X)}
eventually arrives at block [010]. Let

Γ3 = [011] ∩ [010] = {0 ≤ u1 ≤ u0
1; u0

2 ≤ u2 ≤ a2; u3 = u0
3}

be the face of [010] where these solutions arrive, and Γ̂3 = Γ3 \ (Γ3 ∩Vδ(P0)).

Corollary 3. The trajectory of each point of Γ̂2 arrives at the face Γ̂3 in a time t2 such that

a3 − u0
3

k3a3
≤ t2 ≤

2(a3 − u0
3)

k3δp3
.

Let ψ2 : Γ̂2 → Γ̂3 be the corresponding shift along these trajectories.

Lemma 7. If point P0 is unstable and the initial data uj(0, X) of system (1) satisfy the conditions

u0
2 ≤ u2(0, x1, x2, x3) ≤ a2; 0 ≤ u3(0, x1, x2, x3) ≤ u0

3; 0 ≤ u1(0, x1, x2, x3) ≤ u0
1,

then there exists t∗ = t∗(x1, x2, x3) > 0, such that the solution to this system satisfies the inequalities

u0
2 ≤ u2(t, x1, x2, x3) ≤ a2; 0 ≤ u3(t, x1, x2, x3) ≤ u0

3; u0
1 ≤ u1(t, x1, x2, x3) ≤ a1.
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Or if the initial data are in block [010], then the solution {u1(t∗, X), u2(t∗, X), u3(t∗, X)}
arrives eventually at block [110]. Let

Γ4 = [010] ∩ [110] = {u1 = u0
1; u0 ≤ u2 ≤ a2; 0 ≤ u3 ≤ u0

3},
Γ̂4 = Γ4 \ (Γ4 ∩Vδ(P0)),

and ψ3 : Γ̂3 → Γ̂4, as in the previous Lemma.

Corollary 4. The trajectory of each point of Γ̂3 arrives at the face Γ̂4 in a time t3 such that

u0
1

k1a1
≤ t3 ≤

2u0
1

k1δp1
.

Lemma 8. If point P0 is unstable and the initial data uj(0, X) of system (1) satisfy the conditions

0 ≤ u3(0, x1, x2, x3) ≤ u0
3; u0

1 ≤ u1(0, x1, x2, x3) ≤ a1; u0
2 ≤ u2(0, x1, x2, x3) ≤ a2,

then there exists t∗ = t∗(x1, x2, x3) > 0, such that the solution to this system satisfies the inequalities

0 ≤ u3(t, x1, x2, x3) ≤ u0
3; u0

1 ≤ u1(t, x1, x2, x3) ≤ a1; 0 ≤ u2(t, x1, x2, x3) ≤ u0
2.

Or if the initial data are in block [110], then the solution arrives eventually to block
[100]. Similarly, let Γ5 = [110] ∩ [100] = {u0

1 ≤ u1 ≤ a1; u2 = u0
2; 0 ≤ u3 ≤ u0

3}, Γ̂5 =

Γ5 \ (Γ5 ∩Vδ(P0)), and ψ4 : Γ̂4 → Γ̂5, as above.

Corollary 5. The trajectory of each points of Γ̂4 arrives at the face Γ̂5 in a time t4 such that

a2 − u0
2

k2a2
≤ t4 ≤

2(a2 − u0
2)

k2δp2
.

Lemma 9. If point P0 is unstable and the initial data uj(0, X) of system (1) satisfy the conditions

u0
1 ≤ u1(0, x1, x2, x3) ≤ a1; 0 ≤ u2(0, x1, x2, x3) ≤ u0

2; 0 ≤ u3(0, x1, x2, x3) ≤ u0
3,

then there exists t∗ = t∗(x1, x2, x3) > 0, such that the solution to this system satisfies the inequalities

u0
1 ≤ u1(t, x1, x2, x3) ≤ a1; 0 ≤ u2(t, x1, x2, x3) ≤ u0

2; u0
3 ≤ u3(t, x1, x2, x3) ≤ a3.

Or if the initial data are in block [100], then the solution eventually arrives at block
[101]. Similarly, let Γ6 = [100] ∩ [101] = {u0

1 ≤ u1 ≤ a1; 0 ≤ u2 ≤ u0
2; u3 − u0

3}, Γ̂6 =

Γ6 \ (Γ6 ∩Vδ(P0)), and ψ5 : Γ̂5 → Γ̂6, as above.

Corollary 6. The trajectory of each point of Γ̂5 arrives at the face Γ̂6 in a time t5 such that

u0
3

k3a3
≤ t5 ≤

2u0
3

k3δp3
.

Lemma 10. If point P0 is unstable and the initial data uj(0, X) of system (1) satisfy the conditions

0 ≤ u2(0, x1, x2, x3) ≤ u0
2; u0

3 ≤ u3(0, x1, x2, x3) ≤ a3; u0
1 ≤ u1(0, x1, x2, x3) ≤ a1,

then there exists t∗ = t∗(x1, x2, x3) > 0, such that the solution to this system satisfies the inequalities

0 ≤ u2(t, x1, x2, x3) ≤ u0
2; u0

3 ≤ u3(t, x1, x2, x3) ≤ a3; 0 ≤ u1(t, x1, x2, x3) ≤ u0
1.
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Or if the initial data are in block [101], then the solution eventually arrives at block
[001]. Finally, let ψ6 : Γ̂6 → Γ̂1 be the corresponding shift along the trajectories of points of
the truncated face Γ̂6.

Corollary 7. The trajectory of each point of Γ̂6 arrives at the face Γ̂1 in a time t6 such that

a1 − u0
1

k1a1
≤ t6 ≤

2(a1 − u0
1)

k1δp1
.

Inequalities in the statements of Lemmas 6–10 are arranged in such an order that,
by analogy with Lemma 5, only the last pair of these inequalities changes.

3. Main Results

The results of the previous Section 2.4 imply the following.

Proposition 1. If point P0 is unstable, then the domain W1 is invariant, and the trajectories of its
points travel through blocks according to the arrows of STD (9).

Let X = (x1, x2, x3) be an arbitrary point of R3, and

0 ≤ u1(0, x1, x2, x3) ≤ u0
1, 0 ≤ u2(0, x1, x2, x3) ≤ u0

2, u0
3 ≤ u3(0, x1, x2, x3) ≤ a3.

The composition Ψ = ψ6 ◦ ψ5 ◦ ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1 : Γ̂1 → Γ̂1 of the shifts along the,
trajectories defined above is the Poincaré map of the cycle which will be described now.
It was noted above that the truncated face Γ̂1 is compact and homeomorphic to a closed
two-dimensional disk; see Remark 1. The domain W1 \

(
W1 ∩Vδ(P0)

)
is homeomorphic to

a compact torus.
According to the Brouwer fixed point theorem, see for example [30], the map Ψ has

at least one fixed point P∗ = P∗(u∗1 , u∗2 , u∗3) ∈ Γ̂1, Ψ(P∗) = P∗. Clearly, the trajectory of this
point P∗ is periodic, and we obtain the following result.

Theorem 2. If point P0 is unstable and the initial data of system (1) are contained in W1, then for
any fixed (x1, x2, x3) ∈ R3, this system has at least one periodic trajectory
C = {u1(t, x1, x2, x3); u2(t, x1, x2, x3); u3(t, x1, x2, x3)}, which passes from block to block ac-
cording to the arrows of STD (9).

By summing all inequalities in Corollaries 2–7, we obtain the following estimates for
the periods of the cycles of the system.

Proposition 2. For each cycle of system (1), its period T satisfies the inequalities

1
k1

+
1
k2

+
1
k3
≤ T ≤ 2a1

p1δk1
+

2a2

p2δk2
+

2a3

p3δk3
.

We have described a bounded invariant domain in the phase portrait of the system of
three parabolic equations considered as a model of one simple gene network with diffusion
of its components. Uniqueness of an equilibrium solution to this system is shown. We
find sufficient conditions of instability of this equilibrium, which implies the existence of
oscillations in this gene network model.

4. Discussion and Future Work

On the basis of the approach used in [23,31,32], with the help from the methods of the
qualitative theory of differential equations, such as the Brouwer fixed point theorem, these
three-dimensional results can be extended in a similar way to higher-dimensional nonlinear
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systems of parabolic equations considered as models of more complicated circular gene
network models, circadian oscillators, etc.

For some of these models, periodic regimes of their functioning are not unique
(see [2,5,33]); thus, the geometry and combinatorics of their phase portraits as well as
the behavior of their solutions are much more complicated than in the three-dimensional
case studied here. However, in these higher-dimensional cases, one can control the tra-
jectories of the dynamical systems. For example, in the absence of diffusion, the phase
portrait of one 18-dimensional dynamical system was decomposed in [5] to 262,144 blocks,
as what occurred above in Section 2.2 for the 3D system of this type, and it was shown that
that union of 36 blocks of this decomposition contains a cycle of corresponding dynamical
systems, and the union of the other 12 blocks of that decomposition contains another cycle
of this system.

Numerous series of numerical experiments with various multidimensional gene net-
work models were fulfilled on cloud servers and on personal computers in order to illustrate
the corresponding mathematical results on the detection of the cycles; see [1,4,5] and refer-
ences therein.

Now, our main tasks are to extend these constructions in phase portraits and to extend
the results regarding the description of the behavior of these trajectories to the cases of
higher-dimensional gene network models with diffusion, in order to detect their cycles and
to localize their positions in the phase portraits of these models.
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